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CONTROLLABILITY AND POLE ASSIGNMENT FOR DISCRETE
TIME LINEAR SYSTEMS DEFINED OVER ARBITRARY FIELDS*

S. K. MITTERt AND R. FOULKES:

1. Introduction. The theory ofcontrollability and observability due to Kalman
is certainly one of the most important conceptual contributions to linear systems
theory. An account of the development of the ideas of controllability and obser-
vability as well as its implications on feedback control theory and realization
theory may be found in the recent book of Kalman, Falb and Arbib [1].

It has been known for some time that for a linear continuous, finite-dimensional
autonomous system with a scalar control variable, complete controllability is
equivalent to being able to assign arbitrary poles to the closed loop transfer matrix
by a suitable choice of state variable feedback gain matrix. This result was general-
ized to the vector control case by Wonham [2] and Simon and Mitter [3]. In [3]
constructive recursive algorithms to achieve pole assignment were also presented.
The objective of this note is to generalize this result to cover discrete-time, finite-
dimensional, autonomous linear systems defined over arbitrary fields. The result
can thus be applied to the feedback control of linear sequential machines [4. By
duality arguments the problem of state determination is also solved.

2. Notation and system definition. Let
T time set Z (ordered Abelian group of) integers;
U input values F vector space of m-tuples over the field F;
X state space F""
Y- output space Fp"

if2 input space of functions u(t); that is, arbitrary sequences u(- 1), u(0),
u(1), ..., with u(t) U.

We shall be concerned with the discrete-time, autonomous, linear dynamical
system E defined over a field F,

(2.1)
x(t + 1) Ax(t) + Bu(t),

y(t)-- Cx(t)

with Z, x(t) F, u(t) F", y(t) Fp and where

A F
_
F,

(2.2) B’F - F,
C.F Fp

are F-homomorphisms.
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We shall usually not make a distinction between (A, B) and (A, C) as a pair
of F-homomorphisms or as a pair of matrices representing these homomorphisms
with respect to a given basis.

With respect to the system (2.1) we make the assumption:
(i) the pair (A, B) is completely reachable, that is, the rank of the n x nm

matrix

(2.3) H(A, B) [B, AB, A"- 1B]
is n.

(ii) the pair (A, C) is completely observable, that is, the rank of the n x np
matrix

(2.4) K(A, C) [Cm, AmCm, (Am) ’Cm]

is n.

3. Statement of main theorem. The principal result of this paper is the
following theorem.

THEOREM 3.1. For the linear autonomous system (2.1), (A, B) is a completely
reachable pair ifand only iffor every monic polynomial g ofdegree n, there exists an
m >< n matrix K over F such that the characteristic polynomial of A + BK is
precisely g (up to a factor of +-1).

The proof of the result proceeds via several propositions and is presented in
the next section.

4. Proof ofmain theorem. The proofwill be divided into three parts" necessity
for the case when B is a column vector, necessity for a general B and sufficiency.

PROPOSITION 4.1 (case m 1). In (2.1) let B b n x 1 matrix. If (A, B) is
a completely reachable pair, then there exists a 1 >< n matrix k such that the charac-
teristic polynomial of A + bk has an arbitrary preassigned form (of degree n).

The proof of this proposition essentially consists of transforming A to rational
canonical form and is identical to the proof given for the field of real numbers
(see, for example, [5, Theorems 7 and 9]).

We now consider the case where B is an n x m matrix.
PROPOSITION 4.2. If (A, B) is a completely reachable pair, then there exists a

matrix K and a vector b such that (A + BK, b) is a completely reachable pair and
b is in the column space of B.

Proof The proof presented is essentially the same as independently given by
Heymann [6] and hence only an outline of the proof will be given.

Let by be thejth column of B and let Ey be the cyclic subspace of the coordinate
space E- F" generated by by. Since (A,B) is a completely reachable pair
E E1 + + E,,. In general, the E are not independent, that is, E fl Ej - #5
for =/= j. However, it is easy to see that there are subspaces S and a finite integer t,
0< =<m, suchthatE=S +...+S andSi(lSy= fori-Cj, thatis, Eis

It was pointed out by the reviewer that a similar result has been obtained by R. E. Kalman in
the unpublished notes" Lectures on Controllability and Observability, CIME Seminar, Italy, February
1969.
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a direct sum of the subspaces Si. A basis for E can now be obtained by combining
the bases for the subspaces.

By rearranging the columns of B (hence the coordinates of the control) it can
be assumed that the first columns of B are used. Hence the basis is

A- b,b bt Akt bt and k n
i=1

Let R [bl, Ak’-lbl, bt, Akt-lbt] be the matrix whose col-
umns are the above basis vectors. Clearly R is invertible.

Define an m n matrix S Is1.." s,], where each column is an m-tuple
defined as follows"

Srj ’j(m)+l if rj Z ki and j= 1, t-1", sj 0 otherwise,
i=1

where el") is the ith standard basis vector of F".
Finally, let P SR-1. Clearly PAk’-lbJ e}’)l, j 1,..., 1, and

PAbj 0 for all other powers of A.
Let A_ A + BP. Then the controllability matrix of the pair (_A, bl) is H

[bl_Abl... _A’-lbl] and it has rank n. Clearly b is in the column space of B.
The necessity part of the theorem now follows from Proposition 4.1.

We now prove sufficiency.
PROPOSITION 4.3. Given an arbitrary monic polynomial g of degree n, if there

exists an m n matrix K such that the characteristic polynomial of A + BK is

precisely g, then (A, B) is a completely reachable pair.
Proof We first assume that the field F has a sufficient number of scalars

a l, ..-, a, such that det (A aI) :/: O, 1, 2,..., n. From the above assump-
tion and by hypothesis there is a K such that (A + BK)v avi and vi-= 0.
Since aI A is invertible, we have

(4.1) (aiI A)- 1BKv v, 1, 2, ..., n.

Now for each ai there are scalars b(a) such that

(4.2) (aft A) -1 bj(ai)A- 1,
j=l

Hence from (4.1) and (4.2), we obtain

(4.3) A- 1B(bj(ai)Kvi) vi,
j=l

Let H [B, AB,..., A"-IB] and y (Y l"’"

Hy A- 1Bye.
j=l

If we set yj bj(ai)Kvj, then (4.3) becomes

(4.4) Hy.*, v, 1, 2,

where y’ (bl(ai)Kvi b,(ai)Kvi)T.

i-- 1,2,..-,n.

i-- 1, 2,..., n.

y.)T Fn". Then
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Since the eigenvalues of A + BK are distinct, the eigenvectors v 1,’", v,
are linearly independent and form a basis for F". Hence, by using (4.4), any v e F"
can be written as v H( ciy’). Therefore the range of H is F" and hence (A, B)
is a completely reachable pair.

Now if F does not contain enough distinct scalars, apply Proposition A.3 of
the Appendix to f det (A xI) and g det (A + BK xI). Then over some
extension field F’ = F, g has n distinct roots none of which are roots off. Now
from the proof of Proposition 4.3, H considered as a linear transformation of
(F’)nm--- (F’) has rank n. But H is a matrix over F F’; hence it has rank n
over F also.

For finite fields (containing at least 2 elements) the following stronger result
can be proved.

THEOREM 4.4. The following statements are equivalent:
(i) (A, B) is a completely reachable pair;
(ii) Given a monic polynomial g of degree n, there exists a matrix K such that

the characteristic polynomial of A + BK is precisely g;
(iii) B O, and given an irreducible polynomial p of degree n, there exists a

matrix K such that the characteristic polynomial of A + BK is p.
Proof The theorem will be proved by showing that the statements (i) and (iii)

are equivalent.
(i) (iii) from Theorem 3.1.
We now prove the reverse implication. For n 1, the result is obvious. For

n > 1, by Proposition A.1 we can construct an irreducible polynomial of degree n.
Let denote the range of H(A, B). Define the map

by

A (A + BK)xi, 1, 2,..., n,

where F"/ is the quotient space, {x l, .’., x,} is a basis for F" and ff denotes the
coset of x in the quotient space F"/Yl and K is an m n matrix. This is a well-
defined map since is an A-invariant subspace of F".

Let p(x) ’=0 Pix be the characteristic polynomial of A + BK. Then by
the Cayley-Hamilton theorem p(A + BK)= 0. It is easily verified that A is an
endomorphism of F"/ F"/. Using an induction on k we can show

I’Y (A + BC)’x

and we may verify that p() 0 (that is, the zero map on
Let m be the minimal polynomial of A. Then m divides p since p(A)= O.

Since by hypothesis p is irreducible, either m 1 or m _+p.
Since B # 0 degm < n degp, so m 1. But m(A) 0; this means that

the identity map on F"/ is equal to the zero map and hence F"/Yl . There-
fore F" and (A, B) is a completely reachable pair.

5. An example. As an example, consider the following three-state circuit over
the field Z3.
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FIG.

By inspection of the diagram,

xl(n + 1)= 2ux(n),

x2(n + 1)= xx(n) + 2xz(n) + ux(n) + uz(n),

x3(n + 1)= 2xx(n) + xz(n) + x3(n) + uz(n).

Letting xr(n) [x(n)

x(n + 1)=

By direct calculation,

xz(n x3(n)] and u(n)= [ul(n) uz(n)],

:t2 x(n) + u(n) Ax(n) + Bu(n).
1

1 1 1 2 2

0 1 2 2 0

which has rank 3. Following the construction in Proposition 4.2,

R [bx Abl A2bx]

200

ThenR- 0 0 2 ;also, S=
0 0 1

2 2

logo 1Again by direct calculation, A_ 1 2

0 0,

Therefore P SR-1

and H

2oo

i1 1 2,

020

000).
222

which is the

=1#0.

same as R in this case, so__H has rank 3. Letting p (PIPx2P3), the characteristic
polynomial of _A + bxpx is -x3 + (2p1 + Px2 + 1)x2 + (2p3 + p)x + (Px2
nt- P3). To see that these coefficients may be chosen arbitrarily, it suffices to note
that the following determinant is nonzero"
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6. Observability and state reconstruction. Since the pair (A, C) has been
assumed to be a completely observable pair, it follows from Theorem 3.1 that
for every monic polynomial g of degree n, there exists a p n matrix -Dr such
that the characteristic polynomial of Ar CrD is precisely g. Hence the charac-
teristic polynomial of A DC can be made arbitrary.

Now consider an observer [7:

(6.1) (t + 1) X(t) -+- Dy(t) + Bu(t), 0, 1,2, ...,
where X and D are n n and n x p matrices respectively. Let D be chosen such
that Ar- CrDr has arbitrary characteristic polynomial and let X A DC.

Then

(6.2)
(t + 1)- x(t + 1)= (A DC)E(t)- x(t)],

(0)- x(0)= given.

From (6.2) it follows that

(n)- x(n)= (A DC)"[(0)- x(0)].

Since the characteristic polynomial of A DC can be made arbitrary, the
matrix A- DC can in particular be made nilpotent and hence the observer
reconstructs the initial state in at most n steps.

Appendix. In this Appendix some results on finite fields which are used in the
proof of Proposition 4.3 are presented.

The following results are needed. The proof of the first two propositions are
consequences of well-known results on finite fields (see Lang [8, Chap. VII, 5]).

PROPOSITION A.1 (see [9, p. 128). IfF is a finite field consisting of at least two

elements, then the polynomial ring P(F) contains irreducible polynomials of every
degree >= 2.

PROPOSITION A.2. For every irreducible polynomial over a finite field F, there
is an extensionfield F’ such that the given polynomial has n distinct roots in F’, where
n is the degree of the polynomial.

PROPOSITION A.3. Let F be a finite field and f a given polynomial of degree n
over F. Then there is a polynomial g of degree n over F and some extension field
F’ F such that g has n distinct roots in F’, none of which are roots off

Proof First, consider the case whenfhas at least one root in F. Thenf f’f",
where f’ is a product of linear factors and f" has no roots in F. Also, degf’ >= 1,
so degf" < n.

By Proposition A.1, there is an irreducible polynomial g over F of degree n.
Then gcd (f", g) 1 since degf" < deg g. Clearly gcd (f’, g) 1, so gcd (f, g) 1.

By Proposition A.2, there is an extension field F’ F such that g has n distinct
roots in F’. But gcd (f, g) 1 in F’ also, so no root of g is a root off in F’.

Next, consider the case whenfhas no roots in F. Now, etiher F has n distinct
scalars or not. If it has, let g (aa- x)(a2 -x)... (a,- x), where the a are
distinct scalars in F. Then no root of g is a root off, and F is the desired extension
field.

If F does not have n distinct scalars, consider the prime factorization off:
f P lPz’’’Pk, where each Pi is an irreducible polynomial of degree at least 2,
say deg Pi mi, and = mi n. (Note that the p may not be distinct.)
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If k > 1, then each mi < n. Pick a polynomial g over F irreducible of degree n.
Then gcd (f, g) 1. Again. let F’ F be an extension of F containing n distinct
roots of g. Since gcd (f, g) 1, no root of g is a root off.

If k 1, then f pl and ml n. Let F have p distinct scalars, and choose
g’= (a x)... (ap- x), where the ai F are distinct. Also choose g" over F
irreducible of degree n p. Then gcd (f, g") 1 and gcd (f, g’) 1 hence,
gcd (f, g’g") 1.

Let F’ F be an extension field in which g" has n p distinct roots. There-
fore g g’g" has n distinct roots in F’. Also, since gcd (f, g) 1, no root of g is
a root off

Acknowledgment. The authors are indebted to the reviewer for constructive
comments and suggestions. In particular the statement and proof of Theorem 4.4
was obtained as a result of comments by the reviewer.

Note added in proof. It was recently pointed out to me by R. W. Brockett
that V. M. Popov proved the result on pole assignment earlier in his paper:
Hyperstability and optimality of automatic systems with several control functions,
Rev. Roumaine Sci. Techn.-Electrotechnct. Energ., 9 (1964), pp. 629.-690.
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STABILITY OF A NONAUTONOMOUS DIFFERENTIAL
EQUATION OF FOURTH ORDER*

A. S. C. SINHA AND R. G. HOFTf

1. Introduction. In this paper, the object is to establish sufficient conditions
for stability of (1) in the cases p(t) 0, and p(t) 0, respectively, which follows
from some fundamental results due to LaSalle [1]. Further, it is worth noting that,
in view of LaSalle’s results, it is not necessary to show that the Lyapunov function
is positive definite (and this would be a tedious computation) in order to conclude
global asymptotic stability

() "" + f(50" + dp(2, 5)5 + 0() + O(x) p(t).

It is easily seen that the resu,lts in this analysis become Routh-Hurwitz con-
ditions when functions f qt, 4) and 0 are constants in the case p(t)= O. The
conditions obtained are generalizations of the work of Ezeilo [2] and Harrow [3]
for a class of fourth order systems. The Lyapunov function given here has been
constructed by forming linear combinations of line integrals. However, the con-
stants for the linear combinations are obtained by a trial method. The functions

,f, qS, and 0 are real-valued with continuous first partials. A smoothness property
is also assumed to ensure the existence of integrals appearing in the analysis.

2. Stability. Consider the differential equation (1) and the associated system
(Case 1. p(t) 0)"

(2)
2=y, )=z, =w,
v -f(z)w ok(y, z)z- /(y)- O(x),

where (0) 0(0) 0, so that the origin is a critical point.
It is assumed that there exist positive constants such that

(3) b>=f(z)>=f>=a> O,

(4) qS(y, z) _>_ b > 0,

(5) O(Y)/Y >= /o > O,

(6) (0)1/2 O(X)/X 0 > O,

(7) 0 =< O’(Y) =< 61, o <= O’(x) <= o’(o) <= ,
* Received by the editors June 10, 1969.
"f College of Engineering, University of Missouri, Columbia, Missouri 65201. This work was
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where the superscript o designates the evaluation of the given function at the
origin. Let the following relations between the constants of (3) to (7) hold:

(8) ackO- 6abO- 6,5 > O,

(o)2(2aoO)a/2 > S

<
1

f(s) ds f(z)(10) for all z 4:0

The following V-functions are introduced:

(11) Vx (y, z, w) w + F(z) +
/o z

y + a we

where f(s) ds F(z);

(12) Vz(y, z) a2 s{4(y, s) c} ds + - s{4(s, O) c} ds

(13)

(14)

v3(x, y, z) -  oi?]+-0 Y + aO6[_ x J

+ s ds,

s ds

2 y2

Z2 +2fo sf(s) ds zF(z)

yz.
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Consider the following inequalities which are used to show that V v as. Now 0 < F(z)/z < b and therefore from (7) it follows that

(15) (x, y)
k(.,v)

D-L-j
_>_

y
__> o,

Y

(16)

0’(0) >
a a()20Fadpg/O

6abO ()26]

>= mpoZoo[adpg/O 6abO 62x al]l2 0

From the mean value theorem,

$o <
g/(Y) j’ 0o<0(x) j’g/(yt) dt <= 61, O’(xt) dt <= 6
Y o x o

and (3), (6) and (7) give

(17)

4, 6 4, [-O(x)-] 2

> aoooCkqo 6aO (qFO
a o tOa2 L- -3

> aZOoooFaOg/O 6abO 626] aZlpooo >0,

(18)

2 sf(s) ds zF(z) sf(s) ds F(s) ds

ff { F(s___) f(s)t s ds > fl2a2O Z2

Therefore, using (15), (16), (17) and (18) in (14) gives

6/ y:+ z 2_(xV4(x, y, z) >= (x, s)s ds + a(O)20o 2a2tO +
a

y)yz

> 2 a(x, s)s ds + + a(x y)z + Cz2,

where

/ (q,F
C

2a2tooo ]Ja2(x’ y) > O.
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Now x(x, y) < [61/ 0/,5]; therefore, from (9), (X2(X, y) < flz/[(O)Z2a@O3.
Consider the Lyapunov function

2V(x,y,z,w)-- VI + V2 + V3 + V4

>
F(z)

w + F(z) +
#o z a F-(z)

 oivI t+ + y + a-gca z

+- s -0 ds + 2

+ S ; + -3-(’ y)z + Cz. o(x, s)s ds

Thus V--, oo as Ixl--+ oo. A little computation gives

26
2 V(x, y, z, w)

(19)

W2

O(s) ds +
k ,o

6 1
W2

26

o z2 + -a + 2wz + -yw
2

f(s) ds + 20(x)y +-O(x)z
a

(20)

+ -O(y)z + 2 O(s) ds + s{4)(y, s) 49} ds
a a

+ - s{dp(s, O) dh} ds + 2 sf(s) ds.

Evaluating the time derivative of (19) along the trajectories of (2) yields

2(x, y, z, w)
a

1
If(z) a]w 4(Y z) O’(Y)a o z

[60 (y)y O’(x)]y2- [O’(O)--O’(x)]YZa
+-z s4,(y s)ds [(y z)- 4(y, 0)]yz

a

1 1 b6
--[f(z)a a]we -_,(y)a o
/- [o’(o- o’(x3 y +

+ -z sv(y, s) ds y y, zt) d

[0’(0) 0’(x)]
4a2 Z

2
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and with 5 0’(0) + 52, 2 > O,

(y, z) (y, O) z -7-(Y, zt) dr.

Then (20) is negative semidefinite if the following conditions hold"

(21) zCr(y z)<= O,

(22) y y, zt) dt >__ 0,

(23) 0’(0) > O, 0’(0) " O’(x) 0’(0)- "1, )1 O,

where )1 4aZ(fl/a0 7) for some 7 _-< fl/a/0. Using (7), (8) and (23) gives

b6] ro,(o)_ o,(x)]4) 10’(Y)a - L 4-2 _]

aO01 [ackooooo_ OoooO,(y ab60O] [0’(0)-4aa
aOoOo 4az 7 > O.

The conditions of Theorems 2 and 3 of LaSalle’s paper [1] are satisfied;
therefore global asymptotic stability has been proved. Thus these results are
combined into the following theorem.

THEOREM 1. If there exist positive constants as defined in (3)-(7) of the system
(2) such that the following conditions hold:

(i) (0) 0(0) 0, andf, , d/, 0 have continuous first partials;
(ii) conditions (8)-(10) and (21)-(23) hold;

(iii) I? 0 along every nontrivial solution;
then the system (2) is asymptotically stable.

3. Nonautonomous systems. In this section, the system (1) is analyzed to give
sufficient conditions for which every solution of(l) is bounded for all >__ 0. Here
it is assumed (Case 2) that p(t) is an integrable function.

THEOREM 2. If the conditions (i) and (ii) of Theorem 1, along with the following
conditions hold"

(i) f(z) >= a + / >= a +
(ii) i2 _>_ (6/2b)lp(t)l;

(iii) t ]p(s)l ds <= c ;
Jo

then every solution of (1) is bounded in the future [1].
Proof To prove Theorem 2, consider the Lyapunov function (19) which was

shown to be such that V oe as Ixl--, oe. Evaluating the time derivative along
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the trajectories of (1) results in the addition of p(t) terms to (20).

(24)

(x, y, z, w) <
b6-l[f(Z)a a]w2 dP

l

6y: [0’(0)- 0’(x)] Y+aa)
+ -z sck(y, s) ds

a - y z(y, zt) dt

+ 1-p(t)Wa + -p(t)y + p(t)z

- P + -a + - + 1

<_ -+ +1
a

if the conditions (i), (ii) and (iii) hold.
Now integrating (24), we have

V(x, y, z, w) <= V(O) + + + 1

(25)

[0’(0)
4a20’(x)]}

Ip(s)l ds

Z2

Z2

Z2

1 1 5
-+ + c<k<__ V(O) +- a -Therefore, every solution of (1) is bounded in the future.

4. Example. A very simple case of differential equation (1) is when the
functions f and 4’ are constants. In this case the previous results become the
Routh-Hurwitz conditions. Consider

(26) "" + a "2" + a25 + a32 + a4x p(t).

Let p(t) 0; then the conditions (8)-(10) result in only one nontrivial relation (27)
which is clearly a Routh-Hurwitz condition for the system.

(27) 2 2 a2a4 =fl > 0a,a2a3a4 a4al

Let p(t) 0 and define the constants a al/2, b fo al and 2a4.
Then (26) has bounded solutions in the future if

2 2 2aa =fl>O(i) 1/2aa2a3a4 aa
(ii) a >__ [p(t)[, a3

and the conditions of Theorem 2 are satisfied.

REFERENCES
[1] J. P. LASALLE, Stability theory for ordinary differential equations, Differential Equations, 4 (1968),

pp. 57-65.



14 A. S. C. SINHA AND R. G. HOFT

[2] J. O. C. EZEILO, Further resultsfor the solutions ofthird order differential equations, Proc. Cambridge
Philos. Soc., 63 (1967), pp. 147-154.

[3] M. HARROW, Further results for the solution of third order differential equations. Proc. London
Math. Soc., 43 (1968), pp. 587-592.

[4] J. LASALLE AND S. LEFCHETZ, Stability by Liapunov’s Direct Method with Applications, Academic
Press, New York, 1961.

[5] J.O.C. EZEILO, Further resultsfor the solutions ofa third-order differential equation, Proc. Cambridge
Philos. Soc., 59 (1963), pp. 111-116.

[6] N. N. KRASOVSKI, Stability of Motion, Stanford University Press, Stanford, California, 1963.

[7] W. LEIGHTON, On the construction ofLiapunovfunctionsfor certain autonomous nonlinear equations,
Contributions to Differential Equations, 4 (1963), pp. 367-383.

[8] A. I. OGURTSOV, The stability of solutions of two nonlinear differential equations of the third and

fourth orders, J. Appl. Math. Mech., 23 (1959), pp. 247-251.



SIAM J. CONTROL
Vol. 9, No. 1, February 1971

ERROR BOUNDS OF HIGH ORDER ACCURACY FOR THE STATE
REGULATOR PROBLEM VIA PIECEWISE POLYNOMIAL

APPROXIMATIONS*
w. E. BOSARGE, JR. AND O. G. JOHNSONf

Abstract. Consider the linear quadratic cost control problem : A(t)x + B(t)u, x(0)= Xo,

with a cost functional J[u] [x, Q(t)x) + u, R(t)u)] dr. Let S be a suitable space of piecewise

cubic polynomials on a mesh of norm h on the interval [0, T]. Then it is shown that a so-called Ritz-

Trefftz method for minimizing J[- over S leads to an approximation to J[. of order O(h). Further,
a computable error bound can be exhibited. It is also shown that the computed pair (, ) converges
to the optimal pair (u*, x*) with order O(ha). Similar statements are made for piecewise polynomial
approximation of arbitrary positive order.

1. Introduction. In the past considerable effort has been devoted to the
use of direct methods in calculus of variations and control problems (see, for
example, [4], [12], [6]). Specifically, the effort was directed towards finding the
minimum of a functional J[u;x] (defined for some admissible controls and states)
over a suitable finite-dimensional subspace of basis functions {u,(t), x,(t); n 0,
1,..., N}. In this paper we consider the application of a modified Ritz direct
method to the so-called state regulator control problem using finite-dimensional
piecewise polynomial bases. We show that, for the "well-behaved" linear quadratic
cost control problem, a numerically useful computational algorithm can be
obtained for computing very high order approximations to the optimal control,
the corresponding optimal state, and the associated cost functional. In particular,
for the "smooth" problem, we show that a so-called Ritz-Trefftz method employing
-order splines delivers approximations to the optimal control and optimal state
with an error O(h), where h represents the mesh size for the spline basis. The
corresponding approximate optimal cost estimates the true (optimal) cost to
within O(h2). We also exhibit an O(h2+ 1) error bound using the Hermite space
Ha(H). In addition, we represent an explicit derivation of the numerical Ritz-
Trefftz algorithm. In a forthcoming paper we will discuss the practical utility of
the method including results on its numerical stability. We will also present some
comparisons of our method to the classical approach where numerical integration
of a nonlinear Ricatti differential equation is required. (Note O(h) is a function
less than Kh in norm for some K > 0, where K is independent of h.)

2. Problem description. In this section we present a detailed description
of the infinite-dimensional state regulator problem and recall a number of useful
analytic results which we shall require in the sequel.

Consider the linear time-varying system

Yc(t) A(t)x(t) + B(t)u(t),
(2.1)

x(0) Xo
Received by the editors October 9, 1969, and in revised form May 26, 1970.

" International Business Machines Scientific Center, Houston, Texas 77025 and Department of
Mathematical Sciences, Rice University, Houston, Texas.

A detailed numerical study of the algorithm resulting from this modified Ritz approach will
appear in a forthcoming paper.
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and the cost functional J[.-[ defined by

(2.2) J[u] [(x(t), Q(t)x(t)) + (u(t), R(t)u(t))] dr.

Assume that x(. is an n-dimensional state vector, u(. an r-dimensional control
vector, A(. an n n matrix, B(. an n x r matrix, Q(. an n x n positive definite
matrix, and R(. an r r positive definite matrix. In addition, assume that
A, B, (2, R are (elementwise) piecewise C[0, T], > 0. We require that the terminal
time T be fixed, that 0 < r =< n, and that u(. be unconstrained.

The problem we treat in this paper can be described in the following equivalent
ways.

DEFINITION 2.1 (Problem 1). Given the linear system (2.1) and the cost
functional (2.2) subject to the assumptions stated above, find the optimal control,
i.e., the control which will drive the system (2.1) so as to minimize the cost func-
tional (2.2). Thus we seek a u* such that J[u*] min, J[u] with )* A(t)x*(t)
+ B(t)u*(t) and x*(0) x0. Here SC’u is some set of admissible vector-valued func-
tions on [0, T].

Since Problem 1 can be viewed as a standard calculus of variations minimi-
zation problem subject to nonholonomic constraints, we may introduce Lagrange
multipliers 2(. (time-varying n-vector) and ?(n-vector) and define the Lagrangian
L[u, x;2, ?] by

L[u, x, ,, J[u, x] + ,t(I, - + (tlx + B(t)u)t
(2.3)

+ (, (x(O) Xo)),

where J[u, x] is defined in (2.2) but is viewed as a function of two variables. Thus,
an alternative way of describing Problem 1 is given by the following definition.

DEFINITION 2.2 (Problem 1’). Given the linear system (2.1) and the cost
functional (2.2) subject to the assumptions of Definition 2.1, find the u*, x*, 2" and
7" such that the Lagrangian is extremized; that is,

(2.4) L[u*, x* 2*, ,*] max min L[u, x; 2, ],
Rn Xx

where R is real Euclidean n-space, and , z and , are innerrelated.
One of the essential properties of the multipliers 2(. and 7 is that, in the

process of extremizing L over u, x, 2 and 7, the Lagrangian is maximized over the
multipliers 2 and 7, and minimized with respect to u and x (see [10]). This fact is
often misunderstood (see [12], [9] or [5]) and sometimes permits erroneous con-
clusions to be drawn in the convergence analysis of direct methods which have
been applied to problems of the above type (see, for example, [12]).

We introduce still a third formulation of Problem 1 which is useful in the
sequel.

DEFINITION 2.3 (Problem 1"). Under the assumptions of Definition 2.2,
find the 2" and y* such that

(2.5) L[u*, x* 2", 7"] max L[u, x; 2, 7]
yRn
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subject to

L
(2.6)

c3L
[u x’2,7] 0 [u,x" 2 7] 0u Ux

where c3L/c3u and c3L/cx are partial Fr6chet derivatives of the scalar Langrangian.
The equivalence of the three formulations of Problem 1 follows from well-

known "principles" of the calculus of variations (see, for example, [4]).
By smoothness of Problem 1 we shall mean the following.
DEFINITION 2.4. We say Problem 1 PC[O, T] if and only if A, B, Q, R

have (elementwise) piecewise continuous eth order derivatives. Equivalently we
say Problem 1 is eth order smooth if Problem 1 e PC[O, T], >= O.

Basically, the solution of the state regulator problem leads to an optimal
feedback system with the property that the state vector is "kept near zero" without
excessive expenditure of control energy. Due to the linear nature of the system
equations and the quadratic nature of the cost functional, the problem can be
"handled analytically" in the sense that the optimal control is an explicit linear
function of the state, i.e., is of the form

(2.7) u(t) G(t)x(t), [0, T],

with G(. an r x n matrix-valued function defined by

(2.8) G(t) R- l(t)BW(t)K(t)x(t),

where K(t) is the n n symmetric matrix solution of the well-known Ricatti
equation. Therefore, a complete solution is obtained (in general) only after K(.)
has been numerically approximated. We pursue this point further in a later
section of the paper.

We now present a number of well-known results for Problem 1.
THEOREM 2.1. Let us assume that an optimal control u* for Problem 1 exists

for the state Xo. Then, in order that u* be optimal, it is necessary that there exist
a vector function 2*(. (Lagrange multiplier) such that

(a) 2*(. corresponds to u*(. and x*(. with 2*(. and x*(. solutions of the
equation pair

(2.9) *(t) A(t)x*(t)+ S(t)u*(t)

and

(2.10) },*(t) Q(t)x*(t) AT(t)2*(t),

subject to the boundary condition x*(0)= Xo and the transversality condition 2*(T)
=0;

(b) along the optimal trajectory x*(. we must have

(2.11) R(t)u*(t) + sr(t)2*(t) O.

Proof See Athans and Falb [2].
THEOREM 2.2 (Analytic solution of the state regulator problem 1). Given

the linear system (2.1) and the cost functional (2.2), where u(.) is not constrained,
T is specified and Q(.) and R(.) are positive definite matrices. Then an optimal
control exists, is unique and is defined by (2.7) and (2.8), where the n n symmetric
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matrix K is the solution of the Ricatti equation

(2.12) /(t) -K(t)A(t)- AT(t)K(t) + K(t)B(t)R-l(t)BT(t)K(t)- Q(t)

with K(T)= O. The state x*(. of the optimal system is then the solution of the
linear system

(2.13)
)(t) [A(t)- B(t)R-l(t)BT(t)K(t)]x(t),

x(O) Xo.

Proof See [23.
The notation x*, u*, 2" and J* will be used throughout the paper to denote

optimal quantities. We now state a well-known theorem which we shall require
in the sequel.

THEOREM 2.3. Given the linear system (2.1) and the cost functional J of (2.2),
let J* denote the minimum value ofJ; then J* is given by

(2.14) J*[x(t);t] 1/2(x*(t), 2*(t)}, 0 =< =< T,

where 2*(t) K(t)x*(t) with K( the solution of(2.12).
Proof See [2].
We now prove a theorem which tells us that the optimal quantities u*, x* and

2* for Problem 1 are in PC[O, T] provided Problem 1 PC 110, T].
THEOREM 2.4. Assume that Problem 1 is (- 1)st order smooth. Then the

optimal control u*(.), the optimal state x*(.) and the optimal costate 2"(.) are
each in PC[O, T].

Proof. From (2.9), (2.10) and (2.11) we see that x*(.) and 2*(.) satisfy the
2n-equation system

(2.15)
L,*(t)J Q(t) AT(t) L,*(t)J

subject to x*(0) Xo and *(T) 0. Here S(t) is defined by

(2.16) S(t) B(t)R- l(t)Br(t).
Since A,B, Q, R PC 110, T] and R is positive definite, it follows that R-1
e PC-I[O, T]. Thus, S ePC[O, T]. From the theory of ordinary differential
equations we now conclude that x* and 2" e PC[O, T]. From (2.11) we deduce
that u* PC[O, T] also and thus the theorem is proved.

3. Finite-dimensional analogue of Problem 1. In this section we present a
special finite-dimensional analogue to Problem using certain subspaces of piece-
wise polynomials. We first describe a number ofuseful piecewise polynomial spaces.

3.1. Spaces of piecewise polynomials. Let S (a >= ;m => 1, with a, m integers)
be an m-dimensional space of piecewise polynomials of fixed order a 1. Then we
assume S, is characterized by the following properties"

P1. There exists a linear operator L :PC[0, T] - Sm
P2. For all f e PC=[O, T], Lmf f 2 O(m-).
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P3. For all
P4. (L,,f)(i)(O) f(i)(O), (L,f)i)(r) f((r), O, 1.
P5.

It is well known that there exist spaces of piecewise polynomials possessing
properties P1-P5 provided, of course, sC’x is piecewise smooth. As an example,
suppose we define
<... < tv= Tand

(3.1) h max It i_ l[-
i= 1,.",v

Now suppose f PC[O, T] and let 1-I contain all points of discontinuity of f)
in [0, T]. Then the closure of the graph of f C[ti _,, t], i= 1,..., v. Thus,

ft-l is absolutely continuous andfL, Now, if m0 is an integer in [a/2,
a + 1, then there exists, for example, a Hermite interpolate tof(which we denote

1. Further, it is well known in this case that (see, forLmf of order 2moby n

example, [3])

(3.2)

and

ILnf f[[2 O(h+ ,/2)

d
(3.3) (Lnmf f) O(h 1/2).

We remark that the order of convergence is actually better (by 1/2) than we require.
Another extremely useful piecewise polynomial space possessing properties

Pl-P4 is the space of splines of order a 1 (see, for example, [1). Spline subspaces
have been used frequently in recent years in the development of practical and effi-

cient numerical algorithms for attacking wide classes of problems. In fact, for

many practical problems, spline subspaces "deliver" the best results for an equi-
valent amount of computation, compared with an alternative finite dimension
space of piecewise polynomials (see [8]). We shall therefore emphasize spline
subspaces S, for our numerical comparisons which we present in a forthcoming
paper.

3.2. Application to state regulator Problem 1. We now consider a special finite-

dimensional approximation to Problem (Definition 2.1) over a typical S,.
The approximation is, in a sense, a Ritz method, but differs from the classical
Ritz procedure in a fundamental way.

We begin by stating a special finite-dimensional analogue for Definition 2.1.
Instead of requiring that the differential equation side condition (2.1) be satisfied
identically, we relax the constraint as indicated in the following definition (see
Trefftz 11).

DEFINITION 3.1 (Problem 2). Given the linear system (2.1) and the cost
functional (2.2) subject to the standard assumptions of Definition 2.1, find the

optimal control a such that

(3.4) J[a] min J[u]

subject to the side conditions

(3.5a) if(O) Xo,
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(3.5b) (wj(t), (- + A(t) + B(t))i) dt 0

for each basis function wje Sm, i= 1, "’, n, j-- 1, ..., m.
The analogues of Problems 1’ and 1" are given in Definitions 3.2 and 3.3,

respectively.
DEFINITION 3.2 (Problem 2’). Under the same assumptions as in Definition

3.1, find the , if, 2 and p such that the Lagrangian (2.3) is extremized when 2 is
restricted to Sm (2 Sm will henceforth mean that each 2i S). Thus

(3.6) L[n, if; 2, ] max min L[u, x; 2, 7].
2S Uu
yRn Xx

DvIyIOy 3.3 (Problem 2"). UnOer te assumptions or Definition 3.1,
find the and such that

(3.7) L[, if; , 7] max L[u, x; 2, 7]
ZS
Rn

Ox [u, x 2, y] O,

(3.9)
cL

[u, x" 2 7] 0

The equivalence of Problems 2 and 2’ follows immediately from the funda-
mental theorem of Lagrange multipliers. Further, the equivalence of Problems
2’ and 2" is guaranteed by fundamental principles of the calculus of variations
(see [4]). The three formulations of the finite-dimensional problem will be required
in subsequent sections. In particular, the formulation of Problem 2’ will be required
to generate certain key inequalities, essential in the convergence analysis of the
numerical Ritz-Trefftz procedure. The third formulation (Problem 2") is required
in the development of a useful computational algorithm for the numerical solution
of Problem 1.

3.3. Development of numerieal algorithm. We consider now the development
of a feasible computational algorithm using the problem formulation 2". We begin
by extremizing L[u,x;2,7] for 2 S, and 7 R,, subject to the constraints
(3.8) and (3.9). Thus, since 2 e S,, we can express 2 as a linear combination of
basis functions w, i= 1,..., m. Consequently, we write

(3.10) 2(t) cjwj(t), 0 <= < T,
j=l

where each cj, j 1,..., m, is an n-vector. Now, since x(T) is unconstrained,
we conclude from (3.8) that

,(t) + A(t)2(t) + Q(t)x(t) O, 0 <= <= T,
(3.11)

2(T) 0, 7 -2(0).

Similarly, we deduce from condition (3.9) that

(3.12) B(t)2(t) + R(t)u(t) O, 0 <= <= T.

subject to the constraints

(3.8)
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From (3.11) and (3.12) we observe that L can be written as a functional of the
Lagrange multiplier 2(. only. Thus the problem is reduced to maximizing L over
2(. ). We require, therefore, that

(3.13)
cgL

=0,

where 2 is defined in (3.10). Thus, we must first express L in terms of the cj’s. We
have

L[u, x;)., - (u, Ru) dt + (x, Qx) dt

+ 2,-2 + Ax + Bu)dt- (2(0), x(0)- xo)

(3.14)
J[u] <(t),x(t)>] + <i + ATe, x> dt

+ (, u) t (o, x(O) xo).

From conditions (3.11) and (3.12) we have

(3.5 C[u,x;,] -J[u] + <x(o,xo).

From (3.10) we obtain

(3.16) <u(t), R(t)u(t)> at c[ E(t)w(t)wy(t) at c,
i= 1=1

where E is an n x n symmetric matrix given by E(t) B(t)R- (t)BT(t). Similarly

(3.17) <x(t), Q(t)x(t)) dt [<i, Q- (t)i) + 2(X, F(t)i) + (X(t), G(t)X)] dt

or

](x(t), Q(t)x(t)) dt ci Q- l(t)#i(t)Cvj(t dt Cj
i= j=

+2 cr F(t)wi(t)Fvj(t)dt cj
i= j=

+ 2 c[ a(t)w(t)w(t)dt c,
i=

where F(t) A(t)Q-(t) and G(t) A(t)Q-(t)Ar(t). Finally, we have that

(3.1a) <X(0), xo) cw(o), xo
i=
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LIe1, "’’, Cm] L[U(C Cm), X(C Cm) t(C1,Maximizing
7(Cl, "’, %)] over ci (i 1,..., m), we obtain

L fO
r

[(E(t) + G(t))w,(t)wj(t) + F(t)wi(t)vj(t)
Ii j=

(3.19) + Fr(t)fv(t)w(t) + Q- l(t)fv(t)fv(t)J dt c
+ w(O)xo 0

for 1, ..., m. We define H by

(3.20) H [(E + G)ww + Fw + Fr + -]dr.

It follows that solving (3.19) for c, i= 1,..., m, is equivalent to solving the
linear system

(. y b,

where the (m n) (m n)symmetric matrix H is defined by

Hll H12 Him
(3.22) H H21 H22 H2m Hij Hi

H

and y and b are given by

C

C2
(3.23) y= :. b=

c

W (O)Xo 7

w,.(O)xo _]

We note that H possesses certain desirable numerical properties (such as
sparseness, definiteness, etc.), which insures that (3.21) is numerically "well-
conditioned". We discuss these aspects of the numerical algorithm described by
(3.21) in greater detai! in a forthcoming paper. If we now assume that y, the solution
of (3.21), is known exactly, then we write [, -.., ,,r]T and set

(3.24) ,(t)
i=1

where 2 and are computed according to (3.11) and (3.12). In the remainder of the
paper we shall be concerned with how "well" J[] approximates J[u*], and,
likewise, how "well" the and ff approximate u* and x*, respectively.

4. Cost functional convergence for pair (, ). In this section we state and
prove the key convergence theorems for the cost functional J[. ], interpreting
the results in a number of useful piecewise polynomial subspaces.
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4.1. An order error hound for Ritz-Trefftz method. From the equivalence of
Problem 2 with Problem 2" we can conclude that (0) is indeed Xo. Then it is
clear that the final term (7, (0) Xo) may be omitted and we write L[, ; ,
replacing L[O, ; , ].

THEOREM 4.1. Assume Problem PC-I0, T, and let , and be pre-
scribed by the Ritz-Trefftz algorithm (defined in (3.21) to (3.24)) over an arbitrary
S. Suppose S, where approximates * to order h, h 1/m. Further, suppose
(u, x) is the pair generated by 2 according to (3.11) and (3.12). Then

(4.1) e, e O(h), ex O(h-),

(4.2) J[u*] L[, X; 2] J[u*] + Lie,, x; ex],

where e, u u*, e x x* and ex 2 2", with 2 [. ]2

Proof Since Problem 1 e PC-[0, T], we have 2*ePC[0, T]. Hence,
from the hypothesis there exists a 2 S such that [[2 2" 2 O(h) Thus, from
(3.11) and (3.12) we obtain

(4.3) u- u* e-xBr(s- *)112 < o(h)2

(4.4) x- x*l 2 Q-[(is- i*) + Ar(2s- *)]112 O(h-1)

which proves (4.1).

For the proof of (4.2) we recall formulations 1" and 2", whence

(4.5) J[u*] L[u*, x* 2", 7"] L[, ; i, ],

Since S c x (in general, x will be a set of continuously differentiable functions
on [0, T). And, from (3.7) we conclude that L[O, ff;2] L[u, x ;2]. But

L[u, x; 2] L[u* + ,, x* + e; 2" +
L[u*, x* 2*] + Lie,, ex ex]

(4.6, f f+ (u*(t), R(t)e.(t)) dt + (x*(t), Q(t)ex(t)) dt

+ (2*(t),- (t)+ A(t)ex(t)+ B(t)e,(t))dr.

From (3.11), (3.12) and integration by parts we conclude that

(2*(t),- (t) + A(t)e(t) + B(t)e,(t)) dt

(4.7)

(note that e(0)= 0 since Xs(0)= 2*(0), 2;(0)= 2*’(0) by P4) which proves that
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(4.9)

(4.10)

But

(4.11)

We consider now an important corollary to the previous theorem.
COROLLARY 4.2. Suppose the conditions of Theorem 4.1 hold. Then

0 J[u*] L[Q, X;,] O(h2(-’)).

Proof From (4.8) we observe that

0 __< J[u*] L[, 2; 2] =< L[e,, ex, e].

(e,, R(t)e,) dt + fro
+ -x + A(t)ex + B(t)e.) dt.

Again integrating by parts and applying the order bounds to ex, ex and e., we
obtain

0 =< J[u*] L[a,2;,] O(h2(-’)) + O(h2)

O(h2(a
and the corollary is proved.

Two important piecewise polynomial subspaces which are useful computa-
tionally are S(H) (the space of piecewise cubic splines on [0, T]) and H(H) (the
piecewise cubic Hermite subspace on [0, T]). If, for example, Problem 1 pC3[0, T],
then e 4, and we have

0 __< J[u*] L[O, 2; i] __< O(h6),

with , 2, 2 generated over S(H). Similarly, for a, 2, 2 generated over H(H), we can
show that

0 __< J[u*] L[, 2;,] __< O(h6),

(Note that L[, 2;,] is just (ft, RO) dt + - (2, Q2) dr.)

5. Norm convergence of the pair (, ). In this section we discuss the
convergence of the computed pair and 2 to the optimal pair u* and x*. We
begin by proving a series of simple lemmas.

LEMMA 5.1. Assume Problem 1 PC x[0, T] and let o, 2 and be prescribed
by the Ritz-Trefftz procedure over the space S,. Then

(2", + A(t)2 + B(t)ft) dt

(5.1)

23[u*] (u*, R(t)O) dt- (x*, Q(t)2) dt.
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Proof. Integration of the left side of (5.1) by parts yields

To
(2*(t), + A(t), + B(t)ft) dt

f-(2",)[ + (},* + AW(t)2*,)dt + Br2*,fl) dt.

But, by transversality 2*(T) 0, and from (2.14) we conclude that 2J[u*] (2"(0),
x(0)). Since (0)= Xo, we have

2J[u*]

The desired result now follows from the standard necessary conditions for Problem
1 (see (2.9) and (2.10)).

LEMMA 5.2. Assume the hypotheses of Lemma 5.1 hold. In addition suppose
that 2 is the S, approximation to 2", and suppose (u, x) is the pair generated by 2
according to (3.11) and (3.12). Then

Proof. From the formulation of Problem 2, we deduce that

dt 0

for eachwjeS, i= 1,... n,j= 1,...,m. But2s(t)=m c}wj(t) forsomesetj=l

cj of n-vectors, j 1,..- m. Hence

(5.3) (2,-- + A(t)2 + B(t)ft) dt O.

Hence

(2", + A(t)2 + B(t)f) dt

=< 1111211112 + 111121tAI1=11112
But we know that tlll O(h) and thus 11112 O(h ). Since 11ll2.and 11112
are each bounded uniformly in h (Theorem 4.1), (5.2) is established and the proof
is complete.

LEMMA 5.3. Assume the hypotheses ofLemma 5.1 hold. Then

(5.4)

(5.5)

a u*l -= (0- u*,R(t)(O- u*))dt O(h

2 x* 2 =- ( x*, Q(t)( x*)) dt O(ha-l).
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Proof We can easily verify the identity

2J[u*]- 2 (a,R(t)u*> dt + (., Q(t)x*> dt + 2J[a, ]

Because of the equivalence of Problems 2, 2’ and 2" we recall that L[O, if;2, 9]
J[o, ]. Hence

2lu*-al+ Ix*-

4a[u*] 2 (a, R(t)u*> dt + (, O(t)x*) dt + O(h2- 1).

Now, applying the previous two lemmas, we obtain

0 Ilu* a[[ + IIx* 2ll 4J[u*3 4J[u*] + O(h )
or

0 Ilu* l[ + Ilx* l[ O(h 1)
from which (5.4) and (5.5) follow.

LEMMA 5.4. Under the assumptions ofLemma 5.2 we assert that

f[ (2*, + A(t) + B(t)a) dt

(5.6) < II 2 X* 2 + Ilea 2 AI 2 X* 2

+11 2 B 2 -u*

Proof The lemma follows immediately from (5.3) and integration by parts.
THEOreM 5.5. Under the hypotheses ofLemma 5.2 we assert that

(5.7) I1- u*ll O(h

(5.8) - x*llo O(ha- 1).

Proof We observed in proving Lemma 5.3 that

N 4a[u* 2 (a, R(t)u*) at + (, 0(t)x*> at + O(h-Applying Lemmas 5.1, 5.2 and 5.4, we find that

Now, since R(. and Q(.) are positive definite, we can find positive constants
v, v2, q, q2 such that

(5.9) vxllo-u* o-u*lv211o-u*l
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and

(5.10) q x* 22 <_-- : x* <_-- q2 : x* .
Therefore, we obtain the inequality

u* I12 + x*
(5.11)

< O(h x)ll- u*ll + O(h 1)11- x* Q -t- O(h

Set ’‘ u* I and fix I1 x* le. Then (5.11) becomes

62, + O(h 1)6,, + 62 + O(h 1)6 <__ O(h2( 1))

or, equivalently,

Hence

[6"‘- O(h 1)]2 + [fix- O(h- 1)]2 _<_ O(h2( 1)).

6, u* R O(h- 1),

6x I1 x*l a O(h 1)

and the theorem is established.
COROLLARY 5.6. [1- u*l12 O(h-l), IIX- x*]12 O(h-l).
Proof. The proof is trivial and is therefore omitted.

6. Remarks on the numerical properties of the method. The above theorems
establish that the Ritz-Trefftz method has the unique theoretical property that it
converges to the optimal value of the cost functional at a rate equal to the square
of the order of the approximating subspaces. This advantage is not shared by any
other approximate method, direct or indirect. In fact, the standard Ritz direct
method is not known to converge for variational problems with nonholonomic
constraints.

The numerical implications are obvious. The authors have a working program
for the method and have compared it with the usual numerical approximation of
the Ricatti equation for numerous examples. The method is significantly faster,
except on trivial problems where the two approaches yield approximately the same
results. Since the resulting algebraic problem is definite, it can be solved by a
Cholesky decomposition without pivoting, hence the band structure is preserved
(providing a patch basis is used). Thus the numerical algorithm is extremely
stable and fast. Also, reasonable bounds on the condition number can be computed.

In [13] we discuss the numerical utility of the algorithm in considerable detail.
Additional convergence results for (, x)and J[;x] were obtained and appear
in [14].
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BOUNDARY VALUE CONTROL OF THE
HIGHER-DIMENSIONAL WAVE EQUATION*

DAVID L. RUSSELL’

1. Introduction. Many important control processes can be described approx-
imately by means of partial differential equations with control parameters appear-
ing in the boundary conditions. For example, a triangular airplane wing may be
equipped with ailerons on the trailing edge. An idealized model for such a plant
would involve the partial differential equations which describe the motion of a
plate with arbitrary control functions appearing in the boundary conditions
along one of the sides of the triangle. Many other examples could be given.

Linear hyperbolic problems in one space dimension have been studied rather
extensively ;see, e.g., ], [2], [3], [4], [5]. Here the theory is relatively uncomplicated.
One can study questions of controllability using the geometric techniques based
on characteristic curves or the more algebraic techniques based on the theory of
nonharmonic Fourier series. One obtains not only theorems asserting the existence
of controls transferring one state to another within a finite time period but also
constructive proofs of these theorems which can be adapted to yield numerical
techniques whereby the appropriate control functions can be calculated. The
papers of Grainger [4] and Cirina [5] are noteworthy in this respect. Cirina’s
paper shows that such methods can even be used for quasilinear systems.

The theory is not nearly as complete for problems involving two or more
space variables. The reasons why this should be so become apparent when one
compares Chaps. V and VI of the treatise [6] of Courant-Hilbert. Some results
have been obtained in this area by Fattorini [7] who considers, for the most part,
boundary value control problems wherein the controls can be described by
finitely many functions of the time t--physically the most realistic situation.

The purpose of the present paper is to study hyperbolic problems in several
space dimensions using certain uniqueness theorems due to Holmgren [8] and
John [9]. Using these results we can obtain very explicit estimates on the length
of time required to transfer a given state into an arbitrarily small neighborhood
of any other state using boundary value controls restricted to a subset of the
boundary of the region in question. More specifically, we are able to show for the
wave equations in 3 or fewer space variables that the system can be controlled
in any time T which exceeds twice the wave propagation time from the boundary
set where controls are applied to the rest of the physical medium. It should be
noted that such a result is in agreement with known results [1], [2] for the case
of a single space dimension.

2. The control problem. Let f be a bounded, open connected domain in
R" whose boundary is an analytic surface F of dimension n- 1. We indicate

* Received by the editors February 12, 1970.

" Departments of Mathematics and Computer Sciences, University of Wisconsin, Madison,
Wisconsin 53706, and Research Consultant, Honeywell Inc., St. Paul, Minnesota 55113. This work
was supported in part by the National Science Foundation under Grant GP-11495.
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points in f by

X

X2

X

The boundary surface F is parametrized by an (n 1)-dimensional vector variable

Integrals over D will be denoted by .I (") dx while integrals over F will be writtenS.

(.)ds. If wish to indicate point in R" which lies on F we will write x(s).we a

The surface F, being analytic, has everywhere a unique unit outward normal
vector which we will indicate by r/(s).

We consider a second order linear hyperbolic partial differential equation

(2.1) L(w) p(x)wt, (uij(x)wi).i O.
i,j

The subscripts i, j indicate partial differentiation with respect to x i, xj, respectively.
The coefficients p(x), oi(x) are real analytic in some open subset of R" which
includes f U F. Moreover, if A(x) is the n x n matrix with entries oqa(x), A(x) is
symmetric and there are positive numbers Po and Co such that

p(x) >= po, x ,
12’A(x)v >= Oo 2, x e f, v R".

Let F1 be a relatively open subset of F. For T > 0, we denote by F the space
of all C functions f’F x [0, T] --+ R with the property that f vanishes outside
some compact subset of F x (0, T) (this set varies with f). We pose for (2.1)
the initial boundary value problem

w(x, O) w,(x, O) =_ O, x e f,
(2.2)

wx(x(s), t)A(x(s))rl(S f(s, t), (x(s), t) F 0, T].

The symbol w,, denotes the row vector of spatial partial derivatives of w"

w (w,w, ..., w,).
With these assumptions it is known that the initial boundary value problem
(2.1), (2.2) has a unique solution w(x, t) which lies in the class Coo((f2 U F) x [0, T]).
The reader is referred to the papers of Friedrichs, Lax and Duff [10], [11], [12].

If f(s, t) =_ 0 for t __< =< t2, then wY( ., t) can be considered as a vector-
valued function with range in L2() which solves the evolution equation

(2.3) d2w/dt2 -+- Bw O, t2,

where B is the unbounded operator on L2() which is the unique self-adjoint
extension of the operator i",j--a (eij(x)wi)j defined on twice continuously
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differentiable functions w(x)satisfying the boundary conditions

wAx(s))A(x(s))(s) O, x(s) r.
Let H1 denote the space of pairs of real-valued functions w(x), wt(x) defined

on f with wt(x) square integrable and w(x) having square integrable derivatives:

w,(x)2+ w,(x)2+w(x)2 dx<.
i=1

Let He denote the space of equivalence classes of H1 modulo the zero energy
states wt(x) =- O, w(x) =_ const. The "energy"

(W, Wt)-- JO (D(x)(wt(x))2 + Wx(x)A(x)wx(x)’) dx

is a constant on each such equivalence class. He is a Hilbert space with the inner
product

((w, w,); (v, v35 f (p(x)w,(x)v,(x) + w(x)A(x)v(x)) clx

and resulting norm

I(w, w,)I v/<(w, w,); (w, w,)> vie(w, w,).

We shall not stress the distinction between H and He where unnecessary, and
we shall say (w, w,)e He if the equivalence class of (w, wt) is a member of He.

For each f e F the corresponding solution wI(x, t) of (2.1), (2.2) is such that
(wI( ., T), w{(., T)) He. In fact, if we put

Rr {(W(., Y), w{(., Y))l/e F},
then Rr is a subspace of He which we will call the reachable space. Following
others we make the following definition.

DEFINITION. The control system {(2.1), (2.2), f e F} is approximately con-
trollable in time T > 0 if Rr is dense in He relative to the topology induced by the
norm I1" liE,

We shall conclude this section with a theorem which relates approximate
controllability to "observability." (Cf. parallel results for ordinary differential
equations [13].)

THEOREM 1. Let (, t) He be such that both and t lie in C(Y U F) and

satisfies the consistency conditions

,(x(s))A(x(s))rl(X(S)) O, ,x(x(s))A(x(s))ri(x(s)) O, x(s) e F.

Let v(x, t) be the unique C solution of L(v) 0 which satisfies the boundary con-
ditions

(2.4) v,(x(s), t)A(x(s))rl(x(s)) O, (x(s), t) F [0, T]

and the terminal conditions

(2.5) v(x, T) =_ (x), v,(x, T) ,(x).
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Then (#, ,)e (RT)+/- in HE if and only if v,(x(s), t) =- O, (x(s), t)e F [0, T].
Proof. For f e F we have

0 f (vtL(wy) + wfL(v)) dx dt
[0,T]

(2.6) vt(w{al)- w[(v,,al)

=fn div v,(w{a,)_w[(vxa,)dxdt,
[0,T] x,t

pw{v, + wAv
where, for convenience, we have suppressed the arguments in the integrand and
the column vectors ai(x) are the columns of the symmetric matrix A(x):

A(x) (al(x), az(x), a,(x)).

Applying the divergence theorem to the second member of (2.6) we obtain

(2.7)

(pw{v, + wxAv,,) dx-
{0}

(pw[v, + w{Av’) dx

P
[ (v,(w{A.) + w{(vA.)) as at.

[0,T]

Using (2.5), (2.2), respectively, in the first two members of (2.7) and (2.2), (2.4)
in the third member, we obtain

[O,T]

From the definition of (-, )E, we see that (2.8) becomes

(2.9) {(wS( ., T), w{(., T)) (, ,)}E fr (v,f) ds dt.
[O,TI

The right-hand side of (2.9) vanishes for all f e F if and only if vt(x(s), t)=_ 0,
(x(s), t)e F1 x [0, T], and thus the proof is complete.

Theorem 1 is fundamental in the proofs of the controllability theorems of
the subsequent sections.

3. The time To. In order to state and prove our theorems on approximate
controllability of (2.1), (2.2) we must employ the concept of a characteristic surface
for (2.1) in R"+ 1. This concept is treated in detail in [6], for example, but we give a
brief description to make our presentation somewhat self-contained.

Let S be a surface in R"+ given by

S {(x, t)l@(x, t) 0},
where (I)(x, t) is a smooth real-valued function of n + 1 variables. We define the
characteristic form

Z((I), x, t) p(x)(@,(x, t))2 IIx(X t)A(x)rll’(x, t).
The surface S is: characteristic if Z(@, x, t) 0 for (x, t) e S; uniformly space-like
if there exists a 6 > 0 such that t’(@, x, t) => 6 for (x, t) e S uniformly time-like if
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there exists a 6 > 0 such that )(, x, t) _< -6 for (x, t)e S. For what is usually
called the wave equation p(x)-- 1 and A(x)=_ 1, the n x n identity matrix, a
surface is characteristic if and only if it everywhere makes an angle of 45 with
any intersecting surface const. It is this special case that we shall use in our
diagrams since it is less confusing than the general case.

Let (Xo, to) (f I,J F) x [0, T]. We define the forward cone of influence of
(Xo, to) to be the subset K +(xo, to), the largest closed subset of (f U F) x [to, T]
which contains (Xo, to) and does not meet any uniformly space-like surface passing
through (Xo, to). Similarly we define K-(Xo, to), the backward cone of influence of
(Xo, to), by replacing [to, T] with [0, to]. It is easy to see that K+(xo, to) and
K-(xo, to) have characteristic boundary surfaces. When p(x)=_ 1, A(x)=_ 1, we
have K+(xo, 0) {(x, t)e( U F) x [0, Tilt2 ]Ix Xo]] 2 0}. If G is a subset
of f2 U F, we define forward and backward cones of influence of (G, to) by

K+(G, to) U K+(xo, to), K-(G, to) 1.3 K-(xo, to).
xoG xoG

Let to, lie in [0, T] and let G f2 U F. We define

K(G, to, tl) K+(G, to) f-) K-(G, tl).

Since the coefficients of the operator L do not depend upon t, K(G, to, tl) is sym-
metric about the plane 1/2(to + tl).

The fact that A(x) is uniformly positive definite can be used to prove that
there is a least time To > 0 such that K+(F1,0) includes the set f x {To}. Then
K(F1, 0, 2To) also includes f x {To}. If T > 2To, there is an > 0 such that
K(F 0, T) includes f2 x t} for T/21 < . If T < 2To, the set

J( T/2) f x T/2} K(F1,0, T)

is a nonempty set. For p(x)=_ 1, f unit disc in R2, Figs. 1-4 illustrate the
geometry of the situations described above both when F1 F and when F is
a small subarc of F.

t=T

T T

FIG. 1. F lisasubarcofF, T<2To

t=T

FIG. 2. F F, T < 2T
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t=T

t=T -T

K(r I’ T)
TO

FIG. 3. F1 is a subarc of F, T > 2T

t=T-T

t=T
0

4. Noncontrollability for T < 2T0. Since the reachable set Rr is a linear sub-
space of the Hilbert space He, RT fails to be dense in He just in case there is a
nonzero element of He which is orthogonal to all elements of RT. In view of our
definition of He in terms of equivalence classes of states in H1 modulo the zero
energy states, we see that RT is dense in He if and only if the equations

(4.1) fn (p(x)wf(x, T)t(x + w{(x, T)A(x),c(x)’) dx O, f e F,

where , t is a fixed element of H1, imply that t 0, const.
When T < 2To the subset J of f given by

J {xl(x, T/2) J(T/2)}
is a nonempty open set. Let (x), (x) be a state in H1 such that (i) (x), (x) has
nonzero energy norm, (ii) (x), f2t(x C(f) and vanish outside a compact subset
of the interior of J.

We now permit the state (x), (x) to evolve, via the partial differential
equation with

We put

(4.2) (x) v(x, T), t(x) Vt(X, T)

and note that (2.1), (2.4) imply conservation of energy so that
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Now our requirement (ii) on , , guarantees that v(x, t)e C(f x [0, T]), as
does wY(x, t) for each f e F. This enables us to apply Theorem 1 to show that
(4.1) holds if and only if vt(x(s), t) =_ 0 for (x(s), t) e F1 x [0, T].

It is easily seen that the fact that K(F1,0, T)f)J implies that the
interior of K(F1, 0, T) does not meet K+(J, T/2)U K-(J,T/2), the cone of
influence of (J, T/2). Well-known results for hyperbolic partial differential equa-
tions [6] then show that v(x, t)=_ O, vdx, t)=_ 0 in K(F, 0, T). But F x [0, T___

K(F2, 0, T) so we conclude that v(x(s), t) O, (x(s), t)e F x [0, T]. Therefore
(4.1) must hold for the nonzero energy state , t and we have proved the following
theorem.

TI-IORM 2. The system (2.1), (2.2) is not approximately controllable in time

Tif T < 2ro.
This theorem may be compared with comparable results [1], [2 for hyper-

bolic systems in one space dimension.

5. The Holmgren-Fritz John uniqueness theorem. The uniqueness theorems
of Holmgren and Fritz John [8], [9], applied to the case we have in mind, reduce
to the following theorem.

THZORZM 3. Let u(x, t) be a twice continuously differentiable solution of
L(u) 0 (cf. (2.1)) in K(F1, to, tl), [to, t]

_
[0, T], with

(5.1) ux(x(s), t)A(x(s))rl(x(s)) =- O, u(x(s), t) =- O,
(x(s), t) e [’1 X Eto, tl].

Then

(5.2) u(x, t) 0 in K(F1, to, t).

The proof of this theorem is detailed in the works cited. However, we need
to strengthen the theorem somewhat for our needs and this strengthening requires
that we have some details of the proof. For this reason we give a short proof of
Theorem 3. An important part of the proof is the lemma stated below, which we
do not prove. See [9 for details in certain cases.

LEMMA. If (, ) lies in the interior of K(F, o, t), there is a uniformly time-
like family of surfaces S(2), 0 _< 2 =< 1, with the following properties"

(i) S(2) is a compact subset of a relatively open analytic (n 1)-dimensional
surface;

(ii) S(2) varies analytically with respect to 2, 0 <__ 2 <__ 1;
(iii) S(2)_ K(F, to, 1), 0 __< 2 __< l, and S(O) is a subset of the interior of
F x [0, T]

(iv) If 0 <= 2 <= 1, then S(0) U S(2) is the boundary of an open subset D(2)___
K(F1, to, tl) and (, ) e D(1).

Assuming this lemma, we proceed.
Proof of Theorem 3. The uniformly time-like character of the surfaces S(2)

together with the analyticity of these surfaces enables one to employ the Cauchy-
Kowalewski theorem [6] to show that there are n-dimensional neighborhoods
N(2) of the surfaces S(2) such that if analytic Cauchy data for z are prescribed on
S(2), there will be a corresponding unique analytic solution z(x, t) of L(z) 0 in
N(2). Since the equation L(z) 0 is linear, N(2) depends only on S(2), not on the
particular Cauchy data. Moreover, N(2) varies continuously with 2, 0 =< 2 <= 1.
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Thus for sufficiently small 2 > 0, S(0)
_

N(2) and the analytic solution z(x, t) is
defined throughout the domain D(2) which is bounded by S(0) and S(2). We
consider the identity

0-- | (uL(z)- zL(u))dx dt
dO(;)

blZxa -]- Zblxa

(5.3) ( div uza. + zua. dx dt
do(2) x,t

pUZ pZU

o)ws(2)
(-uz,Arl + zu,Ari + rloPUZ rloPZUt) da,

where da denotes integration with respect to surface area on S(0) U S(2) and

q} is the unit outward normal to S(0) U S(2) in R"+ 1, defined in the relative
qo

interiors of S(0) and S(2). We observe that r/o 0 on S(0), and that (5.1) holds
on S(0) since S(0)

_
F1 [0, T]. Thus (5.3) reduces to

(5.4) (u(rioPZt z,Ari) + z(rloput u,Ari)) da O.
,Is

We choose analytic Cauchy data for z on S(2) as follows: we put z _= 0 on
S() and we take the normal derivative of z across S(2) to be an arbitrary real-
valued analytic function a, i.e.,

(5.5) z(x(a), t(a)) O, (x(a), t(a)) S(2),

(5.6) Zx(X(a), t(a))rl(a) + zr(x(a), t(a))rio(a) a(a), (x(a), t(a)) S(2).

The equations (5.5), (5.6) together imply that

(5.7) (z(x(a), t(a)), zt(x(a), t(a))) =_ a(a)(q’(a), r/o(a)), (x(a), t(a)) S(2).

Substituting (5.7) and (5.5) in (5.4) we obtain

(5.8) u(p(o) ’A) d O.
,Is()

Since S(2) is uniformly time-like, we have

(5.9) p(x(a))(tlo(a)) tl’(a)A(x(a))l(a) =- fl(a) <= -rio < 0

for all values of the vector a parametrizing S(2). The equation (5.8) becomes

uaflda=O.
()

Since this equation holds for all real analytic functions a, we conclude

u(x(a), t(a))fl(a) =_ O, (x(a), t(a)) S(2),
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and, since (5.9) shows that fl never vanishes, we have

u(x(r), t()) o, (x(), t(r))e s().

Repeating this argument on surfaces S(p), 0 </z < 2, which sweep out the interior
of D(2), we conclude

u(x, t) =_ O, (x, t)e D(2).

We now let I denote the largest subinterval of [0, 1] which includes 0 and
has the property that u 0 on S(2) if 2 I. We have seen above that I is nonempty.
Essentially the same technique can be used to show that I is open. But it is obvious
that I is closed, and we conclude, from the connectedness of [0, 1], that I [0, 1].
Thus

u(x, t) O, (x, t)e D(1),

and, since (if, ) e D(1), we have

u(, ) 0.

Since (, ) is an arbitrary point in the interior of K(F1, to, tl) and since u is con-
tinuous in K(Fa, to, t), we see that (5.2) follows and the proof is complete.

6. Controllability for T > 2To, n =< 3, Let the state (, t) lie in the finite
energy space H, and suppose that for all f F we have

(6.1) fn (p(x)w{(x, T),(x) + W(x)A(x)’(x)) dx O.

If this implies ,(x) -= 0, (x) _= const., then Rr is dense in the Hilbert space H
and we have approximate controllability.

Let v(x, t) be the generalized solution in fl [0, T] of the partial differential
equation L(v) 0 corresponding to homogeneous boundary conditions (2.4). If
v(x, t) were smooth, say v C3 ((f (_J F) [0, T]), the proof of our controllability
result would not be difficult. Applying Theorem 1 we would get v,(x(s), t)= 0
for (x(s), t) F [0, T]. Putting u(x, t) v(x, t), we would have a solution of
L(u) 0 satisfying the hypotheses (5.1) of Theorem 3 and we could conclude
vt u 0 in K(Fx, 0, T). If T > 2To, the set K(F1,0, T) includes f IT/2 ,
T/2 + e] for some e > 0. If v, vanishes in f IT/2 , T/2 + el, then vt,(x, T/2)

0 which would imply i",j= (aiJ(x)vi(x, T/2))j 0. Thus v(x, T/2) would be a
solution of the elliptic boundary value problem

It is clear that the only solutions of (6.2), (6.3) have the form v const. Thus we
would have v(x, r/2) =_ O, v(x, T/2) =_ 0 which would show that g(v(., T/2),
v(-, T/2)) 0. Since solutions of L(v) 0 with boundary conditions (2.4) conserve
energy, we could then conclude N(v(-, T), v(., T)) g(O, t) 0, so that _= 0,
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const, and the proof would be complete. In fact, under these conditions we
could obtain the result for T 2T0 also and there is nothing special about n =< 3.

Unfortunately we are not at all justified in assuming such smoothness for
v(x, t). A rigorous proof requires that we allow (, Ot) to be an arbitrary finite
energy state. All this gives us is that t L2() and i G L2()), i= 1, 2, ..., n.
The generalized solution v(x, t) is no smoother. For this reason it becomes a
nontrivial task to justify the argument presented above. In the present paper we
will give such justification only for n =< 3, T > 2To. The result undoubtedly
remains true for larger values of n and for T 2To but rather involved arguments
seem to be required. Fortunately, n <= 3 includes most cases of physical interest.

THEOREM 4. If (0, t) HE is such that (6.1) holds for all fe F then t =- O,
const, provided n _-< 3, T > 2To. Thus the system (2.1), (2.2) is approximately

controllable in time T > 2To when n <= 3.
Proof. Let v(x, t) be the generalized solution of L(v) 0 with homogeneous

boundary conditions (2.4) and satisfying the terminal conditions v(x, t)=_ (x),
vt(x, T) ft(x). Let (k, ) be a sequence of states in HE converging to (b, t) in the
energy norm as k . Moreover, (k(x), (x))e C({) U F) and satisfy the con-
sistency conditions

(6.4) x(X(s))A(x(s))rl(s O, x(X(s))A(x(s))rl(s) O, x(s) F.

One way in which this could be done is to expand (x), t(x) in terms of the eigen-
functions qj(x) of the operator B introduced in (2.3)"

and take

j=o j=o

k

j=0 j=0

For k 0, 1, 2,... let vk(x, t) be the C solutions of L(vk) 0 which satisfy the
terminal and boundary conditions

(6.5)
v(x, T) (x), v(x, T)=- (x),
v(x(s), t)A(x(s))ri(s) O, (x(s), t) [" [0, T].

It is known [6, Chap. VII that for each fixed tl, 0 =< __< T, the states (v( ., tl)
vt( ., tl) converge to (v(., tl) vt(’, tl)) in the space H; in fact, this is just a conse-
quence of the energy conservation.

Since

(6.6) lim (, t) (k, f) E 0
k-oo

and (6.1) is assumed to hold, we have

f ^ktlim [pwft + wA dx O.
ko
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Performing a computation similar to that in the proof of Theorem 1, we conclude
that for each fixedf F,

(6.7) lim | vtf ds dt O.
k--, Jr [0,T]

Let us now define functions D-Jr, j 1, 2, ..., for x by

(D v)(x, t) v(x, "c) dr, (D -(+ 1)v)(x, t) (D-Jv)(x, r) dr.

We define D-J)k similarly and verify without difficulty, since the V satisfy the
evolution equation (2.3), that

(6.8)

d2 T)j-
dt2(D-irk) + B(D-Jvk)= t(t(j- 1)!

(6.9) IlBr(tl) < Mo sup g(v)ll + M1 sup gt(r)
0<:<T 0<:<T

uniformly for all tl [0, T], where I" denotes the usual norm in L2(), and it
is also shown that Br(t) is continuous in with respect to the norm

Applying this theorem we see that, for j __> 2, D-Jr lies in A(B) and solves

(6.10)

d2

dt2(D-iv) + B(D-jr) t(t T)j
(j-- 1)!

(D-Jv)(T) (D-v),(T) O.

Further, (6.9) together with (6.8), (6.10) shows that

(t- T)j-2

(j 2)!

(6.11) lim lIB(D-Jr)( ., t) B(D-Jv)( ., t)ll 0
k--

uniformly for 0 < < T.
Now the operator B is uniformly elliptic and we can apply known results

from the theory of elliptic boundary value problems [15, Theorem 9.11, p. 132 and
Remarks, p. 148] to show that the fact that D-Jr A(B) together with (6.6) implies
that D-Jr( ., t)lies in the space H2(fl) (for definition ofH,,(), see [15]) for0 =< =< T,
]l(D-v)( ., t)ll2,a is continuous and uniformly bounded for 0 =< __< T, and

(6.12) lim I(D-Jv)( ., t) (D-Jv)( ., t) 2, 0
k--

(D-Jv)(T) (D-Jvk)t(T) O,
for j> 2.

A result proved in [14, Theorem 1.19, p. 486] shows that the inhomogeneous
linear initial value problem

dZr
dt-- + Br g(t), r(T) rt(T) 0,

where g’[0, T]-* L2(y) is continuously differentiable with respect to t, has a
unique solution r such that r,(t 1) L2(f) and r(t 1) lies in the domain A(B)

_
L2(f)

of the unbounded self-adjoint operator B for 0 =< T. Moreover it is also
shown in the theorem cited that there are constants Mo, M1 such that
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uniformly for 0 _< =< T, where II" 2, is the norm in n2(), the sum ofthe integrals
of the squares of the partial derivatives of order =< 2.

The theorem of Sobolev [15, Theorem 3.9, p. 32] states that if r Hm(f),
then r can be modified on a set of measure zero so that r Cl(f I.J F), provided
is an integer such that < m n/2. For m 2, we have 0 < 2 n/2 when n <= 3,

so, for such n, r H2(f) implies r C(F O F). Moreover, if t1" I denotes the
usual "sup" norm in C(f U F), we have

r II -<_ o r 2,, / IIr tl.
Applying these results with r D-Jr, j >_ 2, the uniform boundedness and

continuity of[ (D-Jr)( t)ll z. and (6.11), we conclude that (D-v)(x, t) is continuous
for (x, t) (f U F) x [0, T] and

(6.13) lim (O-Jv)(x, t) (O-Jv)(x, )
k--’,

uniformly for such (x, t).
Having now obtained the continuity of (D-2v)(x, t) we return to (6.7). In-

tegrating by parts three times, we conclude that for all f F,

lim f (D- 21)k)ftt ds dt 0
k JF [O,T]

which with (6.13) implies

(6.14) f (D-2v)fmds dt O, f F.
[0,T]

Taking account of the fact that f and all its derivatives vanish outside a compact
subset of F1 (0, T), (6.14) implies that (D-2v)(x(s),t) is a polynomial in of
degree at most 2 whose coefficients are continuous functions of x(s), for all (x(s), t)
e F x [0, T]. Let 6 be a small positive number. We define the third order difference

A3r(x, t) r(x, / 36) 3r(x, + 26) + 3r(x, + 6) r(x, t)

for any function r defined on x [0, T]. The function A3r is defined on f x [0,
T 36] and possesses all smoothness properties of r(x, t). Applying this difference
operator to D-2/) and D-21)k we obtain functions

/](x, t) A3(D 2v)(x, t),
(6.15)

uk(x, t) A3(D 2vk)(x, t), k O, 1, 2,

From (6.8), (6.10) we see that

d2 fi d2uk

L(O) + Bfi =0, L(uk) dt---T+ Buk= O,

the uk satisfy the homogeneous boundary conditions

(6.16) Ukx(X(S), t)A(x(s))rl(S) O, (x(s), t)6 F [0, T 36],

while a(x, t) is continuous, /1(., t) lies in A(B) (which means /i(x, t) satisfies the
boundary conditions ftx(x(s), t)A(x(s))tl(S)= O, (x(s), t) F [0, T- 36] in some
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sense which we need not specify) and, from the fact that D-2v is a polynomial of
degree at most 2 on F1 x [0, T], we have

(6.17) t(x(s), t) O, (x(s), t) F x [0, T 36].

Now we refer back to Theorem 3, or, more precisely, its proof. We let to 0,
T- 36 and define the surfaces S(2) as we did there. We define z as we did

there and put uk in place of the function u of Theorem 3. Repeating the calculations
following (5.3), we see that

(--ukzxAtl + zuAr + tiopUkzt riopZUkt) dq) O.
(o)vs()

On S(0) we have rio(S) =- 0 and uAri =- O. Defining and fl as in the proof of
Theorem 3 and recalling z _= 0 on S(2), we have

s uk dq) fs uz"Arl ds dt"
() (o)

Now u converges uniformly to fi in ( U F) [0, T- 38], so we have

fs a=fl d6 fs fiz,Aq ds dt O
() (o)

since fi obeys (6.17). As in Theorem 3 we conclude that fi 0 on S(2). A continua-
tion process similar to that described in Theorem 3 can be used to show that
fi 0 on every surface S(2), 0 <- 2 <= 1. Then, just as in Theorem 3, we conclude
that

fi(x, t) =_ 0, (x, t) K(Fx, 0, T 36).

Now if T > 2To, we have

f x -,-+ ___K(F,0, T- 36)

if e and di are both chosen sufficiently small. (We need e + 3 < T/2 To.) Thus
we have, for small e and 6,

T T
(6.18) (x, t) 0, xe f,

2
e =< < + .

Returning to the definition (6.15) we see that if (6.18) holds for all small 6, then
it must be true that for T/2 <= <= T/2 + e, (D-Zv)(x, t) is a polynomial in
of degree not greater than 2 with coefficients which are functions of x lying in
A(B) (since D-Zv A(B)). Differentiating O-Zv twice with respect to in T/2
< < T/2 + e, we see that there is a function (x) with e A(B) such that

T T
v(x,t) =_ f(x), xe f, - <= <=-j + e.

But if v(x, t) is a generalized solution of d2v/dt2 + By 0 such that v e A(B) and
v(x, t) is constant with respect to t, then we must have

By(x, t) =- B(x) =- O.
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But the only elements e A(B) for which B 0 are of the form const. There-
fore, for T/2- < <= T/2 + ,

v(x, t) =- f)(x) =- const., v(x, t) =- O.

Since the energy associated with the generalized solution v(x, t) is constant, we
conclude that v(x, t) (x) const., vt(x, T) =_ t(x) =_ 0 and the proof of Theorem
4 is complete.

Acknowledgment. I should like to express my appreciation to Professor J. L.
Lions of the University of Paris whose suggestions in a 1966 letter provided the
germinal idea for the proofs presented in this paper.
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ON OPTIMAL CONTROLS FOR MEASURE DELAY-
DIFFERENTIAL EQUATIONS*

P. C. DAS’ aD R. R. SHARMA

1. Introduction. In recent years it has been a matter of interest to study the
systems described by differential equations containing impulses which cause
discontinuous changes in the values of the state variables of the system. Such
systems include pulse frequency modulation systems and models for biological
neural nets. (See [10], [11] and the references given therein.) Schmaedeke [133
has considered the control system described by the equations

dxi
/31 /32(1.1)

dt
fi(t’ XI’ X2’ Xn’ ,’’’, /3m) _1_ 2 g([)

dblj

j=l dr’

i=l,2,...,n,

in which the control inputs uJ(t) may have discontinuities of the first kind giving
rise to impulse control input duJ/dt. He developed the theory of the equations (1.1)
when the control functions uJ(t) and the solutions xi(t) are functions of bounded
variation and the derivatives dxi/dt and duJ/dt are taken in the sense of distribution
derivatives, to be denoted by Dx and Du respectively, which can be identified with
Stieltjes measures. He then considered the existence of optimal control for the
system given by (1.1). But in this optimal control problem the coefficients g
of the impulsive controllers may be expected in many cases to depend not only on
but also on the state variables x. Moreover, the system may have hereditary effect.
Due to these considerations an attempt has been made in this paper to generalize
the results in [13] by considering the control system described by delay-differential
equations

/31 /32Dxi([) fi(t Xlt Xt2, xt ,’’’,

(1.2)
+ g t, x x xt, um)DuJ(t), 1,2, n,

j=l

where xt represents the restriction of the function xi(s) on the interval p(t) =< s
< q(t), p and q being real functions with the property p(t) < q(t) <_ for each t;
for each fixed t, fi and g are functionals defined on the space BV(p(t), q(t)]);
and uJ(t) are right continuous functions of bounded variation. If the g depend

xi(t) then (1.2) coincides with (1 1).only on t, and p(t) q(t) so that x,
Throughout this paper, the (Stieltjes) integrals are taken to be Lebesgue

(-Stieltjes) integrals. This requires in the proof of Theorem 1 a careful use of the
integration by parts formula which does not always hold for Lebesgue-Stieltjes
integrals. (In the corresponding theorem in [13] the integral used is actually
Riemann-Stieltjes, though it has not been stated explicitly there.)
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2. Preliminaries. Let fl be a subset of n-dimensional Euclidean space E".
We denote by C(fl) the class of infinitely partially differentiable complex func-
tions, defined on fl, which have compact support. C(fl) is a normed linear space
with addition, scalar multiplication and norm defined by

(I//1 + /2)(X) I(X) -- Z/2(X),

()(x)

it’ll sup
x

A continuous linear functional defined on C(f) is called a distribution on f.
It follows from the Riesz representation theorem that any distribution F on f
can be identified with a complex Borel measure/ by the relation

(2.1) F() fn k d/z, 6 C(f).

If a distribution F is given by (2.1) and g is a/-integrable function, then we define
the product gF by

(2.2) (gF)(O) fg d/, C(f).

It is easy to see that gF is a distribution on fL A distribution F on an interval I
is to be identified with the Lebesgue-Stieltjes measure dh(t) if for every closed finite
interval J contained in I, h(t) is ofbounded variation on J and

(2.3) F() fj tp(t) dh(t)

for all e C2(J). A distribution F on an interval I is to be identified with a point
functionfif for every closed finite interval J contained in I, fis integrable on J and

(2.4) F() Jj f(t)/(t) dt

for all C(J). The derivative DF of a distribution F on I is a distribution
defined by

(2.5) DF(/) F(’), ’=- d/dt.

For any vector x (x , x2, x") E", the norm will be defined by

(2.6) xl xil
i=1

The norm ofan n x m matrix G (g}) will be defined by

(2.7) IGI-- [gl.
i=1 j=l
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The space B V(I) is defined for an interval I and consists of all scalar functions

fon I which are of bounded variation. If a is the left endpoint of I, then the norm
off is

(2.8) ]f[i v(f I)+ [f(a +)[,

where v(f, I) denotes the total variation offon I. With this norm the space B V(I)
is a Banach space. The space B V(I),, is defined for an interval I and consists of all
vector functions f with values in E" whose individual components belong to
B V(I). The norm off is

S I, IS’I,
i=1 i=1

v(f, I)+ f(a+)l.

With this norm BV(I), is a Banach space.

3. Existence and uniqueness of solutions. Let S be a domain (an open con-
nected set) in E". The set of all functions in B V(I), with values in S will be denoted
by BV(I, S). Let , fl and to be numbers such that- _-< <to </=<

In what follows, the interval [, to] will be understood to be (-, to] in case
-; similarly, if fl , the interval [to, fl] will mean [to, ). Let p and

q be two real functions defined on [to, fl] and satisfying

a <= p(t) < q(t) <=
for each t. We define the interval

It [p(t), q(t)].

Let xt denote the restriction of the function x() on the interval It. For each
6 [to, fl], we define

(3.1)

and let R be defined by

(3.2)

R, {(t, xt)lx BV([a, t}, S)}

R= U Rt.
te[to,fll

Letf(t, xt) be an n-vector functional and G(t, xt) an n x m matrix functional defined
on R. Let u(t) be a right continuous m-vector function of bounded variation
defined on [to, fl]. We assume that for each given x B V([a, fl],S), f(t, xt) is
Lebesgue measurable and G(t,x,) is integrable with respect to the Lebesgue-
Stieltjes measure du(t) on [to, fl]

Consider now the delay-differential equation

(3.3) Dx f(t, x,) + G(t, x)Du, > to,

where the operations of differentiation are to be understood in the sense of dis-
tribution derivatives with respect to the real variable t. Since the distribution
derivative Du of a function u of bounded variation can always be identified with
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a Lebesgue-Stieltjes measure, we shall call (3.3) a measure delay-differential
equation.

DEFINITION 1. A function x(t) is called a solution of (3.3) on an interval 1,
[e, to] - I

___
[0, fl], with the initial function q e B V([0, to], S), if

(i) x B V(I, S),
(ii) x(t) q(t) for e [, to],

(iii) x(t) is continuous from the right on I f’l [to, fl],
(iv) x(t) satisfies (3.3) on I gl (to, fl].
Consider the integral equation

{q(t) for [a, to],
(3.4) x(t)

q(to) + f(s, x) ds + G(s, x) du(s) for > o.

DEFINITION 2. A function x B V(I, S) is called a solution of(3.4) on the interval
I, [, to] c_ I

___
[, fl], if it satisfies this equation for e I.

We shall now prove the following theorem.
THEOREM 1. X(t) is a solution of (3.4) if and only if it is a solution of (3.3) with

initial function q.
Proof Let x(t) be a solution of (3.4) on the interval [a, T]. Then conditions

(i) and (ii) of Definition are satisfied. The right continuity of u(t) implies that the

integral G(s,x) du(s) is also a right continuous function of . The integral

f(s, Xs)an absolutely (and continuous) t.ds is continuous hence function of

Thus x(t) is right continuous. We shall show that x(t) satisfies (3.3) on (to, T.
Let U(O) be the distribution on [to, T] to be identified with the ith component
x(t) of x(t). Then for any closed interval J [a, b] contained in [to, T, we have

Fi() qJ(to) + fi(s, x) ds + G(s, x) du(s)] (t) dt

for all C(J). The derivative-distribution is

DFi(O) -F(O’) q)i(to) + fi(s, Is)ds
(3.5)

+ 2 g}(s, x) duJ(s) O’(t) dt,
j=l

where g(s, x) is the i, jth element of G(s, x) and uJ(s) is the jth component of u(s).
Integration by parts yields

(3.6)

(pi(to) -+- fi(s, Is)ds ’(t)

qi(to) + i(s, x,) ds

dt

/(t) /(t)fi(t, xt) dt

O(t)f’(t, xt) dt (since ,(b) g,(a) 0).
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The function h(t)= g}(s, xs)duJ(s) is right continuous, and is of bounded

variation on the interval J [a, b], by [6, 52.18, p. 275]. We have

But

h(t)g/’(t) dt fj h(t)dO(t) h(t) dO(t) + f( h(t) dO(t).
a} a,bl

h(t)dO(t)= h(a)(O(a)- O(a-))

=0

and

h(t)dlp(t)=h(b)O(b)-h(a)lp(a)-a,b] a,b]

Therefore,

k(t) dh(t) + O(t) dh(t)

(by [7, Example 5, p. 199])

(since is continuous);

/(t) dh(t) (by [7, Example n, p. 185])

fa,b O(t) dh(t)+ O(a)(h(a)- h(a-))

fo, O(t) dh(t)

and, therefore,

(3.7)

h(t)O’(t) dt fj /(t) dh(t);

g}(s, Xs) duJ(s) O’(t) dt

fj O(t)g}(t, x,) duJ(t)

fj o(t) d {jl f,tog}(s, x) du2(s) } f O(t)

(since 0(a) 0(b) 0)

(since 0(a) 0).

(by [1, Corollary 6, p. 180]);

g}(t, xt) du(t)
j=l

From (3.5), (3.6) and (3.7), we obtain

DF’(O) f O(t)fi(t, xt) dt + /(t)[G(t, xt) du(t)] i.
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Since G(t, xt) is integrable with respect to du(t), the last continuous linear functional
in the above equation is identified with the measure [G(t, x,) du(t)] (see (2.2)) while
the first continuous linear functional in this equation is identified with the function
fi(t, xO. This holds for 1, 2, ..., n, and therefore the derivative distribution
OF() is identified with f(t, x) + G(t, xt)Ou. Hence, x(t) is also a solution of (3.3).

Conversely, let us suppose that x(t) is a solution of (3.3) with initial function
(p(t). Then for any closed interval J contained in [to, T] we have

(3.8) fj (t)Dxi(t) fj (t)fi(t, x) dt + f, (t)G(t, x) du(t)]

for ff C(J). By using 1, Corollary 6, p. 180] again we may write

(t) [G(t, x,) au(t)]’ (t) a (s, x) au(s)

Integrating the three integrals in (3.8) in the way we have done above, we obtain

O’(t)(xi(t) el(to)) dt O’(t) fi(s, x) ds + [G(s, Xs) du(s)] dt.

Therefore,

x(t) e(to) + f(s, Xs) ds + [6(s, x) du(s)

almost everywhere in J. But, since xi(t) is continuous from the right, being a solution
of (3.3), and since the right-hand side of the above equation is a right continuous
function of t, equality holds everywhere in J in the above equation. Hence x(t) is a
solution of (3.4). The proof of Theorem 1 is thus complete.

We now enumerate the hypotheses which will be used in this section.

Ha. f(t, xt) is locally Lipschitzian with respect to x; i.e., for any tl > to and
every kl < oo, there exists k2 k2(tl, kl) such that lixlit,t, < kl, [lYilt,t,l <= kl
imply

If(t, xt) f(t, Yt)I <= k2llx yl It

for every [to, tl].
H 2. f(t, xt) is continuous in and x; i.e., lim_,o ) t* and lim_o x)(t)

x(t) imply

lim f(tv) ") f(t*, xt,).t(v)]

H 3 There exists a Lebesgue integrable function r(t) such that

If(t, x,)l =< r(t)

uniformly with respect to x.

H4. G(t, x,) is locally Lipschitzian with respect to x.
H5. G(t, x,) is continuous in and x.
H6. There exists a function w(t) integrable with respect to the Lebesgue-

Stieltjes measure d V,(t) V,(t) =_ v(u, [to, t]) denotes the total variation function
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of u(t)) such that

I(t, x,)l -<_ w(t)

uniformly with respect to x.
THEOREM 2 (Local existence and uniqueness). Let the hypotheses HI, H3,

H4, H6 be satisfied on the interval [to, T]. Then there exists a unique solution of
(3.3) on an interval [e, to + a] with a given initial function q BV([e, to], S).

Proof Denote by Qt, to <= <= T, the space of all functions x(t) with the
properties

(i) x /3 V([,
(ii) x(s) qg(s) for s e [, to],

(iii) v(x, [to, t]) < b, b > 0.

Suppose that Q,
___
B V([, t], S). This is always possible if b is suitably chosen.

Choose a, 0 < a =< T- to, such that

+ tto +(3.9) r(t) dt + w(t) dV,(t) <= b.
to to

Since r(s) ds is a continuous function of t, and since the right continuity of u(t)

and hence of dV(t) imply that w(s) dV(s) is also a right continuous function

it is possible to choose such an a.
Now consider Qo/, which forms a complete metric space. Let A be the

mapping defined on Qo+, through the relations

{ p(t)

f f
for [, to,

(3.10) (Ax)(t)
qg(to) + f(s, xs) ds + G(s, xs) du(s) for (to, to + a.

We shall show that A maps Qto + into itself. Since both of the integrals on the right
of(3.10) are functions of which are of bounded variation on [to, to + a], it follows
that Ax is a function in BV([a, to + a]),. Furthermore,

v(Ax, [to, to + a]) _< v f(s, xs) ds, [to, to + a]

(3.11)

+ v G(s, xs) du(s), [to, to + a]

=< If(s, x)l ds + IG(s, Xs)l dVu(s)

+ tto +< r(s) ds +

<b

w(s) dVu(s (by H3 and H6)

(by (3.9)).
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Thus a maps Qto+a into itself.
We shall now show that A is a contraction. We have

(3.12)

IlAx Ayllt,,o+, If(s, x) f(s, y)]

+ [G(s, x3 a(s, y) du(s)

+
<- If(s, x) f(s, Y)I ds

[to,to+a]

[to,to+a]

G(s, x) G(s, Ys)l dV(s).

We have, for every x e Qto +

xllt,,o/o IIollt,,o / v(x, Uto, to /

=< qgll[,tol + b kl, say.

Therefore, by H1 and H4, there exist constants k2 k2(kl), k3 k3(kl) such that

(3.13)
If(s, x)- f(s, Y)I k21lx- y , k2llx- y t,,

Ia(s, x)- a(s, Ys)l <= k3l x- y =< k3llx- y It,.

From (3.12) and (3.13), we obtain

(3.14)

+ ftto
+

IlZx Ay [,to+, =< k2 x y I[, ds + k3 Ix- y[ [,dV,(s)

<= {ak2 + k3v(u, [to, to

Since u(t) is right continuous, a can be chosen such that

ak2 + k3v(u, [to, o + a]) < 1,

and then A is, by (3.14), a contraction. Hence, by the principle of contraction
mapping there is a unique fixed point. This completes the proof.

Our next theorem shows that the local existence of a solution can also be
proved if the hypotheses H1 and H4 in the above theorem are replaced by the
hypotheses H2 and Hs.

THEOREM 3 (Local existence). Let the hypotheses H2, H3, H5 and H6 be satisfied.
Then there exists a solution of (3.3) on an interval [, o + a] with a given initial

function q) BV([, to], S).
Proof Define Q, as in the proof of Theorem 2 and choose a > 0 so as to satisfy

(3.9).
Now define

q(t) for e [a, to],
(3.15) 5(t)

q(to) fort6(to, to / al
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and

(3.16) x)(t)
O(to) + ’ -Jr- a/v

+ a/v

for [z, o + a/v],
a

s -, x,,/v ds

G( a x du(s) forte(to+aira/v

v= 1,2,

For any v > 2, the first expression in (3.16) defines x()(t) on [, to + a/v], and then
the second expression of (3.16) defines x()(t) on (to + a/v, to + 2a/v]. Let us assume
that x()(t) is defined on [, to + ja/v] for < j < v. Then the second expression
of (3.16) defines x(V)(t) on (to + ja/v, to + (j + 1)e/v]. x)(t) is thus defined on
[, to + a].

From H3, H6 and (3.9), we shall obtain, by calculations similar to (3.11),

(3.17) v(x), [to, to + a]) =< b, v 1, 2,....

Thus,
x) eQ,o+,, v 1, 2, .-.,

and hence x()(t) are of uniformly bounded variation and are also uniformly
bounded. Hence by Helly’s selection principle [2, Chap. XII, Theorem 33, there
exists a subsequence x(J)(t) and a function x*(t) of bounded variation such that

(3.18) lim x(J)(t) x*(t),

and moreover,
v(x*, [, to + a]) __< lim inf v(x(, [, to + a]) =< b

j-m

by (3.17). Obviously x*(t)= qo(t) for e [z, t]. Hence
By H2, Hs and (3.18) we obtain

BV([0, to], s).

(3.19) limf(t a/vj "),.. f(t x,*)"zt a/vj
j

(3.20) lim G(t- a/vj "),.. )= G(t, xt*)"t a/vj

From H3 and (3.19), we obtain, by using Lebesgue’s dominated convergence
theorem,

a .() ds f(s, x*) ds(3.21) lim f s---, _/
joo YO

Let du+(t) and du-(t) be upper and lower variations (also called positive and
negative variations) of the Lebesgue-Stieltjes measure du(t). Then

G(s, x3 du +(s) <= G(s, Xs)l du +(s)

< w(s) du +(s) (by H6)

<= w(s) dr.(s),
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since w(s)>= O, dV,(s)--du+(s)+ du-(s). Since w(s) is integrable with respect
to dV,(s), G(t, x,) is integrable with respect to du+(s). Similarly G(t, x,) is also in-
tegrable with respect to du-(s). Therefore,

(3.22)
G s va’ ._,/1"().. du(s) G s ---,v; x)l du +(s)

f’ a
s -, x_o/ du-(s)

Vj

(see [4, Example (7), ff 29]; also see [7, p. 184]). Now take limits as v . Due
to H 6 and (3.20), Lebesgue’s dominated convergence theorem can be used on the
integrals on the right-hand side of (3.22) to obtain

a ) du(s) G(s x) du +(s) G(s x) du-(s)lim G s --, x_a/
j Vj

(3.23)
G(s, x) du(s).

Also

to + a/vj

G s
to+ a/v

<_ w(s) dV,(s) (by H6)

--+0 asjoo,

since w(s) dV.(s) is a right continuous function of t. So

+/ a
0lim G s --, x!),/_ du(s)(3.24) Vj

Similarly,

to + a/v a
(3.25) lim f s--

j-

Now, by (3.16), we have

(t) for [o, to + a/v],

a
ds f s -, x2)/, dsqO(to) + f s x(’_),/v,,

a

rj rj

to+a/vja
du(s)- G sS X(?)_a/v

for e (to + a/v, to + a].
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Taking limits as j and making use of (3.18), (3.19), (3.20), (3.24) and (3.25),
we obtain

qg(to) + f(s, x* as + G(s, x* du(s)

for [a, to],

for (to, to + a].

x*(t) is thus the solution of (3.3) on the interval [a, to + a] with initial function
qg(t). This completes the proof.

THEOREM 4 (Extended existence). Let the hypotheses He, H3, H5 and H6 be
satisfied on [to, fl], and let q9 B V([a, to],S)be given. If there exists a solution
x(t, to, qg) of (3.3) on [, T), where T is a point of continuity of u(t), and if T < fl
and T cannot be increased, then for any compact set F c S there exists a sequence
o < < t2... < t < T such that

X(tk) e S F fork 1,2,....

Proof Let x(t, to, q) be a solution of (3.3) on [, T) with initial function q,
where T (to, fl) is a point of continuity of u(t). Suppose that there exists a compact
set F c S such that x(t) F for 6 [, T]. We have

x(t)={ qg(t)

f/t f
for [, to],

q(to) + (s, x) ds + G(s, x) du(s) for (to, T).

If to =< < t2 < T, then

(3.26)
tIx(ta)- x(t2)[ _-< If(s, xs)l ds 4- IG(s, x)l dV,(s)

<= r(s) ds + w(s) dr.(s).
t t

Since u(t) is continuous at the point T, the function w(s) dV,(s) is also continuous

at T. So if e > 0, we can choose so close to T (but tl < T) that

T

w(s) dV,(s) < -,
and then we choose tz so close to tx that

t2

r(s) ds < -.
Thus, we obtain, from (3.26),

Ix(t1)- x(t2)l < e

for all to < t2 < T such that is sufficiently close to T. Therefore, by
Cauchy’s criterion,

x(T-) lim x(t)
t- T-
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exists. Define

Let

x(T) x(T- ).

q*(t) x(t) for [0, T].

Obviously, qg*(t) F S. Replacing to by T, rp by qg*, we can prove, as in Theorem
3, that there exists a solution x*(t, T, q*) of (3.3) on [a, T + 6], where 6 > 0,
which is represented by

q*(T) + f(s, x) ds + G(s, x) du(s)

for e [a, T],

for 6(T, T + 6).

Obviously x*(t) is also a solution of (3.3) with the initial condition x*(t)= qg(t)
for e [a, to] i.e., x*(t) is the extension of x(t) over the interval [a, T + 6]. Thus,
the value of T can be increased. This proves the theorem.

4. Formulation of an optimal control problem. Let [to, fl] be a fixed interval
and S a domain of E". Let B U ,tto,a B V([a, t], S). We shall denote by U the set
of all right continuous functions u of bounded variation on [to, fl] into a non-
empty compact subset Q of E".

Consider a control process governed by the measure delay-differential equa-
tion

(4.1) Dx f(t, x,, u(t)) + G(t, xt, u(t)) Du, > to,

satisfying the following assumptions:
A 1- The functionalfwith range in E" is defined for all e [to, fl], for all x e B

and for all u e U.
A2. f(t, x,, u(t)) is continuous in t, x and u.
A3. There exists a Lebesgue integrable real function r(t) for e [to, fl] such

that

If(t, x,, u(t))] r(t)

uniformly with respect to x e B, u U.
A4. G is an n x m matrix defined for e [to, fl], for all x B and for all u e U.
As. G(t, x,, u(t)) is continuous in t, x and u.
A6. There exists a constant K such that

IG(t, x,, u(t))l < K

uniformly with respect to x 6 B, u U.
Let q BV([o, to], S) be given. Under the assumptions A1 to A6, (4.1) has a

bounded variation solution x(t), for each choice of u U, satisfying the initial
condition x(t) 99(0 for [a, to]. This follows from Theorem 3. If u U defined
on the interval [to, tl] is such that the corresponding solution x(t, to, qg) of (4.1)
is also defined on [to, tl], then u(t) is called an admissible control and x(t) is called
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the corresponding trajectory. We define the cost of the control u(t) by

J(u) f(t, x(t), u(t)) dt,

where fo is a given continuous real function defined on [to,/3] x S x Q. The
functional J is called the cost functional of the system (4.1).

A target set is a family - of nonempty compact sets Ttc E" defined for
[to, fl]. We say that an admissible control u(t) defined on [to, l] transfers the

function 99 BV([, to], S) to the target set -, if the trajectory x(t) x(t, to, q), u),
corresponding to the initial function 99(0 and the control u(t), satisfies the relation
X(tl) Tt,. Let A be the set of all admissible controls which transfer q9 to -. A
control u* A is called an optimal (minimal) control if

J(u*) <= J(u) for each u A.

The optimization problem consists in finding such an optimal control.

5. Existence of an optimal control.
THeOReM 5. We are given the control problem with the following data:

(a) Dx f(t, x,, u(t)) + G(t, x,, u(t))Du, [to, fi],

withfand G satisfying the assumptions A to A6 of 4;
(b) the fixed initial function q) e B V([, to], S);
(c) a target set of nonempty compact sets T E" defined on [to, fl] and

upper semicontinuous with respect to inclusion;
(d) the set A ofadmissible controls u(t) defined on subintervals [to, tl] contained

in [to, fl] with the same left endpoint (and perhaps different right endpoint tl > to)
which transfer q) to -, which is such thatfor all u A,

IAul <- Ah

on each subinterval of [to, tl], where h is a given nondecreasing right continuous

function defined on [to, tx]; (the symbol Ah on the interval, say, [to, tx] denotes
h(t)- h(to));

(e) the cost functional
tl

J(u) f(t, x(t), u(t)) dt,

wheref is a continuous realfunction defined on [to, fl] x S x Q.
Then if A is nonempty, there exists an optimal control in A.
Proof Since for each u 6 A, IAul =< Ah on each subinterval of [to, l, therefore

u 6 A are of uniform bounded variation. We shall show that the corresponding
trajectories x(t) are also of uniform bounded variation.

We have

x(t)
q(to) + f(s, x, u(s)) ds + G(s,. x, u(s)) du(s)

for [0, to],

for 6 (to, t].
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As in (3.11),

(x, [to,

(5.2) =< ft"
IG(s, x)l dV(s)

r(s) ds + Kv(u, [to, tl])

r(s) ds + K(h(fl)- h(to)),

which shows that v(x, [to, tl]) are uniformly bounded for all the trajectories x(t)
corresponding to controls in A. Hence the trajectories x(t) are also uniformly
bounded.

Now, since A is nonempty, and the corresponding trajectories are uniformly
bounded, inf J(u) rfi > -oe for all u e A. Either A is a finite set, in which case
the theorem is trivially true, or we can select from A a sequence of controls u
on the intervals [to, tk)] for which J(u)) decreases monotonically to n. Select a
subsequence (which we shall still denote by u*)) such that t*) t’ monotonically.
Consider the case when {t]*)} is monotonic decreasing (the case when it is in-
creasing will be considered later). Next choose 1 such that 1 tl if t(1k) tl for
all k; otherwise let t]’ < t(1k+ 1) =< 1 < t(1k) < fl for some ko. (From now on all
reference to the index k tacitly assumes k > ko.) We define the extended control
fi(k) on [to, 1] by

(5.3)
u((t) if e [to, t(],

a(*)(t)
u(*)(tk)) if (t*), [1].

Since u(k)(t) e Q for all e [to, tic)I, a()(t) also belongs to O for e [to, 1]. Evidently

fik) is right continuous on [to, 1), and IAO()I __< Ah on every subinterval of [to, 1].
Now, by Helly’s principle of choice, there exists a subsequence (for which we shall
use the same notation ()) and a function of bounded variation u* such that

(5.4) lim )(t)= u*(t)

everywhere on [to, 1]. Our aim is to show that u* e A and is an optimal control.
We shall first show that u* is right continuous. Let r be any point in [to,

Since IAO()I __< Ah on every subinterval of [to, t], we have

la()(r + s)- O(k)(r)l =< h(r + s)- h(z), r __< r + s __<

and since h is right continuous at z, it follows that given any e > 0, there exists a
6 > 0 such that for any k,

I(k)(:4-s)--(k)(r)l <e for0__<s__<6.

Therefore,

(5.5) lim ()(z + s) fi()(z) uniformly for k.
sO+
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Also

lim (k)(z + S)= U*(Z + S).

Hence, applying the Moore theorem on interchange of order of repeated limits, we
obtain

lim lim fi(k)(z + S)= lim lim tk)(z + S);
s--*O+ k- k sO+

u*( + 0) u*(),

Thus, u* is right continuous at z. But was taken arbitrarily in [to, 1). Hence u*
is right continuous at each [to, 1).

Since fik)(t)Q for t [to, 1] and Q is compact, it follows from (5.4) that
u*(t) also belongs to Q for each [_to, 1]. Since Au* limk_o Aftk) on every
subinterval of [to, 1], it follows that, given any e > 0,

Au* __< ]A(k)] +

=< Ah + for sufficiently large k.

Since e is arbitrary, we get

(5.6) Au* _< Ah

on every subinterval of [to, tl].
Let X(k) be the trajectory defined on [to, t(k)] corresponding to the control H(k).

The extended control fi(k) coincides with utk) on [to, t(k)] and is constant and, there-
fore, continuous on [t(k), 1] (see (5.3)). Hence, by Theorem 4, x(k) can be extended
to [to, 1]- The extended trajectory 2(k) is given by

Since

(t)
Xs a(s)) ds

+ 6(s,, a(s)) da’(s)

for [, to],

for (to, 1].

total variations of 2(k) can be seen, as in (5.2), to be uniformly bounded. The
are also uniformly bounded. Hence there exists a subsequence (still labeled
and a function x* such that

(5.8) lim (k)(t)= x*(t)

everywhere on [to,]. By selecting the corresponding subsequence from /(k)
we do not change any of the preceding limiting operations satisfied by fitk.
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Since gt(k)(t) u*(t), (k)(t) x*(t) everywhere on to, 1], and the assumptions
A2 and A3 of 4 hold, we obtain, by Lebesgue’s dominated convergence theorem,

(5.9) lim f(s, 2, ((s)) ds f(s, x*, u*(s)) ds
k to

for all
Now, ]Aeke] Ah, ]Au*] Ah on every subinterval ofto, ] ;and tk(t)u*(t)

everywhere on to, ]. For each k, G(t, k, tk(t)) is a continuous function of
(by A5 of 4), and therefore each element gj(t, k, k(t)) of the matrix function

G(t, xt(k), tk(t)) is integrable with respect to dh(t). Moreover,
t

g}(t, k), tk)(t)) dh(t) Ig}(t, k), otk)(t)) dh(t)

and therfor the integrals .( g(t, k), (k)(t))dh(t) are absolutely continuous with

respect to h(t) uniformly in k, and bounded uniformly. Hence by [2, Theorem 27,
p. 285] and since As holds, w obtain

(5.10) lim 6(s, 2), a()(s)) da()(s) 6(s, x, u*(s)) du*(s)
k

for all to, ]. By (5.7), (5.8), (5.9), (5.10), we obtain

(t) for [, to],

(5.11) x*()
e(to) + of(S’ x, u(s)) ds

+ 6(s, x], u*(s)) du*(s) for e (to, .
(5.12) lim k()(t()) x*(r).

k--

We have

(5.13) Ix()(t()) x*(t]’)l _-< Ix()(t()) x*(t]u))l + Ix*(t])) x*(t).

Since x* is continuous from the right (because u* is), x*(t])) x*(t) and hence
the last term on the right in (5.13) is zero as k . We have

x(k)(t]k)) x*(t]k)) f(s, X]k) U(k)(S)) ds + G(s, (k) u(k)(s)) du()(s)
to to

f(s, x, u*(s)) s 6(s, x, u*(s)) u*(s)
Oto Oto

We shall now show that
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If(s, x uOO(s)) f(s, x* u*(s))] ds
atO

* u*(s)) du*(s+ G(s, x’, u’(s)) du")(s) G(s, Xs,
to to

+ If(s, x), u()(s)) f(s, x, u*(s))] ds

* u*(sl u*(s+ 6(s, x, u(s u(s 6(s, Xs,

I + I..+ Ia + I4, say.

By (5.9)and (5.10), we have

I0, I0 ask.

We have, further,

1131 If(s, x’), u)(s))l ds + If(s, x* u*(s))[ ds

i"

<2| r(s) ds O ask,

IIl < IG(s () IG(sx u(s))l h(s) + x, u*(s))l h(s)
dt

2K[h(t))- h(t)]0 ask ,
since h is right continuous. Thus (5.12) is established.

Now, x()(t)) ,) for k l, 2,..., and

x*(t) lim x()(t)).
k

If x*(t) were not in , then there would exist a neighborhood N of the compact
set so that *(t) is not in the closure N of N. But, since is upper semicontin-
uous, N for suciently near t. Thus x()(t)N for large k and yet
x*(t) N. This contradiction shows that x*(t) . Hence the control u* on
[to, t] belongs to A.

We have

J(u(b f(s, x(s, u(sl s

f(s, x(s, u(s s + (s, x((sI, u(s s.
to dt

Since f(s,x()(s), u()(s)) is uniformly bounded on [to, t)] and so the last integral
in the above equation approaches zero, and since

x()(t)- x*(t), u()(t) u*(t)
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everywhere on [to, t], therefore, by applying Legesgue’s dominated convergence
theorem to the first integral, we obtain

lim J(u(k)) r|t
ko to

f(s, x*(s), u*(s)) ds J(u*).

But lim,-oo J(u(*)) rfi. Therefore, J(u*) rfi. Hence u* on [to, t’] is an optimal
control.

We shall now consider the case when {t(*)} is monotonic increasing. We
extend all the controls u(*) to the interval [to, 1], where 1 t’ + 6 for appro-
priately small 3 > 0, by defining

utk)(t) for [to, t(ak)],
(5:14) /(k)(t)

tl(k)(t(lk)) for te(t(k),]

As before, there exists a subsequence (k) (without changing the notation) and a
right continuous function of bounded variation u* such that everywhere on
[to, x],

(5.15) lim fitk)(t)= u*(t)
k--*

and

(5.16) lim tk)(t)= x*(t),
k-*oo

where (k) and x* are the trajectories corresponding to /(k) and u* respectively.
We shall show that

(5.17) lim xtk)(ttlk) x*(t).
k’--

Consider

]x(k)(t(k)) x*(t’)l IXt)(t(k)) (k)(tT)l + I(k)(t)- x*(t)l.

Since 2(k)(t() x*(t(), the last term on the right in (5.18) approaches zero as
k --, oe. For the first term on the right, we write

to
f(s, ".*), k)(s)) ds + ’‘’to

G(s, x, a(s)) da(s)

f(s, 2k), a(k)(s)) as
to to

G(s, *), fi(*)(s)) d(*)(s)

f(s, 2*), fi(*)(s)) ds G(s, *), fi(*)(s)) dt(*)(s)

say.
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NOW,

and

Illl < If(s, (k) a(k)(s))l ds"s
dtk)

<= r(s) ds O ask

12 G(s, 2k, O(k(s)) dk)(s) 0

for each k, since ltk)(t) utk)(t(lk) for e It?), t’] and is thus constant on It?), t].
Thus (5.17) is established. Exactly as before, x*(t)e ; and therefore u* on
[to, t] belongs to A. It can be seen, as before, that J(u*) . Hence u* is an optimal
control. This completes the proof.
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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR
A CLASS OF DISTRIBUTED PARAMETER CONTROL SYSTEMS*

EARL R. BARNES"

Abstract. A class of optimal control problems arising in systems with distributed parameters is
considered. Pontryagin’s maximum principle is shown to be a necessary condition for optimality.
Under certain convexity assumptions, it is shown that the maximum principle gives a sufficient condition
for optimality.

The maximum principle of L. S. Pontryagin [4] gives a necessary condition
for optimality for a large class of optimal control problems involving systems
with lumped parameters. E. B. Lee has shown (cf. [1]) that the maximum principle
is also a sufficient condition for optimality for a certain subclass of such problems.
In this paper we shall derive analogous necessary and sufficient conditions for
optimality in the form ofa maximum principle for certain optimal control problems
arising in systems with distributed parameters.

The paper is divided into two sections. The first section is concerned with the
optimal control of systems (such as vibrating strings) that can be described by
second order linear hyperbolic partial differential equations. In the second
section, we discuss the problem of optimally controlling vibrating beams. The
results obtained here are analogous to those obtained in Section 1 except now we
restrict ourselves to problems in one space dimension.

In all cases we have tried to formulate problems that generalize certain control
problems that have been studied for vibrating systems having finitely many
degrees of freedom and lumped parameters. Other problems for vibrating strings
and beams have been considered by Russell and Komkov in [2] and [3], respec-
tively. These problems involve systems having quadratic cost functionals. A fairly
extensive treatment of similar systems has been given by Lions in [11].

Necessary optimality conditions similar to ours have been obtained by
Egorov in [5], [6] and [7] for a different class of distributed parameter control
problems. However, our approach is different than Egorov’s and we obtain certain
advantages over his method of deriving necessary conditions. In the first place,
our proofs are shorter and simpler. But more importantly, our technique of
proof illustrates that Egorov’s completeness assumption on the class of admissible
controls (cf. [6]) can be dropped. This is desirable since there is apparently no
technique available for determining when a given class of admissible controls
is complete in the sense of Egorov.
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1. The optimal control of a vibrating string.
1.1. Introduction. The problem of controlling vibrating systems is of con-

siderable importance to engineers. Many vibrating systems can be approximated
by lumped parameter systems which can in turn be described by a set of second
order linear ordinary differential equations. Such systems have received con-
siderable attention in the literature. See, for example, [8, [9] and [10, pp. 444-456.

The physical model for a vibrating system having lumped parameters is
usually taken to be a system consisting of a finite number of springs and masses
in combination. The control functions are then taken to represent forces that can
be applied to the masses so as to bring the system to an equilibrium position in
some optimal fashion. In this section we shall discuss the optimal control of the
simplest vibrating systems having distributed parameters. Such systems can be
described by one-dimensional wave equations. We assume that a physical model
for our system can be taken to be an inhomogeneous string stretched between
two fixed points and undergoing small planar vibrations. We also assume that we
are able to apply a distributed force which acts in the plane of vibration and
normal to the string, along the entire length of the string, in an effort to control
the vibrations. Our aim is to determine a force which eliminates the vibrations in
some optimal fashion.

Assume that the string is stretched between the points x 0 and x on the
x-axis and is vibrating in a vertical plane. Denote the displacement at the point x
and time by u(x, t) and denote the externally applied force by f. Then, assuming
that the frictional forces acting on the string are negligible, u andfare related by the
differential equation

(1.1) (x) 2ut2 --( U)p(x)-x q(x)u + f(x, t),

O<=x<=l, t>0.

# is the variable density of the string, p is the tension, and q the elastic restoring
force, u satisfies boundary and initial conditions of the form

(1.2)
u(0, t) 0, u(l, t) O,

u(x, o) q(x), u,(x, o) (x).

The functions/, p and q in (1.1) are assumed to satisfy/z, p c3, q c a, and
#(x), q(x), p(x) > 0 for 0 =< x __< 1. The initial conditions cp and are elements of
L2[0 l]. The functionfdenotes a control parameter.fis assumed to be admissible
in the sense of the following definition.

DEFINITION 1.1. Let F = E1 be a given constraint set. A square integrable
function f defined on [0, 1] x [0, T] and taking values in F is called an admissible
control.

For a given admissible controlf, let { f,} be a sequence ofcontinuous functions
converging tofin the mean square. Similarly, let {q,} and {q,} be sequences of c2

and c3 functions, respectively, converging in the mean square to 99 and q. Then it is
well known that there exist twice continuously differentiable functions u, satisfying
(1.1)-(1.2) withj q and q replaced byf,, rp, and q,, respectively (cf. [12, p. 157]).
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Moreover, each u. satisfies the energy inequality

la(X) -f(x, t) + p(x)l (x, t) + q(x)u2.(x, t) dx

(1.3)
<= c f(x, dx

+ c (xO(x + p(x (x + q(xe(x

c is a constant, independent of the functions u.
If we apply the energy inequality to the differences u u,, we see that the

limits

lim u u(x, t), lim (x, t), lim u(x, t)

exist in L[0, l] uniformly in for 0 N N T. We shall denote these limits by

u
(x, t),

u
(x,t) and u(x, t),

respectively, and shall refer to this convergence as convergence in the energy
norm.

The function u will be called a solution of (1.1)1.2) having finite energy.
u/t and u/x will be called generalized derivatives of u.

In the sequel we shall obtain certain results by formally integrating by parts.
The integrations will be valid for classical solutions, and hence, the results obtained
will be valid for solutions with finite energy, by passing to the limit in the result
for classical solutions.

1.. Frmlafi f te etrl rle. The system (1.1)-(1.2) will be at
rest at time T > 0 if the condition u(x, T) 0 and u(x, T) 0 are satisfied. These
conditions are equivalent to

(1.4) u(x, T)dx 0 and u(x, T)dx 0.

The constraints (1.4) are special cases ofmore general terminal constraints assumed
in the discussion to follow.

Let h(x, u), h(x, u), g(x, u), g(x, u), F_(x, t, u,f), F_ (x, t, u,f), Fo(x, t,
u, f),..., F,(x, t, u,f) be continuous functions, each having continuous first and
second derivatives with respect to u. Consider the following optimal control
problem.

Find an admissible controlf which minimizes the functional

Jo(f) [g(x, u(x, r)) + g(x, u(x, r))] dx

(1.5)

+ Fo(x, t, u(x, t), f(x, t)) dx dt
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subject to the differential equation (1.1)-(1.2) and the constraints

h2(x, ut(x, T)) dx + F_ 2(x, t, u(x, t), f(x, t)) dx dt c_ ,

hx(x, u(x, T)) dx + F_ x(x, t, u(x, t), f(x, t)) dx dt c_ ,
(1.6)

f:flFi(x,t,u(x,t),f(x,t))dxdt<=ci, 1 <=in’,

flF,(x,t,u(x,t),f(x,t))dxdt=c, n’<i<=n.

The discussion to follow is still applicable if all these constraints are of one
type, either equality or inequality.

DEFINITION 1.2. An admissible control which solves this control problem is
said to be an optimal control.

1.3. Necessary and sufficient conditions for optimality. A set of necessary
conditions for optimality is contained in the following theorem. We shall show that
the conditions stated in the theorem are also sufficient for a certain class of
problems.

THEOREM 1.1 (Maximum principle). In order that an admissible control fo,
with the response u, be optimal, it is necessary that there exist constants 2_ 2, 2_

20, "’, 2, and a solution v(x, t) of

(1.7)

p(x) -x q(x)v

Fi+ 2i-u (x, t, u(x, t), f(x, t)),

v(o, t) o, v(, t) o,

1 C3g2 1 63h2v(x, T) 20 (x, u (x, T)) + --2 -u (x, u (x, T)),

c3V
(x T)

1 ch
(3-- p(x- 2_ -u (x, u(x, T))

1 t3gx
20 (x, u(x, T))

such that

max Iv(x, t)f + 2,Fi(x, t, u(x, t), f)-I
fF i= 2

v(x, t)f(x, t) + 2iFi(x, t, u(x, t), f(x, t))
i-- -:2

jbr almost all points (x, t) (0, l) x (0, T). The 2 can be chosen such that 2 <= 0

for 0 <= <= n’ and some 2 =/= O.
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Remark. The conclusion of this theorem will be deduced from three lemmas.
Before stating and proving the lemmas, we introduce a special perturbation of an
optimal control.

Suppose that fo is an optimal control with the corresponding response u.
Let (Xl, t), ..., (x, t) be N arbitrary points in the open region (0, l) (0, T)
and letf, ..., fn be N arbitrary points in F. We may assume that x =< x2 -<
=< xn. Choose 6 > 0 such that xi + Nx/- < xj ifxi < x, and such that xn + Nx/-
<l and t + < T for each i. Let e,..., en be real parameters satisfying
0__<e=<6(1 =< j __< N). Let

Xl= x and X xj + +...+ N/ej_l
for 1 < j =< N. Clearly, the intervals Xj =< x <_ Xj + x/j are nonoverlapping.
Therefore, the rectangles

are nonoverlapping.

Rj" [Xj, Xj + x//ej] [tj, tj +

Define the admissible controlf on [0, 1] x [0, T] by
N

f(x,t) if(x,t) (3 Rj,
f(x, t) =

f if(x, t) R, j 1, ..., N.
Here e denotes the vector (e, ..., eN) EN. The norm of e is defined by

lel---el + -- eN.

LEMMA 1.1. Let u denote the response of the system (1.1)-(1.2) due to f. Let
Au u u and let Af f fo. Then

Au(x, T)dx o(e), Au(x, T)dx o(e)

and

o(e) is a quantity such that

Proof. Let

E(t) #(x)

fro fI Au2(x, t) dx dt o(e).

lim (o()/11) 0.
0

dAu 2

-Si-(x, t) + p(x) (x, t) + q(x)Au2(x, dx.

Proceeding formally as in [14, p. 145], we obtain

(1.9) E(t)
dr,

dr, 2 --(x, r,)Af(x, r,) dx dr,.
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This equality is valid for weak solutions since the latter is the limit of classical
solutions in the energy norm.

Applying the Cauchy-Schwarz inequality to the space integral, we obtain

fl (;i [oAu 2 1/2 (fl)1/2E(t) <= 2 1--f dx (Af)2 dx

_-< 2E/:(z) (Xf)2 dx

It follows that

sup E(t) =< 2 sup E1/Z(t) (Af)2 dx dr
O<_t<T O<=t<=T

(.o)

2 sup e’/2(t) Z O(e/4)
O<t<T i=1

O(r) is a quantity such that
lim (O(r)/r) const.
rO

Inequality (1.10) shows that, for each [0, T], we have

0 <= E’/2(t) <= 2 O(e/)
i=1

or

(.) (t) o().

The conclusion of the lemma now follows immediately from (1.11), since the co-
efficients q and # are bounded away from zero.

Let L denote the differential operator defined by

Cu =_ (xI t x P(XIx + q(xlu.

The formal adjoint ofL has the same definition. Thus we shall write

My (x t x p(x + q(xv

to denote the adjoint of L. We use M instead of L to distinguish the roles of u and v
in the discussion to follow.

LEMMA 1.2. Let u and v be two functions for which the expressions Lu and My
are square integrable. Thus u and v are weak solutions in the sense mentioned above.
Ifu and v satisfy the boundary conditions (1.2), then

(1.12)

[vLu uMv] dx dt #(x)v(x, T)- (x, T) t(x)u(x, T) - (x, T)

v u }+ ;(x)u(x, o) (x, o) (x)v(x, o) (x, o) dx.
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Proof Formally we have

"’xSUvLu- uMv --x up(x) +5i -u(x)u +u(x>N
Therefore, the conclusion of the lemma can be obtained for C2 functions by

integrating both sides of this identity over the region [0, 1] [0, T] and making
use of the boundary conditions in (1.2). The lemma holds for weak solutions u and
v by passing to the limit in (1.12) for c2 functions.

DEFINITION 1.3. Let fo be any admissible control with the response u. Let v
be the solution of system (1.9) for arbitrary constants 2_ 2, 2_ 1, 20, "", 2,. Let g
be any one of the following functions:

g(x, t) Fi(x, t, u(x, t),f), fe F is fixed,

g(x, t) Fi(x, t, u(x, t), f(x, t)),

g(x, t) v(x, t)f, f F is fixed,

g(x, t) v(x, t)f(x, t).

We shall call (if, ) a regular point off if

+f +,/-
g(x, t) dx dt eg(., ) + o(e)

for any e > 0 and sufficiently small.
It follows from [15, Theorem 6.3, p. 118], that almost all points of[0, 1] x [0, T]

are regular for each admissible control f.
LENgA 1.3. Let the functions fo and f be defined as in Lemma 1.1 where we

assume now that the points (xi, ti) are regular, 1,..., N. If N 1, then there
exist constants 2_ 2, 2_ x, 2o, 21, "’", 2, (not all zero) such that

(a) 2i=<0 forO <= <= n’,

(b) lim
J(f) j(fo) <= O,

0 8

where J(f),for any admissible controlf is defined by

J(f) 2o [gl(X, u(x, T)) + gz(x, ut(x, T))] dx

-l- [_ 2h2(x, Ut(X T)) + 2_ lh l(X, u(x, T))] dx

+ 2iFi(x t, u(x, t), f(x, t)) dx dt.
i= -2
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Proof Define the functionals J_ 2, J- 1, J1, "’", J, on the class of admissible
controls by

J- l(f) hi(x, u(x, T)) dx + F_ (x, t, u(x, t), f(x, t)) dx dt,

J-a(f) hz(x, ut(x, T)) dx + F_ z(x, t, u(x, t), f(x, t)) dx dt,

Ji(f) Fi(x, t, u(x, t), f(x, t)) dx dt,

i= 1, .--, n. Jo is defined by (1.5). Let J denote the vector-valued functional
(J-2, J- 1, Jo, "’", J,). Let Y denote the set

Y {J(f)’f admissible} c E,+ 3.

We assume the reader is familiar with the terminology and the generalized
multiplier rule introduced by Hestenes in [13, Chap. IV]. We shall construct a
derived set K for the set at j(fo).

Define functions V_z, v_ 1, Vo, "’, v, by requiring the following conditions
to be satisfied:

2Vj_
(l.13a) /t(x) t x cx]

q(x)vj + -u (x, t, u(x, t), f(x, t))

O<=x<l, O<=t<__ T, -2<__j<__n,

(1.13b) vj(0, t)=0, vj(l, t) O, -2 <= j N n,

(1.13c) v_2(x, T)
1 h2 (x, ut(x, T)) ?v-2 (x T) 0

(x) u t

U-1
(X, T)(1.13d) v_,(x, T)-- 0,

(1.13e)

hl (x, u(x, T))
/(x) u

Vo(X, T)
1 cg2(x u(x T)),

/(x) u

c%(x T)-ct
1 cgl

(x)
(x, u(x, T)),

(1.13f) v(x, T) O, -t (x, T) O, j 1,..., n.

Thus, each vj is defined to be a solution ofa boundary value problem satisfying
certain terminal conditions. The transformation x x, t--, T- transforms
each of these problems into an initial-boundary value problem which has a solution
for the same reason that the system (1.1)-(1.2) has a solution for each admissible
control.
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For each point (x, t) e (0, l) x (0, T) and for each pointf e F, define the scalars

ki(x, t, f) v,(x, t)(f f(x, t))
(1.14)

+ Fi(x, t, u(x, t), f) Fi(x, t, u(x, t), f(x, t))

i= -2,-1,0,...,n.

We shall show that the set

K {k[k (k-2(x, t, f),..., kn(x, t, f)), (x, t) a regular point off, f e F}
is a derived set for Y at j(fo).

Let kl, "", kN be an arbitrary finite collection of vectors from K. We must
show that there exist points J e Y depending continuously on the vector parameter
e (el, "’", eN), for all sufficiently small positive values of e, such that

N

j j(fo) + kjej + o(e).
j=l

Since kj K, j 1, ..., N, there exist points (Xl,tl), "", (x,t) of reg-
ularity off and points fl, "’", f F such that

kj (k-2(xj, j, fj), .", kn(xj, tj, fj)),

j 1, ..-, N. We shall show that J can be defined by J J(f), wheref is the
admissible control defined in Lemma 1.1.

We have, for 1, ..., n,

Ji() Ji(f) [5(x, t, u(x, t), A(x, t))

Fi(x, t, u(x, t), f(x, t))] dx dt

[5(x, t, u(x, t), A(x, t))

5(x, t, u(x, t), A(x, t))] dx dt

+ [V,(x, t, u(x, t), L(x, t))

Fi(x, t, u(x, t), f(x, t))] dx dt

ff fl cFi(x-u t, u(x, t), f(x, t))Au(x, t) dx dt

N

+ [F,(x, t, u(x, t), f)
j=l

N

-Fi(xj, tj, u(xj, tj), f(xj, tj)) + o(ej).
j=l
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In (1.15) we used the fact thatf is regular at each of the points (xj, tj) and the
fact that

f fl AuZ(x’ t) dx dt o().

If now we use the fact that

My (x, t, u(x, t), f(x, t)), i= 1,...,n,

and substitute in (1.12), we obtain

Au(x, t)Mv dx dt vi(x, t)(f(x, t) f(x, t))
o

N

f , t)) + o().
j=l

It now follows from (1.14) and (1.15) that
N

(1.16) Ji(f)- Ji(f) _, ejk} + o(),
j=l

where k denotes the ith component of kj.
For 0, we have

Jo(f)- Jo(f)
L c3u

(x, u(x, T))Au(x, T) + -u (X, u(x, T))Au,(x, T dx

N

+ ej[Fo(xJ, t2, u(x2, t2), f.i)
j=l

Fo(x2, t2, u(x2, t2) o x,f j,fj))]

+ (Mvo)Au(x, t) dx dt + o().

Ifnow we observe that by (1.12) and (1.13e)

Au(x, t)Mvo dx dt Vo(X, t)(f(x, t) f(x, t)) dx dt

[ cu (x, u(x, T))Au(x, T)

we obtain (1.16) for 0.

+.u-(X,U,(x, T))Au(x, T)] dx,
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Equations (1.12) and (1.13c)-(1.13d) can be used in a similar fashion to prove
(1.16) for 1 and 2. Thus we can write

N

J(L) j(fo) ejkj(xj, tj, fj) + o(e.).
j=l

Define J J(f). The proof that K is a derived set for Y at j(fo) is now complete.
It now follows from Theorem 3.1 in [13, p. 177] that there exist multipliers

2_ 2, 2_ 1,2o, ..., 2, with 2i _-< 0 for 0 __< -< n’ and some 2i # 0, such that

(1.17) , 2,k’ <= 0
i=-2

for any vector k (k- 2, k- 1, ko, kn) in K.
To obtain the conclusion of Lemma 1.3, we take N 1 in the foregoing dis-

cussion and put

We then have, by (1.16),

j(f) j(fo) e 2iki + o(e)
i=-2

for any vector k (k -2, k-1, kO, ..., k") in K. The proof of Lemma 1.3 now
follows from the fact that

lim
J(f) j(fo)

2,ki(x, t,f) <= O.
0+ i= -2

Proof of Theorem 1.1. Assume that the admissible control fo is optimal.
Let (x, t) be a regular point off. Then, by Lemma 1.3, there exist constants
2_ 2, 2_ 1,2o, ..., 2, independent of (x, t), with 2 N 0 for 0 -< _<_ n’ and some

2 - 0, such that

2i[vi(x, t)(f-f(x, t)) + Fi(x, t, u(x, t),f) Fi(x, t, u(x, t),f(x, t))] =< 0

for any point fe F. The vi’s are defined in (1.13). This says that the function

,,i[l)i(X, t)f + Fi(x, t, u(x, t),f)]
i= -2

attains its maximum value on F atf f(x, t). If we put v(x, t) ,’=_ 2 2ivi(x, t),
we obtain the conclusion of the maximum principle. This completes the proof of
Theorem 1.1.

THEOREM 1.2. Consider the control system (1.1), (1.2), (1.5), (1.6). Assume
(a) g l, g2, Fo, F,,, are convex functions of u;
(b) the functions Fi are of the form

Fi(x, t, u,f Fi(x, t, u) + Hi(x, t,f), -2,..., n.
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Suppose there exist an admissible controlf and constants 2_ 2,2_ x, 20, "-’, 2,
such that

where v is a nonzero solution of

My 2 -(x, t, u(x, t))
i= -2

with the terminal and boundary conditions (1.9). Assume further that
(c) 2o < 0, 2i -<_ 0for 1,..., n’;
(d) the constraints (1.6) are satisfied by fo;
(e) if strict inequality holds in (1.6), the corresponding multiplier 2i is zero;
(f) -2iFi, -),_2h2,- 2_ hx are convex functions of u for n’ < <= n.

Then fo is optimal.
Remarks. Condition (e) is a necessary assumption since, as Hestenes shows

in the proof of his multiplier rule [13], if an optimal control satisfies a strict in-
equality in (1.6), the corresponding multiplier must be zero. (f) is satisfied when
the functions hi, he, Fi, n’ < __< n, are linear in u.

Proof of Theorem 1.2. Iff and u satisfy (1.6), then by (e),

fro f 2i[Fi(x, t, u(x, t)) Fi(x, t, u(x, t))] dx dt

+ 2i[Hi(x, t, f(x, t)) Hi(x, t, f(x, t))] dx dt >= 0

for 1, ..., n. A similar result holds for -2 and 1.
It follows that

-2o[Jo(f)- Jo(f)] => -2o [gz(X, ut(x, T))- gz(x, u(x, T)) + g l(X,/,/(x, T))

g l(x, u(x, T))] dx

2i[Fi(x, t, u(x, t)) Fi(x, t, u(x, t))] dx dt

(1.18) 2i[Hi(x, t,f(x, t)) Hi(x, t,f(x, t))] dx dt

2_ [h (x, u(x, r)) h(x, u(x, r))] dx

-2_ 2 [hz(x, u,(x, T)) hz(x, u (x, T))] dx.
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Therefore, by the convexity assumption (f),

fi [Sg (x u(x T))Au(x T)-2o[Jo(f) Jo(f)] >= -2o L-u
ag2

(x ut(x, T)) Aut(x, T)1 dx+-u

2i-tiff (x, t, u(x, t))Au(x, t) dx dt
i= -2

+ 2i[Hi(x, t,f(x, t)) Hi(x, t,f(x, t))] dx dt
i= -2

2_ u (x, u(x, T))Au(x, T) dx

63h22- -u (x, u,(x, T))Au,(x, T) x

-2o [_ 8u
(x, u(x, T))Au(x, T)

8g

(Mv)Au(x, t) dx dt

+ 2iHi(x, t,f(x, t)) Hi(x, t,f(x, t))] dx dt
i= -2

2-1 u (x, u(x, T))Au(x, T)

63h2+ 2_ 2 (x, ut(x T))Au,(x, T) dx.

If we now apply Lemma 1.2 and the conditions (1.7), we obtain

-2o[Jo(f) Jo(f)] >- {v(x, t)[f(x, t) -f(x, t)]
(1.19)

+ 2i[Hi(x, t,f(x, t)) Hi(x, t,f(x, t))]} dx dt.
i=-2

The right-hand side of (1.19) is nonnegative. Hence, Jo(f)- Jo(f) >= O.

1.4. Generalizations. We wish to point out briefly how the results of the
previous section can be extended to more general systems. Thus, let us consider a
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system governed by the general linear hyperbolic partial differential equation

(1.20)

c c3uZ pdx)tt2 i,j=
+ ,:"x ri(X)xi + q(x)u + f(x, t),

(x,t) efl x [O,T] Q,

together with boundary and initial conditions of the form

(1.21)

U
u(x, o) Ti (x, o) O(x)

u(x,t)=O oncfl x [O,T].

in f,

Here f represents an open connected set in E,, and x (x l, ..., x,,) is a point
in f. c3f denotes the boundary of f.

The functions Pij, cpij/CXk, r, cr/cx and q are assumed to be bounded and
measurable in f. Moreover, we assume that Pi Pji and that there exist c and C
such that

i=1 i,j=l i=1

for all x e f and all (1, "’", ,,) e Em. c and C are constants satisfying 0 < c
<C<oe.

With these assumptions holding, the system (1.20)--(1.21) has a weak solution
having finite energy for every choice off L2(Q) and o, ff L2(). This follows
from Theorem 5.1 in [17].

Now let us imagine that in 1.2 we have replaced the interval (0,/) by the
set f in E and that x is now an m-dimensional vector. The optimal control
problem formulated in 1.2 now makes sense for the system (1.20)-(1.21). More-
over, the statement of the necessary and sufficient optimality conditions remain
the same except that now in place of the differential equations (1.1) and (1.7) we
must substitute the differential equations

and

Lu --f

My 2i-u (x, t, u(x, t),f(x, t)),
i=1

where L and M are defined by (1.22) and (1.23) below. We must also take v(x, t) O,
x e c3f, and/(x) -= 1 in (1.7).

The reader who has understood the proofs in 1.2 and who is familiar with
the elementary theory of second order linear hyperbolic partial differential
equations as discussed, for example, in [17 will have no trouble constructing the
proofs of these facts for himself. Nevertheless, we shall state and indicate the
proofs of the needed results. In the first place, we recall that Theorem 1.1 follows
from Lemmas 1.1, 1.2 and 1.3. Lemma 1.3 is a consequence of Lemmas 1.1, 1.2
and Theorem 3.1 in [13, p. 177]. To obtain Lemma 1.2 for the system (1.20)-(1.21),
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we must define

2U
(1.22) Lu = 3t2 i,j-"

and

Pij(X) 1 ri(x)
U

i= x q(x)u

and its analogue for

21)

X Ply(X) q- ri(1.23) M
6t2 i,j= G i= . q(X)V.

Lemma 1.2 now follows immediately from the identity (which is given by (4.10)
in [17])

vLu dx dt (x, r)v(x, T) (x, O)v(x, O) dx

u v
pj + r + qu dx dtOt Ot ,= xi xj i=

fi fa uMv dx dt.

We turn now to a discussion of the m-dimensional version of Lemma 1.1.
To this end, let (x 1, tl), (xN, N) be N arbitrary points in x (0, T) and let
fl, "", fu be N arbitrary points in F. Assume that the (xi, i) are labeled so that

denotes the ith component of xJ. Choose 6 > 0x =< x21 <... =< x, where xi
such that x] + N6 < x if x] < x and such that the points (yJ, zJ) e E,,+ defined
by

Yi Xi + N(l/(m+ 1) zj tj + 61/(m+ 1)

i-1,...,re, j= 1,...,N, belong to f x (0, T). Let e,...,eu be N real
parameters satisfying 0 N ej N 6 (1 N j N N), and let m + 1. Let

Xl=X] and X=x+ +.-. +

_
for 1 <j N N. The intervals Xj N x N Xj + ej are nonoverlapping, and
therefore, the (m + 1)-dimensional cubes

+ + + v +
j 1, ..., N, are nonintersecting.

Let be defined on x [0, T] according to definition (1.8). To obtain the

analogue of Lemma 1.1 for the system (1.20)1.2t), we assert the inequality

(x, t) + ,= pi(x, t) t) + Au(x, t) dx

< 2e e- (x, Oaf(x, x &

which is obtained from the energy inequality (8.1) in [17]. K is a constant de-
pending only on m, c and the bounds for the coecients of L. Au and Afare defined
as in Lemma 1.1.
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Denoting the left-hand side of (1.24) by E(t), we obtain from the Cauchy-
Schwarz inequality,

E(t) <__ 2etot e-tCE’/2() (Af)2 dx

From this, it follows that

E1/2(t) 2 (Af)a dx

N N

,’/(+ )o(,/((+ ))) o(+>/(+ ))).
i=1 i=1

Now since (m + 2)/(2(m + 1)) > 1/2, it follows that E(t) o(e) uniformly in
for 0 Z This completes the development necessary for the extension of
the results in 1.2 to the system (1.20)1.21).

Example. Let the controlled process be described by the differential equation

2u 2u
(.25)

3t2 3x2 P f(x,t) O < x < n O < < n

with the initial and boundary conditions

(1.26) u(x, 0) sin x, 8u(x, O)/3t -sin x, u(0, t) u(n, t) 0.

Find an admissible control fo which minimizes the functional

Jo(f) [u(x, ) + u{(x, n)] dx + f(x, t) dx at,

subject to the differential equation (1.25)1.26). For this example, we shall assume
that the set F appearing in the definition of an admissible control is the whole
real line.

To find an admissible control fo satisfying the condition of the maximum
principle (Theorem 1.1), we look for a function which maximizes an expression
of the form

(1.27) vf + 2of2,

where 2o 0. We assume 2o < 0. Then we may assume without loss of generality
that 2o 1. Sincef maximizes (1.27), we must have

Putting this in (1.25) we are faced with the problem of solving the system

t2 x2 2
v,

t2 x2,

u(0, t) u(, t) v(0, t) v(, t) 0,

u(x, 0) sin x, Ou(x, O)/t -sin x,

v(x, ) -2u,(x, ), v,(x, ) 2u(x, ).
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The solution of this system is

(x, t)
1 + rr/2

(sin + cos t)sin x,

u(x, t) (cos sin t) sin x

sinx fl1 + n/2
sin (t r)(sin + cos r) dr.

Hence, an optimal control is

1 1
f(x, t) -- v(x, t)

1 + rr/2
(sin + cos t) sin x,

since the maximum principle is a sufficient condition for optimality for this example.
The minimum cost is 4r/(2 + r)2 + 2r2/(2 + 7)2

2. The optimal control of a vibrating beam. In this section we discuss the
optimal control of the system studied by Komkov in [3]. Thus we let u denote the
transverse deflection of an inhomogeneous beam subject to an external force f.
Then u andfare related by the differential equation

2u (2
(2.1) p(x)A(x)- + -fxSx2

2U
E(x)I(x)-f2] f(x, t), Oxl, Ot.

denotes the length of the beam. p(x) is the material density, A(x) the cross-
sectional area, E(x) Young’s modulus and I(x) is the moment of inertia of the
cross-sectional area about the neutral axis.

We assume the boundary conditions for (2.1) to be given by

or by

(i) u(O, t) u(l, t) O, ox--(O’ t) -x (l, t) O,

(ii) u(0, t) u(l, t) 0,

or by

(iii)

(2bl
(0, t) E1

(2bl
et -x -x o,

O2U
(0, t) EI

82u
E1 -xx2 - t) O,

(’ t) Elx2 (1, t) O.

Conditions (i) correspond to a beam with built-in ends. Conditions (ii) correspond
to a beam with freely supported ends. Conditions (iii) correspond to a beam with
free ends.
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(2.2)

The initial condition for our system is of the form

au
u(x, o) (x), (x, o) O(x),

where q and are continuously differentiable functions on [0, l]. As in [3], we
assume the coefficients p, A, E and ! to be twice continuously differentiable and
positively bounded away from zero on [0, l].

2.1. Formulation of the control problem. We shall formulate the control
problem for the vibrating beam analogously to the formulation given above for
the problem of controlling the vibrating string.

Let functions hi, h2, g l, g2, F_ 2, "’", F, be given as in 1.2.
We wish to find an admissible control fo which minimizes the functional

(2.3)
Jo(f) fl [gl(x, u(x, T)) + g2(x, u,(x, T))] dx

Fo(x, t, u(x, t),f(x, t)) dx dt

subject to the differential equation (2.1) with initial conditions (2.2) and subject
to any set of boundary conditions (i), (ii) or (iii) and the side constraints (1.6).
T > 0 is fixed.

An admissible control for this problem is defined by Definition 1.1 in 1.2.
For each admissible control f the system (2.1)-(2.2) has a weak solution u

which is continuously differentiable on [0, l] [0, T]. Moreover, the energy
function

(2.4) E(t) 5 p(x)A(x) + E(x)I(x) -xz(X, t) dx

is continuous in and uniformly bounded for 0 _<_ __< T. It is easy to show that
each weak solution is the limit of a sequence of classical solutions in the energy
norm (2.4). This justifies certain results obtained below by formally integrating
by parts.

DEFINITION 2.1. An admissible control which minimizes the functional
(2.3) subject to the above constraints is said to be an optimal control.

THEOREM 2.1 (Maximum principle). In order that an admissible control fo
with response u be optimal, it is necessary that there exist constants 2_2,2_ 1,

2o, "", 2, and a solution v(x, t) of
2v (2 (2t)

p(x)A(x)- + - (x)I(X) x2 2,--u (x, t, u(x, t),f(x, t)),

’-2 63h2(2.5) v(x, T)= 20 ag2(x u,(x, T)) + (x u,(x T))
p(x)A(x) Ou p(x)A(x) c3u

(x, T)
8t

)o 891
p(:]t(x) -d (x, u(x, T))-

2_ 8hi (x, u(x T))au
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such that

max [v(x, t)f _2 2iFi(x’ t’ u(x’ t)’f)l
v(x, t)f(x, t) + 2iFi(x, t, u(x, t),f(x, t)).

v satisfies the same boundary conditions as u. Not all of the 2 are zero, and 2 <= 0

forO <= <= n’.
The proof of this theorem closely parallels the proof of Theorem 1.1. We shall

merely state and indicate the proofs of the necessary lemmas. The other details
of the proof are left to the reader.

LEMMA 2.1. Let the admissible control f be optimal for the system (2.1)-(2.2).
Let u denote the optimal response corresponding to fo. Let the functions fs and us
be defined as in Lemma 1.1. Then

fl Au2(x, T)= o(),dx

and

fl AuZt (x, T)dx o()

fro fI Au2(x, t) dx dt o(e),

where Au us Uo.
Proof Equation (14) in [3] shows that- p(x)A(x) (x, t) + E(x)I(x)- (x, t)Af(x, t) dx dt.

au )}x2 (x, t) dx

The portion ofthe lemma concerning Au, now follows as in the proof ofLemma
1.1. To obtain the remaining portion of the lemma we observe that

fl j,
T 1/2

IAu(x, t)l Au,(x, "c) dr, <= T 1/2 (Aut)2 dr
o

and so

fl Au2(x, t)= o(e)dx

uniformly in for 0 < __< T. This completes the proof of the lemma.
Let L denote the differential operator defined by

2U (2 2u/(X2Lu =- p(x)A(x)--. + e(x)I(x)

This derivation in [3] is purely formal, but it can be justified by using the approximating series
technique that by now has ,become standard in this paper.
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The formal adjoint of L is defined by

2U
My =- p(x)A(x)-- + - E(x)I(x) c3x2]..

Again we are dealing with a self-adjoint system. As before, we shall use L and M
to distinguish the roles of u and v in what follows.

LEMMA 2.2. Let u and v be twofunctionsfor which Lu and My are dned and are
square integrable. Thus u and v are weak solutions of certain differential equations.

lfu and v satisfy any set ofthe boundary conditions (i), (ii) or (iii), then

[vLu uMvJ dx dt p(x)A(x) (x, T) (x, T) u(x, T) (x, T) dx

(2.6)
(x, o v(x, o (x, o x.

Proo For suciently smooth functions u and v, the lemma is proved by
integrating the left-hand side of (2.6) by parts and making use of the boundary
conditions (i), (ii) or (iii). For weak solutions u and v, the lemma is obtained by
applying (2.6) to a sequence of smooth functions converging to u and v in the energy
norm (2.4).

LEMMA 2.3. Lemma 1.3 is validfor the problem ofthis section.
There is no essential change in the proof given for Lemma 1.3. We shall,

therefore, leave the proof to the reader. It is probably worthwhile to point out here
that the functions v defined in (1.13a)l.13f)are now defined as follows:

(21) 2 O2Vj Fj
(2.7a) p(x)A(x)-ffg + ?x E(x)I(x) x2 -u (x, t, u(x, t), f(x, t)),

Oxl, Ot T, -2jn.

These vj satisfy the same set of boundary conditions that have been prescribed for
the function u in (2.1). The terminal conditions on the vj are given by

(2.7b) v_ 2(x, T)
1 Oh2 (x, ut(x, T)),

v_
2 (x T) O,

p(x)A(x) u t

(2.7c) v_ l(x T) 0
c3v_

(x, T)

(2.7d)

(x)A(x) -g-?, (x, u, (x,

Vo(X, T)=
g

(x, u,(x T)),
p(x)A(x) cu

c3V (x T)
?t

3g
p(x)A(x) - (x, ux, T)),

(Uj
(2.7e) vj(x, T) O, ---{ (x, T) O, j 1,..., n.
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The proof of Theorem 2.1 can now be carried out following the pattern set
forth in the proof of Theorem 1.1.

Similarly, one can prove the analogue ofTheorem 1.2 for the system (2.1)-(2.2).
If this is done, one should apply the remarks following Theorem 1.2 to the new
theorem.
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CONVERGENCE OF A DISCRETIZATION FOR CONSTRAINED SPLINE
FUNCTION PROBLEMS*

JAMES W. DANIEL"

1. Introduction. In [10], some generalizations of the basic ideas of spline
functions were developed by considering certain minimization problems under
a mixture of discrete and continuous inequality constraints, extending concepts
in [1], [8, [9] and [13]. Sufficient and sometimes necessary conditions for a
function to solve the minimization problem were presented via optimal control
techniques, but no computational methods were discussed. In the present paper,
we shall analyze the convergence of simple discretizations of the problem, such
discretizations in many cases being finitely solvable by standard quadratic pro-
gramming methods. Let us first define the problem.

Let m be a positive integer and let < p < c. For 1, 2, ..-, k, let Mi
be not identically zero linear differential operators on [0, 1] of degree less than
m, and similary for Ni, 1, 2, ..., n; we write

Mix bi(t)x()(t), Nix ci(t)x(J)(t).
j=0 j=0

We allow k 0 and n 0. Let L be a linear differential operator on [0, 1 of
exact degree m,

Lx a(t)x()(t), am(t :/: 0 in [0, 1].
j=O

Let Wm’p be the (Sobolev) space of real-valued runctions x on [0, 1] such that
x(m- is absolutely continuous and x(") e LP(0, 1). Then our minimization problem
is to

minimize f(x) ILx(t)l dt over

(1.1) C {X X Wm’p, oi(t <= Mix(t <: i(t) for O _<_ __< 1,

1, k, i Nix(i) < ( for/= 1 n}
where and/ are given functions, the ’i and 6 are given scalars, and the i are
points in [0, 1]. Some simple generalizations are possible by allowing one-sided
constraints or by allowing the Ni to be difference operators, but we shall not
consider these here. It is shown in [10] that, if C is nonempty, if a C[O, 1 for
j 0,.-., m, if bij C[0, 1] for 1,..., k and j 0,..., m 1, if cij C[0, 1]
for 1, .-., n and j 0, ..., m 1, and if ai and fli lie in MiWm’p for 1,
.., k, then there exists a solution x* to the problem in (1.1). We shall assume the
above hypotheses to hold throughout the ensuing discussion. Since the solution x*
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work was supported by the Office of Naval Research under Contract N00014-67-A-0128-0004.
83



84 JAMES W. DANIEL

may hit the boundary of C at unknown points, perhaps countably many times,
the computation of x* is difficult. One obvious way to handle this is as follows.

Let h > 0 be some mesh size, say h 1/Q, and let [0, 1] be partitioned by
ti ih, 0,..., 1/h Q; we suppose that all the points i lie on this mesh
for all h to be used, that is, /h is an integer (this assumption is not necessary but
simplifies the notation). Our first discretization consists in merely replacing the
continuous constraints by discrete ones, that is, we

minimize f(x) [Lx(t)l p dt over

(1.2) Cl(h) {X X

_
Wre’p, oi(tj) <= Mix(tj) <= fli(tj) for

j 0,..., Q, i= 1,..., k, 7i <- Nix(i) <= bi

fori= 1,.-.,n}.

As analyzed in [13], this problem can be solved in the common case of
p 2 in finitely many steps by minimizing a quadratic function of 2k(Q + 1)
+ m + 2n variables subject to 2k(Q + 1) + m + 2n linear inequality constraints.
We shall prove the following ( 2, Theorem 2.1): All weak limit points (in the
Wm’p sense), at least one of which exists, of a sequence of solutions to the first dis-
cretization in (1.2) must solve the original problem of (1.1); if the solution to the
original problem is unique, the approximating solutions converge to it W"P-weakly,
and in particular the function and the first m 1 derivatives converge uniformly,
that is, in C[0, 1].

If one must take h .very small to obtain a reasonable approximation to x*,
one might well be satisfied to have only approximate values of x* at the grid
points ti rather than throughout [0, 1]; if x*(t) were desired and x*(t) was ac-
curately known, unconstrained interpolation could be used to generate a reason-
able approximation to x*. Thus we are led to a second, more complete, dis-
cretization. If z is a function defined at least on the mesh points ti ih, O, ...,
1/h Q, let D Dh be the operator such that Dz(ti) (z(ti+ 1)- z(ti))/h, i= O,
1, ..., Q 1. We then have

Dlz(ti)
o

as a natural analogue of the/th derivative of z. We therefore define

Mi,hz(tj) bu(tj)Dz(tj), 0 <= j <= Q m + 1,
/=0

m-1

N,,hz(t))-- cu(tj)D’z(tj),
/=0

O<=j<=Q-m+ 1,

Lz(tj)-- a(tj)Dlz(tj),
/=0

o<=j<=Q-m.
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Our second discretized problem is now to

minimize fh(Xh)= h ILhXh(tj)l p over
j=O

C2(h {Xh; Xh =_ (Xh(0), Xh(tl), ’’’, xn(1)) R+

-F.h -[- Oi(tj) Mi,hXh(tj) fli(tj) -1- F.h

forj=O,...,Q-m+ 1, i= 1,..., k,

--3h -1- }i < Ni,hXh(i) i q- ’h for 1, ..-,

Here eh, which tends to zero, gives a small expansion of the constraint set as
h 0. If some such expansion is not allowed, the set C2(h) can be empty [6], [7];
as will be clear from the use made of the expansion by eh, constraints of the form
(t) <= x(t) <= fl(t) or <= x() <__ fl need not be expanded. This problem in the
common case of p 2 can be solved in finitely many steps since it involves a
quadratic function of Q + 1 variables subject to 2k(Q- m + 2)+ 2n linear
inequalities. Since in general Q-- 1/h is large, seeking only approximations to
x*(t) reduces the difficulty considerably. Under slight additional hypotheses on
the problem, we shall prove the following (roughly stated) ( 3, Theorem 3.1)"
All W"’ weak limit points (ofcertain "interpolations"), at least one ofwhich exists,
ofa sequence ofsolutions to the discretization in (1.3) must solve the original problem
of(1.1) if the solution to the original problem is unique, the ("interpolations" of the)
approximate solutions converge to it Win’P-weakly, and in particular the function
values and the first m 1 divided differences converge uniformly, that is, in C[0, 1 ],
to x* and its first m- 1 derivatives.

In our analysis of these discretizations, we shall follow the general approach
of [6] and [7] for studying discretized optimization problems;in particular, we
use the approach of [6] and [7] for studying discretized optimal control problems,
since our problem can easily be stated in that formalism, as in our (2.6). Once
we use the control theory formalism, however, other approaches for analyzing
discretizations of control problems can be used; for example, the ideas of Cullum
[2] and [3]. Our present problem has such special structure however (for example,
the control variable is unconstrained but the state variable is subject to con-
straints) that the more general results give us too little information we must make
use of the problem’s structure.

2. Analysis of the first, simpler, discretization. We have yet to define a norm
on the space WIn’P; two common norms are

Ix"(t)l p dt
i=0

Ix(031 + Ixm(t)l p dt
i=1

for 0 =< 01 < 02 <’’" < 0 -- 1. It is well known [14], [12] that these norms
are equivalent; that is, there exist positive constants a, A such that a]lxll0 =< Ilxll
<- A]lxl]o for all x in Wm’’. This equivalence is related to the famous Sobolev
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inequalities which say that, for 0 < =< m 1, there exist constants Ai such that
x(i)(t)l < Ai Ixll for all in [0, 1] and x in W"’p. If a sequence {x,} converges
weakly in (Wre’p, II" ) to x, then Ilx, is uniformly bounded and therefore, by the
Sobolev inequalities, for 0 < m 1, the functions x(, are uniformly bounded
in C0, 1 ]. Hence the {x(.} are equicontinuous for 0 < _<_ m 2 which implies
that {x(,i)} converges uniformly, that is, in C[0, 1], to x") for 0 =< =< rn- 2. A
slightly more subtle argument, using

Ix(m- 1)(0 x(’- 1)(t’)l Ix(m)(’c)l dz <= Ix(m)(z)lPdz It’ tl

shows as well that {xt,m-l)} converges uniformly to x"-1). For 1 < p <
Wm’p is reflexive and hence the unit sphere is weakly compact and weakly sequen-
tially compact.

From the computational standpoint, serious difficulties arise if the original
problem (1.1) admits solutions ofarbitrarily large norm. For example, the functions
x,(t) n form a minimizing sequence (in fact, they are all solutions) for

Ix2)(t)l 2 dt the set of 0 x(1)(t) 1 but haveover satisfyingX no convergent

subsequence. In this situation, our analysis to follow could not guarantee that
the approximate solutions have limit points; to avoid this we must eliminate
problems admitting solutions of arbitrarily large norm. We pause to see what
this means. For 0 <= <= k, let S =- {x;x W"’p, Lx =- O, Mix 0 for 1 <__ <__ l,
and Nix(i) 0 for 1 __< =< n}. It is shown in [10] that, if dk+l is the dimension
of Sk and if dk+ 1-j is the dimension of Sk+-- Sk+2-a for 1 <__ j =< k, then
there exist points Ol,i with 0__< 0l, <01,2 <"" <O,dl__--< for 1=< [=<k/ 1,
with the points { Ok + ,i}L+ being completely arbitrary in [0, 1 ], such that

Ilxll Imzx(OI,j)l p + Ix(O+
/=l j=

(2.1)
j-’l

+ IXx(01p + IZx(t)l p dt
i=1

defines a norm on Wm’p. We remark that if for some lo one has MloX x, then one
may take dlo m, all other d 0, eliminate the sum in Ni from (2.1), and take
arbitrary distinct points for Oo,i to define the norm. By using the Sobolev inequal-
ities, it is simple to show that this norm is in fact equivalent to Iio and

LEMMA 2.1. is equivalent to o and
Proof The existence of an A’ such that Ix =< A’llxll for all x in Wm’p is clear

from the Sobolev inequalities; we ask whether or not an a’ > 0 exists such that
[xll >= a’llxllx, If not, we can find x. Wm’p such that [Ix.[I - 0 but IIx.llx 1;
by the weak sequential compactness of the sphere in (W"’p, 1), we may assume
x, converges (W’’p, II" 1)-weakly to some x in Wm’p. Since L is bounded from
Wm’, I[" I) into LP(0, 1), since m and Ni are bounded from (W’’, I[" 1) into

C[O, 1], and since ILx(t)l dt tends to zero, we have x 0 and therefore x _= O.

Since x converges uniformly, that is, in C[0, 1], to x and x I1 1, we have
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p converging to 1. Thendt

ILx.(t)l p at >= ]am(t)X(nm)(t)] p at ai(t)X(ni)(t) at

which then is bounded away from zero since ]a,,(t)] >= e > 0 for some e, since

p --+ 1, X(ni) converges uniformly to <_ =< mdt and since x(i) 0 for 0 1.

This contradicts IIx, 0. This completes the proof.
Now for any x in C, the values [Mix(O,i) and [Nix(i) are bounded, uniformly

in i, and x. Given any in C, we would seek x* only from among those x in C

satisfying f(x)<= f(2), which in turn gives an upper bound for ILx(t)l p dr.

From this then, we can deduce an a priori bound on IIx*ll if and only if the
{Ix(O+ j)l} are uniformly bounded for 1 __< j _<_ d+ . Ifd+ O, this is certainly
true if d/ 4= O, there exists a nonzero function z in S and thus x* + ez e C for
all scalars and f(x* + ez) f(x*). Therefore the original problem admits of an
a priori bound on its solutions if and only if d+ O. We hereafter assume that
d/= 0. Computationally this may be accomplished simply by adding one
continuous constraint Ix(t)] _-< E for some large E or rn discrete constraints Ix(Oi)
=< E and thus this is not a computationally significant restriction. Adding
Ix(t)l <= E means that we may use as our norm the simple expression

(2.2) Ix(O,)l p + ]Lx(t)l p at
i=

We hereafter assume that the points O,i of (2.1) are mesh points for all h used.
If some M,oX x, then we need only assume that the m points Oi of (2.2) are mesh
pointsfor all h used.

Now let, for Q I/h, x be a solution to the simple discretized problem of
(1.2) C (h) is not empty since, in particular, x* C (h), where x* solves the original
problem. Since f(x)< f(x*), since IMtx2(OI,j) max {10(0,)[, [fl(0,j)[} and
since INix(,)l _<= max {]61, ]7,]}, we conclude that I]x}] is uniformly bounded.
We note that x is not necessarily in C; it is however "near" to C as the following
more general lemma demonstrates.

LEMMA 2.2. Ifx W"’p and- e + cti(tj) < Mix(tj) <-_/3i(tj) + efor 1, ..-, k
and j 0,..., Q, then -(e + qi(h)) + i(t) <= Mix(t) <-_ i(t) + (e + rli(h)) for
0_<_t 1, where

rli(h max Ifll)(t)l p dt Il:)(t)l dt h 1/q

+ t]lXlloh 1/ + Ilxllow(h),

where lip + 1/q 1, Ibis(t)[ <__ Bi, Ibis(t1)- bit(t2) <= wi(h if It1 t2] <= h,
/=0,---,m- 1.

Proof For the upper bound,

Mix(t)- i(t)= Mix(t)- Mix(tj) + Mix(tj)- fli(tj) + i(tj)- fli(t).
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Since

fli Miwm’p c7. W

Also

Ifl,(t)- fi,(tj)l Ifi!’(t)l dt Ifl!’)(t)l *’ dt It- tjl x/

m-1

IMix(t)- M,x(tj)l =< Ibu(t)x)(t) bit(tj)x(t)(tj)l
/=0

B, IIxIIolt- tl / + IIXlloW,(It- tl)

arguing as for fli- Thus, letting tj be such that It tj[ _<_ h, we have

Mix(t fl,(t) <_ e + Ifl!)(t)l dt / + IIx owi(h)-l-Bi x o

Similarly for the lower bound. This completes the proof.
We note that if the bit are H61der continuous with exponent greater than

or equal to 1/q (that is, if [bu(tl)- bu(t2)[ =< cltl tz[ for some constant c >= 0
and r > 1/q) then Ir/i(h)l <= Fhq for a constant F uniformly bounded whenever
is bounded.

LEMMA 2.3. Iffunctions xO. Wm’p satisfy -,Q -[-- i(t) <= mixo(t <= fli(t) +
for 1,..., k and -co + i <= Nixo.(i) <- 6i + % for 1,..., n, if limt2_,o
% 0 and ifxo. converges W"P-weakly to x, then x C.

Proof This is obvious since x)(t) converges to xtJ)(t) for each in [0, 1] for
0 _<_ j _<_ m 1, and the constraints involve derivatives of order at most m 1.

LEMMA 2.4. As % >= 0 tends to zero, the minimum off over the set Ce {x;
X Wm’p, --FQ + Oi(t Mix(t <= fli(t)-k- ,Q for 1 <__ <= k and 0 <- <= 1, -% + 7i
<= Nix(i) <= 6i + %for 1 <_ <- n} converges to the minimum off over C.

Proof Clearly each set Co is weakly closed, and for the minimization problem
over Ce we may restrict ourselves to those x satisfyingf(x) __< f(x*), since x*
where x* minimizesfoyer C. Since, for all : in this set, [[xi[ is uniformly bounded,
the weakly lower semicontinuous functionalfattains its minimum over the weakly
compact set Ce at some point xo Since [[xo[ is uniformly bounded, we may assume
that xo converges weakly to some x, which must be in C by Lemma 2. Thus
f(x) <__ lim info f(xo) <= lim sup f(xo) <= f(x*) since f(xo, <= f(x*) for all Q.
Thus limQ_ f(xo, f(x*).

We can now prove our discretization result for the simpler discretization.
THEOREM 2.1. Let the general assumptions of 1 hold and let the fixed points

Ot,i defining the norm [[. in (2.1) (or Oi in (2.2)) be mesh points in our discretization
for all h. Let x2 Wm’p solve the problem of(1.2), that is, minimize f(x) over C(h).
Then f(x2 converges to f(x*) and all Wm’p weak limit points, at least one of which
exists, of {x,} minimize f over C if x* minimizingf over C is unique, then x2 con-

verges weakly to x*, that is, x2i) converges uniformly to x*i) for 0 <= <= m 1
and X2m) converges LP-weakly to x*").
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Proof Arguing as in Lemma 2.4, we see that x always exists, f(x.) <= f(x*)
and there exists a constant E such that x[ =< E. Thus, by Lemma 2.2, there exist
functions r/i(h) for 1 =< <= k tending to zero with h, and such that x e CQ =- {x;
x W’’p, -rli(h) + i(t) <= Mix(t) <- i(t) + rh(h) for 1 < <= k, "i Nix(i) - (i
for =< =< n}. By Lemma 2.4, Q =mincf- minc f tends to zero. We write

(2.3) f(x*) minf minf +
C

This implies, since --, 0, that f(x)-, f(x*). Since {x} is bounded, it has weak
limit points. For any such weak limit point x’ with x, weakly converging to x’,
we have x’ C by Lemma 2.3 and thus

f(x*) <= f(x’) < lim inff(x,) lim f(x) f(x*).

This says that f(x’) f(x*), that is, x’ minimizesf over C. The remainder follows
from the definition of convergence in W’p.

We have not been able to estimate the rate of convergence as a function of h.

3. Analysis of the more complete diseretization. We shall here use the norm

I[" defined in (2.1) via points O,i (or 0 in (2.2)) and we shall assume that the O,i
are mesh points for all h used. We shall analyze our complete discretization, the
relationship between the problems in (1.1) and (1.3), by the general discretization
analysis of [5], [6 and [7]; for completeness our arguments are self-contained.

We wish to use roughly the arguments of Theorem 2.1 in this case also.
If x’ minimizes f over C2(h), we unfortunately cannot talk about f(x) or f(x*)
as in (2.3) in the proof of Theorem 2.1, since these make no sense in our new situa-
tion. Instead, with x* we shall associate a point y rx* C2(h by a "discretiza-
tion" or "restriction" mapping rh such that Ifh(rX*) f(x*)l converges to zero
with h. Similarly, with x’ we shall associate a z PhX Wm’p "converging into
C" by an "interpolation" or "prolongation" mapping ph and such that If(phx)

f(x’)[ converges to zero with h. We can then imitate the proof of Theorem 2.1
by replacing (2.3) by roughly

f(x*) min f +
co.

< fh(rhx*) + 0. + [f(phx)- fh(x)]

f(x*) + o. + [f(px)- fh(x’)] + [fh(rx*)- f(x’)].

Having outlined our approach and the reasons for constructing certain
mappings ph and rh, we now proceed with the technical details. We define the
restriction rh in the obvious manner. Let y rhx* be the discrete mesh function
(that is, defined at points ti ih only) defined by y(ti) x*(ti).

We need to develop some tools for using divided differences. For any with
0 <__ <= m, by Peano’s theorem we can write

Dx*(t)
(1 1)!

Dlt(t
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where the D indicates differences with respect to t, that is, Dtg(t z) (g(t + h,
g(t, z))/h, and where

(t- "U)1-1 fort- z >__ 0,qT)/+-1
0 fort-r=<0

as usual. Kl(Z t) .)Dt(t- z)l+ is a ’basic spline’ [4], that is,

1 (_l)l_i(1)(ih_s)l+_Kl(S) =- hl(l 1)! =o
vanishes identically for s >= lh and s < O, is strictly positive for s in (0, lh) and lies in

Cl- 2(_ o, o). Thus Dlt =_ 1! Kl(s) ds, and we find

fl
h

Kl(S ds 1.

Also

1
(- 1)l-i hl- <Kl(s) h(l 1)!i= o + h

for some fixed G, since we have 0 __< s/h <= 1.
We now show that rhX* C2(h for large enough eh.
LEMMA 3.1. --eh + ei(tj) <= Mi,hYh(tj) <= fltj) + eh for 0 <=j <__ Q-m+ 1

and 1 <= <= k, and -eh + 7i <-- Ni,hYh(i) <= i -I- 3 for 1 <__ <__ n, where eh Gh 1/q

and G > IIx*llo =-o [bill x/q for 1 < < k, and G > Ix* o ’fo cilll l1/q for
l<_i<_n.

Proof. For0 <l=<m- 1,

tJ q- lh

KI(’C- tj)[x*(l)(’c)- x*(l)(t)-I dt

__< sup
tj<_ z<__tjq-lh

Now

Ix*(/)(c) x*(l)(tj)l Ix*(/+ )(s)l as
_

x*llol tl / Ix* ollhl 1/q.

More generally,

IMi,hYh(tj)- Mgx*(t)l --IMi,hX*(tj)- Mix*(t)l
m-1

< E Ibil(tj) Dlx*(t)-
/=0

m-1

<= Ibil(tj)[ IIx*llollhl
/=0

and similarly for Ni and Ni,h. The lemma follows since
and similarly for Ni.



CONSTRAINED SPLINE FUNCTION PROBLEMS 91

As our last step in treating rh, we show that Ifh(rhx*) f(x*)l converges to
zero.

LEMMA 3.2. limhO Ifh(rhx*) f(x*)l 0.
Proofi Since the m-times continuously differentiable functions are dense in

Wre’p, we can find such a function z arbitrarily near x* and such that If(x*) f(z)l
is arbitrarily small. Since, for 0 <__ __< m,

tJ + lh

IDlx*(tj)- Dlz(tj)] <= Kl(r- tj)lx*tl)(r)- z(l)(r)ldr

ft.tJ
+ lh

r}
1/q

<= Kl(r j) d

Kl(r- tj)lx*(l)(r)- z(l)(r)lPdr

<= 61 Ix*tic(r) ztl(r)l p dr

which is arbitrarily small, and since the functions a are bounded, it is also clear
that Ifh(rhx*) j,(rhz)l can be made arbitrarily small independent of h by choosing
z near x*. Thus we are through if, after fixing z, we can show that If(z) fh(rhZ)l
tends to zero. By using the triangle inequality, we immediately find

[fh(rhZ)l/P--f(z)l/PlPfiih+hh
m-1

[at(ti)Dlz(ti)- al(t)z(1)(t)]
/=0

m-1

2 al(t)z(l)(t)
/=0

P

P

the latter term of which clearly tends to zero with h for fixed z. For the former term,
since z") is continuous, we have Dlz(ti) z(l)()i) for some ;i in (ti, ti + lh). Then the
former term equals

fiih+h p

2 [al(ti)z(l)(,i)- al(t)z(l)(t)] dt.
/=0

Since at and z(t) are both continuous, the term under the integral sign for this fixed z
is bounded by some function w(h) tending to zero with h and thus the whole

ih+h

expression is bounded by /o___- w(h) dt <= w(h).

Remark. The preceding lemma is of some independent interest. As a special

case, it says that h i=d" ]Dmx(t,)] p converges to ]x(m)(t)] p dt for all x in WIn’P;

since the sum looks something like a Riemann sum for the integral, it is interesting
that convergence can be proved. This is vital for the work in this paper since [10]
did not give broad necessary continuity conditions for x*; we know of examples in
which x*(m) has countably infinitely many finite jumps although the constraining
functions are very smooth.

Next, we must consider a mapping Ph of X’ into phX Zh Wm’p near C with
If(PhX) fh(x)l converging to zero. Let Vh be an m-vector function on the mesh
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points, vh (Vh,o, "", Vh,m- 1) r, solving
Vh, o(tj+ )= Vh, o(tj) + hvh,(tj),

(3.1) Vh,m-2(tg+ 1) l)h,m-2(tj) -[- hVh,m- l(tj),

/Oh,m-l(tj+ 1)--- Uh,m- l(tj) -]- h , (ai(tj)vh,i(tj)) + Lhx(tj)
i=0

for 0 =< j =< Q m, with vh,i(O)= Dix(O) for 0 =< __< m- 1. For convenience
we have assumed am(t) 1 without loss of generality. Clearly then, we have that

Vh,i(tj)-- Dix(tj) for 0 __< =< m- 1 and 0 _<_ j =< Q- m.

Consider the m-vector function V on [0, 1], Vh (Vh,o,
the system of differential equations

gh,m_l) T, solving

(3.2)

h,O Vh, l’

h,m- 2 1,

m-1
(1) Z aiVhi %- Uhh,m-

i=0

with Vh,i(0 vh,i(O) for i= 0, ..., m 1, and uh(t) LhX(ti) for ti <= < ti+
and 0 <= <__ Q m, uh(t) 0 for >__ 1 (m 1)h. We see immediately that the

vh is obtained by applying Euler’s method to solve the system in (3.2) which, for
convenience, we write as

(3.3) V) AV + euh, V(O) v,(O),

where A is the obvious matrix and e (0, O, ..., O, 1) r.
We now define z px Vh, o. We notice that z Vn, o solves the equation

Lz u and thus

(3.4) ILzh(t)l p dt luh(t)l p dt h ILhxy(t,)l p,
0 i-0

that is, f(phX) fh(X). Thus we have accomplished the goal of making
fh(x)] tend to zero; we now check to see if zh phx is "near" C by relating

Vh to Vh.
NOW we write

and

v(tj+ ,)= v(t)+ "+’ [A(t) V(t) + eu(t)] dt

[A(tj)vh(tj) + euh(t)] dt.
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Letting eh(tj) Vh(tj) vh(tj) and arguing in the usual way, we find, writing

]eh(t2) max [eh,i(t2)] and F= max [A(t)[,
O= =<m- 0<t-<l

leh(tj)[ < exp (F) hl/q [(A(t)Vh(t))(1)IP dt
(1 + 1/q)F

Thus, Vh and Vh will be uniformly close if A Vh W l’p and is uniformly bounded in
W l’p. If A(1) C[0, 1], that is A CI[0,. 1], then since (AVh)(1) A(1)Vh + A2Vh
+ Aeuh and tlA(1)II IIA and lUh(t)[ p dt are uniformly bounded, A Vh will be

uniformly bounded in WI’p if Vh is uniformly bounded in LP(O, 1); this finally is

clearly true if Vh(O) is uniformly bounded in
LEMMA 3.3. If the coefficients ai d@ning the operator L are in C10, 1, then

there exists a constant K such that I[Vh(tj) Vh(t) <--_ Khl/q for 0 <__ j <= Q m,
lip + 1/q 1. Also Vh,o [IphX is uniformly bounded.

Proof Because of the preceding arguments, we need only show that Vh(O
Vh(O is uniformly bounded in ?m. Because of (3.1) we can write Vh(tj) via

j-1

Vh(tj) h [I + hA(tj_l)] [I + hA(ti+)]Uh(ti)
i=0

(3.5)
+ I + hA(t_ 1)]"" [I + hA(to)]vh(O).

Consider the term in this expression involving the sum; this, call it %, solves
(3.1) with %(0) 0 and is therefore within O(h /q) of the solution Wh to (3.3) with

Wh(0) 0 by our preceding arguments. Note that, by applying the operators
Mr, at O,r and Nr, at to the first components of the vectors on both sides of (3.5),
we immediately see that vh(O) solves a certain system of linear equations. Applying
one of these operators to the first component of the left-hand side yields merely
that operator applied to x, and these values are uniformly bounded at the Ol,
and . Applying an operator D for 0 < =< m 1 to Wh, 0 merely gives Wh,l,
which is uniformly close to Wh,l- Wth)O, which is uniformly bounded’, it then
follows that application of one of the operators Ml, or Nr, to Wh, 0 gives uniformly
bounded values.

Thus we have found that vh(0) solves a linear system with right-hand side
uniformly bounded in m. A typical row in the matrix B of this system consists
of, say, Ml, applied at 01, to the components of the first row of the matrix function
whose value at t is

I + hA(tj_ 1)-1"’" I + hA(to)-I.

Arguing as we have done above, it is easy to show that such an expression converges
uniformly to the row (the collection of which forms a matrix B) consisting of the
application of Mz at 0z,r to the components of the first row of the matrix function
whose value at is

exp lfl A(’c) dr]
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A matrix B of such rows, however, must be of full rank, since by assumption there
are no nonzero functions x Wm’p such that xll 0. If we only apply those
operators at those points which in the limit give an m x m nonsingular matrix,
as we can always do since rank (B) m, then for small h, the matrices multiplying
Vh(O) are uniformly nonsingular, and therefore the vh(0)= Vh(O) are uniformly
bounded in ". Since Vh(O) is uniformly bounded, it follows that Vh,oll is also.

We can now prove convergence for the more complex discretization.
THEOREM 3.1. Let the general assumptions of 1 hold and let the fixed points

Ol,i defining the norm in (2.1) (or the Oi in (2.2)) be mesh points in our discretization
for all h. Let the problem in (1.1) not admit solutions of arbitrarily large wm’p-norm,
for example, some Mix x. Letx o. + solve the problem in (1.3), that is, minimize
fh(xh) over C2(h), where >= Gh1/q and G is defined in Lemma 3.1; one may thus
take hI/q= O(eh) for small h. Suppose the functions ai defining L lie in C[0, 1].
Let phx zh solve

Lhx(ti) jbr = < ti+ 1,0 <- Q m,
ZZh-- 0 fort>= 1-(m- 1)h.

Then f(x) converges to f(x*) and all Wm’p weak limit points, at least one of which
exists, of {phx}, minimize f over C; if x* minimizing f over C is unique, then phx
converges weakly to x*. If(some subsequence of) phx converges weakly to a point x,
then x and its first m 1 difference approximations Dtx evaluated at the points

ti ih, 0 <= <= Q l, converge uniformly, that is, in C[0, 1], to x and its first m
derivatives at the points ti.

Proof By Lemma 3.1 and the hypothesis on eh, rhx*e C2(h), so C2(h) is not
empty. Since C2(h) is not empty, x exists. By Lemmas 3.3 and 2.2 and the facts that

Vh,o X C2(h) and IphX is uniformly bounded, there exist functions
tending to zero with h and such that PhX C {x’x_ Wm’p, -rli(h --’h
Kh/q + oi(t) <= Mix(t) <= fli(t) + rli(h) + + Kh 1/q for <= <= k, --e.h- Kh 1/q

+7i <Nix((i)<= 6i+eh+Kh1/q for =< i=< n}. By Lemma 2.4, (h=mincf
minch f tends to zero. We write

f(x*) mini= mini + h =< f(phx) + ( f(x) + (h,
C C,

the last equality following from the construction of Ph. Thus, we have

f(x*) <=f(phx) + fh(x) + < fh(rhx*) +
<- f(x*) + + [fh(rhx*)- f(x*)J.

From Lemma 3.2 and this inequality, we conclude that f(x*)= limh_of(phx)
limh_.ofh(x’). Since, from Lemma 3.3, phX is bounded, it has weak limit points;

for any such weak limit point x’ we have x’ e C by Lemma 2.3 and thus

f(x*) <__ f(x’) <= lim inf f(phx) f(x*),

which says that x’ minimizes f over C. If px converges to some x weakly in
Wre’p, then px and its first m- 1 derivatives converge uniformly to x and its
first m derivatives. By Lemma 3.3, the numbers Vh,l(tfl DZvh,o(t.i) Dtx(ti)
are uniformly close to Vh,(tj) V%(tj) phx((tfl for 0 < < m 1.

We have not been able to estimate the rate of convergence as a function of h.
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4. An elementary example. Consider the example in 10] with rn l,
Lx =- x1), k 1, Mix =- x, 01(t t- 2, ill(t)-- t, r/ 1, NiX(l)= x(1),
6 7 ce [0, 1], that is,

minimize 3 [x)(t)[ 2 dt over
o

C {x;xc W 1’2 2 < x(t) < t, x(1) c}

The unique solution to this problem is

x*(t)
(2x//__ 1)t + (1 + c- 2x//’)

as pictured in Fig. 4.1.

/
/

/
/

FG. 4.1

Let x//, the point at which x* leaves the lower curve.
If we use the simple discretization and merely discretize the constraints

at t ih, 0 <= <= Q 1/h, then if max {t;t < }, then x is just the piece-
wise linear interpolant of 2 at t for <_ and is the linear interpolant between
_

/2 and c for < < 1. For small enough h, the solution for the complete
discretization is also unique;such discrete variational splines are studied in 11].

If we define, for c > 1/2, the numbers

z min {ti ti >= W/2---h}, max {t;t, <=
* for the complete discretization with eh- h 1/2-athe unique solution x,
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6 (0, 1/2), is

if 0 =< ti =< h,

ifh ti fib,

if fib<--__ ti <= 1.
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INVARIANCE PROPERTIES IN THE THEORY OF ORDINARY
DIFFERENTIAL EQUATIONS WITH APPLICATIONS TO

STABILITY PROBLEMS*
NELSON ONUCHIC’

1. Introduction. The main purpose of this paper is to find conditions under
which every solution of a second order scalar differential equation tends to zero
with its derivative as . The basic tool to carry out this objective is provided
by Theorems 1, 2 and 3 given below.

Theorem is a modified but closely related version of Yoshizawa’s theorem
5 in 6. Theorem 2 is essentially a special case of Miller’s theorem in 3. Some
remarks relating Theorems and 2 and those ones by Yoshizawa and Miller will
be done following each theorem. Theorem 3 is a particular case of La Salle’s
Theorem in 1.

Theorem 4 is a result concerning the above posed problem obtained as an
application of Theorems 1 and 2. This result is more general than the one by
Yoshizawa in [6, Example 23. See also 2] and 7, Example 14.1, p. 633. Theorem
5, previously obtained by us I43, is here stated because it gives additional informa-
tion on the problem under consideration which is intimately related to Theorem 4.
Theorem 6 also gives a contribution to our problem and it is strongly dependent
on Theorem 3.

2. Invariance properties. Consider a system of differential equations defined
on an open set Q R
(1) 2 H(x),
where H(x) is continuous on Q.

If M is a subset of Q, then M is called quasi-invariant with respect to (1) if
and only if for each x0 M there is a solution x(t) of (1) with x(0) Xo, such that
x(t) exists and remains in M for all real t. Let x(t) be a continuous function defined
in the future, that is, for all >= some real to. A point p of R" is said to be a limit
point of x(t) if there exists a sequence tin}, t,, as m , such that X(tm) ---> p
as m v. The set of all limit points of x(t) is denoted by fl and is called the
o-limit set of x(t). If x(t) is bounded in the future, that is, x(t) is bounded on some
interval [a, ), a > -, it is easily seen that fl is a nonempty, connected and
compact set with x(t) as , that is, dist (x(t),

Consider the differential system defined on [0, ) x Q, Q being an open
set of

(2) Yc f(t, x),
wherefis assumed to be continuous for __> 0, x e Q.

Let V(t, x) be a real-valued C function defined for => 0, x Q. Define

 vlt,

Received by the editors June 17, 1970.

-Escola de Engenharia de Sio Carlos, Silo Carlos, SP Brazil. This research was supported in
part by the Conselho Nacional de Pesquisas, Brazil.

97



98 NELSON ONUCHIC

Consider also the differential system defined on [0, o) x Q"

2 F(t, x) + G(t, x),

where F(t, x) and G(t, x) are continuous for _>_ 0, x Q.
TIEOrtEM 1. Suppose that thefollowing hypotheses hold with respect to system

(3).
(i) F(t, x) is bounded for all >= 0 when x belongs to an arbitrary compact

subset of Q.
(ii) For every compact set B c Q and every continuous function z(t)e B,

defined on [0, m), it follows that

+t

(4) G(v, z(v)) dv

uniformly on [0, 1].
(iii) There are a real-valued nonnegative C function V(t, x) and a real-valued

nonnegative continuous function W(x) such that

3)(t,x) W(x), >= 0 and x 6 Q.

Let x(t) be a solution of(3), defined in the future, with x(t) Kfor >_ some to,
where K is a compact subset of Q.

Then f c E {x QI W(x) 0}, where ) is the co-limit set of x(t).
Note. The main difference between the above theorem and Theorem 5 in

[6] is that Yoshizawa assumes the condition that [G(v, z(v))ll dv < v, which
is stronger than the one given by (4).

A sufficient condition for (4) is given as follows"
(a) For every compact set B Q there corresponds a scalar function fiB(t)

defined for _> 0 such that

t+

fiB(S) ds 0 as t--, ,
and G(t, x)[I _-< fiB(t) for all >__ 0, x B.

An example considered in [5] shows that condition (4) is not implied by (a).
The proof of Theorem 1 can be done by following essentially the same ideas

contained in the proof of Theorem 5 in [6.
Consider the differential system defined on [0, ) x Q"

(5) 2 H(x) + S(t, x) + G(t, x),

where H(x), S(t, x) and G(t, x) are assumed to be continuous on [0, o) Q.
Let A be a fixed subset of Q. Assume that S(t, x) satisfies the following property

with respect to the set A"
(b) For each > 0 and each compact subset K or Q there corresponds

6 6(e,K) > 0 and TO To(,K) > 0 such that > To, x K and dist (x,A) < 6
imply S(t,x) < .
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THEOREM 2. Let hypotheses (4) and (b) hold. Let x(t) be a solution of (5) such
that x(t) K, T <= < oo, where T >= 0 and K is a compact subset ofQ and x(t) A
as t-. oo. Then the co-limit set f) of x(t) is a nonempty, connected, compact and
quasi-invariant set with respect to (1).

Note. As observed, this theorem is essentially a particular case of Miller’s
Theorem 1 in [3]. Miller deals with delay equations where the unperturbed system
is uniformly almost periodic. However, condition (4) considered in Theorem 2
is weaker than the one in Miller’s theorem. But Miller’s proof also works well
with condition (4).

Consider the system

(6) 2 F(t, x),

where F is continuous for >= 0, x e R" and satisfies any one of the conditions
guaranteeing uniqueness of solutions.

THEOREM 3. Let V(t, x) and W(x) be real-valued nonnegative C fimctions on
[0, o) x R such that 8)(t, x) <= -W(x)for all > 0 and x G, where G is a

compact set of R". Let x(t) be a solution of(6) such that x(t) Gfor all > to and let
be bounded from above or below along the solution x(t). Then c E {x G]

W(x) 0}, where is the co-limit set of x(t).

3. Applications. The objective of this section is to study the problem posed
in 1 by using the results discussed in 2. Specifically, our purpose is to find con-
ditions under which, for all solutions x(t) of the second order scalar differential
equation

(7) 5 + h(t, x, c)c + f(x) + g(t, x, c) + p(t, x, c) O,

we can guarantee that (x(t), (t)) (0, 0) as o. To this end, consider the
equivalent equation

(7’)
/ y,

19 + h(t, x, y)y + f(x) + g(t, x, y) + p(t, x, y) 0

and the following set of assumptions with respect to the functions in (7’).
(H1) h(t,x, y) is continuous in [0, o) R2 and h(t, x, y) is bounded when

X2 _[_ y2 is bounded, and, moreover, h(t, x, y) > k(x, y) >_ O, where k(x, y) is a
continuous function in R2.

(H2) The sets R + {(x, 0)Ix > 0} and R- {(x, 0)[ x < 0} are connected
components with respect to the topological space F {(0, 0)}, where F {(x, y)
RZlyk(x, y) 0}.

(H3) f(x) is continuous, xf(x) > 0 for all x - 0, and

of

(s) ds - as Ix[ .
(H’) f(x) is continuous in R and there is a positive p such that

0for 0 < Ixl =< p.
f(s) ds > 0
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(H’) f(x)is continuous in R and f(s) ds c as Ixl .
We see that (H3) implies (H;) and (H3) implies (H;).

(H4) p(t,x, y)is continuous and Ip(t,x, y)[ =< fl(t) for all t>__ 0, x, y in R,

where fl(t) is continuous with fi(t) dt < .
(H) g(t, x, y) is continuous and yg(t, x, y) >= 0 for all >= 0, x, y in R.
(H6) For every compact subset B of R and for all continuous functions

x(t) and y(t), defined on 0, o) with values in B, it follows that

g(v, x(v), y(v)) dv - 0 as

uniformly on [0, 1.
A sufficient condition for (H6) is given as follows"
(6) For every compact subset B of R there corresponds a real function

adO, defined for _>_ 0, such that

+ 10"B(S) ds 0 as t-,

and Ig(t, x, Y)I an(t) for all >_ 0, x, y in B.
LEMMA 1. Let hypotheses (H’), (H4) and (Hs) hold. Let h(t,x, y) be non-

negative and continuous for >= O, x, y in R. Then for each > 0 there are positive
T(e) and b(e) such that >= to >- T(e) and (Xo, Yo) R2, with IXo[ + lYol < (, imply
]x(t)l + ]y(t)] < e for every solution (x(t), y(t)) of (7’) satisfying X(to)= Xo and
y(to) Yo.

Proof Consider the function

V(t, X, y) y2 + 2 f(s) ds + fi(s) ds

defined for > 0 and ]x] + y] < p.
Given 0 < e < p, define

1/2

Then condition (H;) implies

inf
t>o

Ixl/lyl=

V(t, x, y) >= 2m > O.

Let T(e) > 0 and 0 < 6(e) < e be chosen such that

fl(t) > m y2
() 0

for Ix[ + lyl < c5(). Then

max V(t, x, y) < 2m.
"l’(e)

Ixl + I1 =(.)

f(s) ds ] 1/2

<m
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An easy computation shows that

7,)(t, X, y) <- Y2h(t’ x, y) yg(t, x, y)
+ Ip(t, x, Y)I [3(t) < 0

y2 + 2 f(s) ds

for allt>=0,0 <lxl +]yl <P.
Suppose that there are to >= T(e) and (Xo, yo)eR2 with IXo] + ]Y0l < 6(e),

such that for some solution (x(t), y(t)) of (7’) satisfying (X(to), y(to))= (Xo, Yo)
and for some > to we have Ix()[ + [Y()I >_- . Then there are real numbers t and
t2, to < t < t2, such that [X(tl)l + [y(t)[ 6(e), [x(t)[ + [y(ta)[ and 6(e)
=< Ix(t)] + ly(t)l =< e for t =< t2. But this implies V(t, x(t), y(tl)) < V(t,
x(t2), y(t))and, since (x(t), y(t)) 4= (0, 0) on Its, t2’], we have that V(t, x(t), y(t))
is differentiable in Its, t2]. Hence there is a real number s, t < s < t2, satisfying
(/(s, x(s), y(s)) > 0, leading to a contradiction. The proof is complete.

COROLLARY 1. Suppose that some uniqueness condition with respect to the
initial value problem holds for (7’). Suppose that all hypotheses of Lemma 1 are

satisfied with p(t, O, O)= 0 for > O. Then the null solution of (7’) is uniformly
stable.

Proof Corollary follows from Lemma 1, taking into account that the
origin is an equilibrium point of (7’) and considering the usual continuous de-
pendence argument.

We observe that g(t, 0, 0) 0 is a consequence of hypothesis (Hs).
LEMMA 2. Let hypotheses (H;), (H4) and (Hs) hold. Let h(t,x, y) be non-

negative and continuous for >= O, x, y in R. Then every solution of (7’) is bounded
in the future.

I f0 11/2 ftProof Let V(t, x, y) y2 + 2 f(s) ds + M + fi(s) ds, where M is

chosen so that 2 f(s) ds + M > 0 for all x in R. It is easy to see that 7,)(t, x, y)

__<0 for all t>__ 0and x, yinR. Then as W(x,y)= y2 +2 f(s) ds+M

<__ V(t,x, y) and W(x,y) o as x2+ y2 m it follows that every solution
of (7’) is bounded in the future.

The proof is complete.
TI-IFORFM 4. Let hypotheses (H1) through (H6) hold. Then for every solution

x(t) of(7) we have that x(t) ---} 0 and 2(t) 0 as oe.

Proof Let (x(t), y(t)) be any solution of (7’). Lemma 2 implies that this
solution is bounded in the future. Then we know that the co-limit set f of (x(t),
y(t)) is a nonempty, connected and compact set with (x(t), y(t)) ---, f at --, oe. We
must have f f3 R - , where Rx is the x-axis, because, if this were not true, it
would follow that Ix(t)[ as , a contradiction.

Defining V(t, x, y) y2 + 2 "(s) ds + 1 +

y(x, y)
W(X, y) ] 1/2,[Y+2fof(s)ds+l

(s) ds and



102 NELSON ONUCHIC

a computation shows, by taking into account hypothesis (H1), that

,(t, x, )) <= W(x, ) <= o

for >= 0, (x, y) Q R2. Then it follows from Theorem that

We claim that (0, 0)e f. Indeed, otherwise, since f f’l R , it would
follow that c F {(0,0)} and fl 0 (R + U R-) . But, since is a con-
nected set and (H2) holds, it would follow that R + U R-. Then, by applying
Theorem 2 with A Rx, H (y, -f(x)), S (0, -h(t, x, y)y), G (0, -g(t, x, y)

p(t, x, y)) and Q R2, it would follow that fl is quasi-invariant with respect
to the system

+ f(x) O.

But condition (H) implies that the unique quasi-invariant set for (8) contained
in R is (0, 0), leading to a contradiction. Thus (0, 0)e , and hence there exists a

sequence {t}, as m , such that (x(t), y(t)) (0, 0) as m .
Then it follows from Lemma 1 that (x(t), y(t)) (0, 0) as , completing the
proof.

COROLLARY 2. Suppose that some uniqueness condition with respect to the
initial value problem holds for (7’). Let hypotheses (H) through (H) hold and
p(t, O, O) O. Then the origin is globally asymptotically stablefor (7’).

Proo This corollary follows from Corollary and Theorem 4.
The next theorem, which is a result previously obtained by us [4, TheoremS.,

gives sucient conditions to guarantee that for every solution x(t) of the scalar
equation

(9) + h(x, 2) + f(x) + g(t, x, 2) + p(t, x, 2) O,

we have x(t) 0 and 5c(t) 0 as . Most of the ideas used in the proof of
Theorem 5 are closely related to the ones in the proof of Theorem 4, but Theorem 5
depends also on the well-known Poincar6-Bendixon theorem for two-dimensional
autonomous systems.

THEOREM 5. Suppose that thefollowing hypotheses hold with respect to (9)"
(i) h(x, y) is continuous and yh(x, y) >= Ofor all real numbers x and y.

(ii) For every Jordan curve 7 in R2 containing the origin in its interior, there
exists at least one point (x, y) 7 such that y - 0 and h(x, y) :/: O.

(iii) g(t, x, y) is continuous with y[h(x, y) + g(t, x, y)] >__ 0 for all >= 0 and all
real numbers x and y.

(iv) Hypotheses (H3), (H4) and (H6) hold.
Thenfor every solution x(t) of(9) we have that x(t) 0 and 5c(t) 0 as -, .
COROLLARY 3. Suppose that some uniqueness condition with respect to the

initial value problem holdsfor

(9’)
.9 + h(x, y) + f(x) + g(t, x, y) + p(t, x, y) O.
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Suppose that all hypotheses of Theorem 5 are satisfied, with p(t, 0, 0)= 0 for all
> O. Then the origin is globally asymptotically stable for (9’).

THEOREM 6. Let h(t, x, y) be continuous for >= O, x, y in R and moreover,
h(t, x, y) >= k(x, y) >_ O, where k(x, y) is a C function with yky(x, y) >= 0 for all x, y
in R. (Here ky denotes the partial derivative with respect to y.) Let hypotheses (H2)
(H’3), (H’) and (Hs) hold. Let hypothesis (H4) be satisfied with fl(t) bounded on (0, ).
Suppose that any one ofthe conditions guaranteeing uniqueness ofsolutions is satisfied
with respect to (7’).

Then every solution x(t) of (7) is bounded in the future and 5c(t)
Furthermore ifx(t) is a solution of(7) such that lim inft_ Ix(t)l O, then also x(t) - 0
ast ov.

Proof. Let x(t) be any solution of (7). Then it follows from Lemma 2 that
(x(t), y(t)) is bounded in the future. Hence, there are to > 0 and a compact set G
of R2 such that (x(t), y(t)) G for all > to.

Define V(t, x, y) as in Lemma 2, that is,

V(t, x, y)-- y2 + 2 f(s) ds + M

It is easily seen that

By taking

it follows that

+ (s) ds.

y2k(x, y)
,,(t, x y) <

y2 + 2 f(s) ds + M

7 inf
(x,y)G 2y + 2 f(s)ds+ m

yk(x, y) > k(x, y)1/2 7Y
2

Iy2+ 2fo f(s) ds+ M1
for all (x, y) G. Therefore, defining W(x, y) /yZ/c(x, y), we have that 7,)(t, x, y)
<= W(x, y) for all > 0, (x, y)e G.

To apply Theorem 3, let us show that is bounded from above along each
solution which remains in G for all > to ->_ 0.

Let z(t) be a solution of (7) such that (z(t), (t)) G for all > to. Then
dl/(z(t), 2(t)) 7-{[(t)]2k(z(t), (t))}

27.(t)5(t)k(z(t), (t)) + 7E(t)]3k(z(t), .(t)) + 7E(t)]2kr(z(t), (t))5(t)

7E(t)gk:,(z(t), (t)) + 27(t)k(z(t), (t))E-h(t, z(t), (t))(t) f(z(t))

g(t, z(t), (t)) p(t, z(t), (t))
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+ yE2(t)] 2k(z(t), 2(t))E-h(t, z(t)), 2(t))2(t)

f(z(t)) g(t, z(t), (t)) p(t, z(t), (t))]

<= 7[(t)]3k(z(t), 2(t)) 27(t)k(z(t), (t))f(z(t))

+ 2yl(t)lk(z(t), (t))fio 7[(t)2ky(z(t), (t))f(z(t))

+ 7[(t)]2[ky(z(t), (t))lfio,

where rio supo__<t fi(t).
Then as G is compact and (z(t), (t)) G, there is a positive number C C(G)

such that l(z(t), (t)) <= C for > to.
Therefore Theorem 3 implies f F {(x, y) RZlyk(x, y) 0}, where f is

the o-limit set of (x(t), y(t)). We must have f2 VI R 4: , because otherwise it
would follow that Ix(t)] as , a contradiction.

Consider, then, the two possibilities:
(a) (0, 0)e fL and
(b) F {(0, 0)} and hence f VI (R + I,.J R-) - .Case (a) implies, taking into account Lemma 1, that (x(t), .(t)) (0, 0) as

Case (b) implies, by using (H2), that f c R + Il R- and consequently (t) 0
ast.

In case lira inft_ Ix(t)l O, we have that (0, O) and, consequently, (x(t),
:(t)) - (0, O) as . The proof is complete.

Acknowledgment. The author is indebted to Professor Taro Yoshizawa for
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THE GENERATION OF LYAPUNOV FUNCTIONS FOR INPUT-OUTPUT

STABLE SYSTEMS*

JAN C. WILLEMS -Abstract. This paper discusses the relationship between properties of input-output descriptions
and state space models for dynamical systems. It is shown that a state space realization of an input-
output stable dynamical system is globally asymptotically stable in the sense of Lyapunov if it is
uniformly observable and if every state is reachable. This result is proved in the context of abstract
dynamical systems and leads to the equivalence of input-output stability and asymptotic stability for
uniformly controllable and uniformly observable linear finite-dimensional systems. The generation of
Lyapunov functions is subsequently considered, and variational techniques for the construction of
Lyapunov functions are presented. Passivity and related energy concepts are particularly exploited
in this context. These results yield the Lyapunov functions used in the proofs of the circle criterion and
the Popov criterion as particular cases. The generality of the approach, however, makes these ideas
applicable to much more general situations. Examples illustrating the results and the unifying point of
view are included.

1. Introduction. "Dynamical systems" as they are studied and defined in
modern system theory distinguish themselves from arbitrary operators in mathe-
matics by one basic property:they are causal, i.e., nonanticipatory future values
of the input do not influence past values of the output. This basic realizability
property of physical systems may be incorporated in the mathematical model in
two ways: either by appropriately restricting the operator defining the input-
output relationship, or by working with a state space description which will then
automatically ensure this causality. This last approach has proved particularly
useful in optimal control theory due to the fact that any deterministic optimal
controller can always be implemented with a memoryless function of the state
in the feedback. It is therefore very advantageous to work with a state space model
from the very start.

This duality in the possible description of systems has reflected itself in other
areas of system theory and is particularly prevalent in stability theory. The input-
output approach leads to the concept of input-output stability and has been
developed mainly in the last decade, especially following the work of Sandberg
[4] and Zames [5]. The state space description leads to concepts such as global
asymptotic stability in the sense of Lyapunov and poses the stability problem in a
setting which does not involve inputs, thus making use of the theory of classical
dynamical systems. Which of the two approaches is to be preferred depends on
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There appears to be no agreement as to the use of the term "dynamical system." For the purpose
of this paper any causal input-output relation will be termed a dynamical system. It will be shown that
this is equivalent to the existence of a state. Zadeh [1] and Balakrishnan [2] appear to reserve the term
for systems in which the state evolution is governed by a differential equation. The dynamical systems
studied in classical mechanics [3] correspond to the state evolution equations in the absence of inputs.
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the particular application. (For a discussion of these issues, see the survey paper
by the author 6.) It has become clear, however, that the input-output approach
leads to more powerful and general results. There are, in fact, a number of interest-
ing stability criteria available which have been obtained in an input-output stability
setting, but for which no proofs using Lyapunov methods exist.

Notwithstanding this success of input-output stability, there are certain
aspects of Lyapunov stability theory which make the study and development of
this "internal" approach to stability theory both useful and important. Not the
least of these advantages is the possibility of obtaining estimates on the domain of
attraction of an equilibrium in the case of nonglobal stability, a concept which has
not even been satisfactorily formulated, let alone developed in the context of input-
output stability. The main stumbling block in applying Lyapunov methods to the
stability analysis particularly of nonlinear systems remains the absence of general
methods for the construction of Lyapunov functions. This paper in part addresses
itself to this problem.

The paper is concerned with the implications of input-output stability to
global stability of dynamical systems, and with the construction of Lyapunov
functions for input-output stable systems. The converse question, i.e., the implica-
tions of global stability to input-output stability, will not be considered, in view
of space limitations and in view of the fact that such implications are much easier
to obtain.

The first part of the paper introduces the concept of a dynamical system,
which is defined as a causal operator between signal spaces, and the concept of a
realization in which state space concepts become relevant. Some important
properties of dynamical systems and realizations are then introduced: they are
those of stability, controllability, observability, reachability, connectedness, and
irreducibility. These notions play an important role in the sequel.

The second part of the paper discusses the generation of Lyapunov functions
for input-output stable systems. Particular emphasis is placed on passive systems
and on concepts such as available energy, required energy, and cyclic energy,
the latter of which is very reminiscent of certain notions in thermodynamics.

The third part of the paper is concerned with feedback systems. Feedback
systems are very important in control, and their stability is, of course, the main
qualification on the performance of a feedback structure as a controller. More-
over, for design purposes, it is extremely desirable that properties of feedback
systems be concluded from considerations of the open-loop elements. This aspect
makes the results of the previous sections not easily applicable to the analysis of
feedback systems, and a somewhat different approach is thus required. The ensuing
Lyapunov functions are defined in terms of variational problems.

The paper ends with a list of examples. They illustrate the viewpoint adopted
here and lead to the Lyapunov functions used to prove the circle criterion and the
Popov criterion.

The work reported here has been directly inspired by a very interesting paper
by Baker and Bergen 7] which appeared recently. They indeed posed the problem
of constructing Lyapunov functions as a variational problem, an approach which
has been fully exploited in the context presented here. Some of these ideas already
appeared in the work of Popov 8], Kalman 9], and Anderson 10], [11]. The
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author obtained a great deal of insight from the work of Brockett on passivity
and stability [12]. It is interesting to note that the ingenious independence of path
argument as exploited by the latter author in his construction of Lyapunov
functions follows here as a rather logical consequence of the variational problems
which lead to the desired Lyapunov functions.

The paper also indicates what may be the basic reason why stability conditions
appear to be easier to obtain using input-output methods than through the con-
struction of suitable Lyapunov functions: both input-output stability and Lya-
punov stability can be posed as variational minimization problems, and whereas
Lyapunov methods need the explicit solution of these variational problems
(thus the boundedness and the value of an infimum), input-output stability only
requires the boundedness of this infimum. This observation is due to Zames (private
communication).

2. Dynamical systems. A dynamical system is usually defined on a subset of
the real line as a mapping between function spaces satisfying an appropriate set of
axioms. This paper will be concerned with continuous time systems only. More-
over, it will be assumed that the inputs and the outputs take their values in appro-
priate inner product spaces and that their norm is a locally square integrable
function of time. This restriction precludes a certain amount of generality and is
made mainly for expository purposes since the results of the paper generalize to
much more general situations. In particular, the assumption that the input and
output spaces are inner product spaces is of no consequence to many of the results
in the paper. One of the reasons for treating systems in this setting is the possibility
of introducing and exploiting concepts related to energy and passivity of systems.
Indeed, these have far-reaching implications in stability theory.

There are two main avenues for obtaining mathematical models of systems:
the first one starts with an internal model in which physical laws and intercon-
nections are used to describe the dynamics and which then yield the relation
between the influence variables (the inputs) and the variables of interest (the
outputs). The second approach starts with an input-output relation as the basic
mathematical model to be used. Such a model is usually the logical consequence
from identification experiments at the input-output terminals.

Besides inputs and outputs there is an additional set of variables which is of
fundamental importance in the description of dynamical systems. These are the
so-called states which summarize the effect of past inputs. The internal modeling
approach, in fact, usually displays a state explicitly. More often than not the state
has no immediate physical significance and there is never any uniqueness as to its
choice. Although the basic mechanism of interest in system theory is the generation
of outputs from inputs, it is very often advantageous, however, to view this process
as taking place through this intermediate variable, the state. This point of view
has been particularly useful in such fields as dynamic optimization theory and the
study of Markov processes.

These concepts are formally introduced in the present section, and it is shown
that input-output descriptions and state space descriptions of dynamical systems
are essentially equivalent.
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The first notion is that of signal spaces which will be the input and output
function spaces.

Let V be an inner product space and let R denote the real line. Let f be a V-
valued function defined on R. Then the causal truncation offat T is defined to be the
result of the projection operator Pr defined by

f(t) fort__< T,
(Pf)(t)

0 otherwise.

The anticausal truncation off at T is defined as Qrf f- Prf Consider now
the vector space of V-valued functions on R with .[+ [f(t)]l 2. dt < . This vector
space is itself an inner product space with

(f, f2) (fl(t), f2(t))v dt

as the inner product. It will be denoted by L2(V) and is complete if V is. As usual,
no attention is paid to the fact that a function in L2(V) actually represents the
equivalence class of functions which are equal to it almost everywhere with respect
to Lebesgue measure.

As Wiener remarked when extending Fourier transforms, L(V) is not a very
interesting class of functions since it consists of functions which were small in the
remote past and are destined to become small in the remote future. This last aspect,
in particular, makes this function space of very limited use in stability studies
which precisely refer to this remote future, and any a priori limitations on the
future would therefore be very inappropriate.

A useful extension of L2(V) is its so-called causal extension denoted by L2e(V),
which consists of all V-valued functions on R whose causal truncations belong to
L(V), i.e.,

L2(V) {f :R V[PTf L2(V), all T R}.
The anticausal extension of L2e(V) is similarly defined as

{f :R - V[QTf L2(V), all T R}.
Since all time functions considered in this paper will be assumed to start at some
finite time, very little use of this anticausal extension will be made.

DEFINITION l. Let Lze(V) denote the causal extension of Lz(V). Then the sub-
space of L2e(V) defined by

S(V) - {f L2e(V)lQrf 0 for some T R}
will be called a signal space. Elements of S(V) will be called signals, and elements
of L2(V) f-] S(V) will be called small signals.

Thus, signal spaces consist of functions which vanish in the remote past and
which have, in a sense, no finite escape, but are otherwise quite arbitrary. As is
customary in the related literature, it will be assumed that inputs are applied to
systems starting at some finite time in the past. This time need not be a priori
fixed and will, in general, be different for each experiment. Note that signal spaces
are closed under concatenation and that any "reasonable" physical signal belongs
to a signal space. For the purposes of this paper, signal spaces represent a very
convenient abstraction of reality. The fact that signals are required to have their
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support on a half-line is very important and results in mild conditions for the well-
posedness of mathematical models. In other words, given a mathematical model
for a system (e.g., an integral equation or a differential equation), it will, in general,
be relatively easy to establish that inputs in a given class generate well-defined
outputs, provided, however, that these inputs have their support on a half-line.
For inputs defined on the whole real line (-oe, + oe), establishing this existence
and uniqueness of outputs usually leads to stringent conditions and requires
typically input-output continuity of the system. This case is moreover of dubious
physical significance. For details see [13], [14, 4.63, [15].

Let U S(Vu) and Y S(V) be signal spaces. U will be called the input space,
and Y will be called the output space. Elements of U and Y will be called respec-
tively input signals and output signals. A mapping F from U into Y is said to be
causal (or nonanticipatory) if for all Te R and all ul, u2 U with Prul PTU2,
the equality PTFU PTFU2 holds. 2 This condition is equivalent to requiring
that PrFPT PTF on U.

Note that the signal spaces as introduced above could have been called some-
what more consistently causal signal spaces. The analogous concepts of anti-
causal signal spaces and anticausal operators thus become straightforward.
No use will be made of these concepts, however. An additional notion which is
of some importance is that of a memoryless operator. This would most logically
be defined as an operator which is both causal and anticausal but is easiest (although
equivalently) defined as an operator F, defined by an element r e Y and an instan-
taneous map,f, from V, x R into Vy withf(0, t) 0 for all T and Fu r + Nu,
where (Nu)(t) f(u(t), t) is such that any function u e Lz(Vu) with compact sup-
port yields Nu Lz(l/y) (consequently also with compact support).

DEFINITION 2. A dynamical system is defined as a causal mapping from the
input signal space U into the output signal space Y. If this mapping is memory-
less, then the dynamical system will similarly be called memoryless.

The above setting for the study of input-output relations is similar to the one
employed by Balakrishnan in [16]. The definition eliminates the possibility of
studying differentiators, for instance, but for the purposes of this paper (stability)
such a restriction is not very disturbing. In the study of networks, however, one
clearly wants a more general definition which admits singularity functions in the
impulse response. Zemanian [17] and Balakrishnan [18] have studied systems in
which the inputs are assumed to be infinitely smooth functions and the outputs are
distributions. Extended spaces appeared first in the context of stability theory as a
result of the work of Sandberg [4] and Zames [5].

For many purposes, it is convenient to impose some smoothness conditions
on the operators in question. Note that U and Y have, as signal spaces, no topology
since they are, although derived from normed spaces, not normed themselves.
However, causality enables one nevertheless to make a suitable definition of
local continuity. Although simple continuity is the most logical smoothness
condition to impose, it is very often advantageous to require somewhat stronger
conditions, more specifically Lipschitz continuity. Recall that a (in general non-
linear) map F between normed spaces is said to be Lipschitz continuous if there

Note the abuse of notation in the fact that the symbol PT is used to denote an operator on U and
an operator on Y. This ambiguity, however, causes no difficulty.
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exists a real constant K < oo such that for all x l, x2 in the domain of F,
]]Fx Fx2] KI]x x21 Let F be a causal map from the input space U
into the output space Y. Then F is said to be locally Lipschitz continuous if for all
to, t R, P,IFQ,o is Lipschitz continuous as a map from L2(Vu) into Le(Vy).

DEFIYITIOY 3. A dynamical system is said to be smooth if the defining map
G is locally Lipschitz continuous. It is said to be uniformly smooth if for any given
T > 0, P,+ rGQ, is Lipschitz continuous uniformly in t.

Convention. For convenience it will be assumed that all dynamical systems
under consideration are unbiased, i.e., that they map the zero input into the
zero output;hence GO 0. This absence of a bias term can always be obtained
by a trivial redefinition of G and assumes, for instance, that for memoryless
operators the element r e Y appearing in the definition is the zero element.

Now that the definition of input-output models of dynamical systems has
been introduced, attention is focused on the formalism for the state space des-
cription of dynamical systems. Let R- denote the causal sector of R2 defined as

R- A {(re tl)lt2 tl R, 2
>_ 1}.

DEFIymoy 4. A (mathematical model of a) dynamical system is said to be
in state spaceform if it is determined by an abstract set X (the state space) and two
maps, b, the state transition map, and y, the output reading map, satisfying the
following axioms:

(i) q5 maps R x X x U into X’
(ii) (Causality)" qS(t, to, xo, u) 4(t, to, xo, P,(2,ou) for all (t, to) e R,

xoeX, and ue U;
(iii) (Consistency): ok(to, to, Xo, u) xo for all to e R, Xo e X, and u e U
(iv) (Composition law or semi-group property): 4)(te, to, Xo, U)= b(te, tl,

b(t, to, Xo, u), u) for all (t, to), (t:, tl) R-, xo X, and u e U;
(v) y maps R x X x V into V and the value of the output at time is

given by y(t, x(t), u(t))
(vi) X is a subset of an inner product space Vx
(vii) (Unbiasedness)" 43(t, to, 0, 0) 0 for all (t, to) R, and y(t, O, O) 0

for all e R;
(viii) Let X denote the signal space induced by V, (i.e., X S(V)); it is then

assumed that the functions

x(t) Qto)(t, to, x u) { (t, to, x,

0

Qtoy(t, x(t), u(O) / y(t, x(l),

0

for >= to,

otherwise,

for => to,

otherwise,

belong to X and Y respectively for all to e R, Xo e X, and u e U.
Axioms (i)-(v) are the usual axioms involved in describing dynamical systems

from a state space point of view. Axiom (vi) induces a topology on the state space
and will be needed in the definitions of Lyapunov stability, for instance. 3 Axiom

The assumption that X is an inner product space is restrictive and inconvenient for many applica-
tions, more so than would appear at first sight. For a study of dynamical systems whose state space is a
group manifold see [26].
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(vii) is in keeping with the unbiasedness convention introduced above, and axiom
(viii) guarantees the absence of a finite escape and results in the fact that locally
square integrable inputs produce locally square integrable outputs.

A dynamical system in state space form thus views the generation of outputs
from inputs as occurring through the composition of two maps, Gx and Gy, with
G,: U X and Gy: X U Y. The map G is a dynamical system in its own
right (with X viewed as the output space) but satisfies a richer set of axioms
than merely those implied by the dynamical system axioms: in addition, it is
required that this map have the Markov property which results in a decoupling
of the past from the future in the sense that the present value of the state has suffi-
cient information in it so as to summarize the effect of past inputs. The state space
thus represents an adequate memory-bank. The map Gy is memoryless (with input
space X U) and the dependence of y(t) on past values of u is obtained through
the dependence on x(t). It is a simple matter to verify that the composite system
y G(Gu, u) is indeed a dynamical system in the input-output sense. Note
also that GxO satisfies the axioms for dynamical systems without inputs as studied
in classical mechanics and its extensions.

The next definitions refer to the smoothness of the state transition map and the
output reading map. These smoothness conditions are generally quite important
aspects of a particular dynamical system in state space form. For instance, it can
be shown that otherwise any finite-dimensional dynamical system can be realized
by a one-dimensional dynamical system if this latter is not required to have any
smoothness. It suffices therefore to consider a one-to-one map from R" into R
and appropriately modify the state space and the maps defining the dynamical
system.

DEFINITION 5. A dynamical system in state space form is said to be smooth
if for any (t, to) e R there exist K, K2, K3, K4 < DO such that

IP,,Q,o(C(t, to, X Ul) (/)(t, to, X2, U2)

KallXl x2 + K2 PtlQto(Ul u2)

for all x l, x2 X and u l, U2 U, and

/’,Q,o(y(t, x(t), u(t)) y(t, x(t), u(t)))

K3 P,1Qto(Xl x2) + K4 PtQto(Yl- u2)

for all x l, x2 e X and u l, u2 e U.

It is said to be uniformly smooth if for any T>__ 0 and to + T in the above
inequalities, the constants K, K2, K3, K4 may be taken independent of to.

These definitions are entirely analogous to those imposed for input-output
systems. It is a simple matter to verify that (uniformly) smooth dynamical systems
in state space form define (uniformly) smooth input-output dynamical systems.
It is also clear that uniform smoothness and smoothness are equivalent for time-
invariant systems.

The final discussion of this section involves the relationship between the above
definitions of dynamical systems. As might be expected they are indeed equivalent.
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DEFINITION 6. Consider the dynamical system G and a dynamical system
in state space form with defining maps b and y. Then the dynamical system in
state space form is said to be a realization of G if any u U with o R such that

PtoU 0, yields (Gu)(t) y(t, q(t, to, O, u), u(t)) for all R. The dynamical system
in state space form thus defines the same input-output relation as G.

THEOREM 1. Every (smooth, uniformly smooth) dynamical system has a (smooth,
uniformly smooth) realization in state space form.

Proof The proof proceeds by construction. The state space X V will be
taken to be the collection of all functions in L2(Vu) with compact support, and
the state at time will be taken to be Ptu, where u U is the input to the system.
Thus, for instance,

qb(t, xo o, u) S,P,u xo + SPQoU,
where S denotes the shift operator (Sz)(t) z(t T), and

y(t, x, u)= (Gu)(t) (GP,u)(t) (GS_,S,Ptu)(t) a___ (GS_tx(t))(t).

It is left to the reader to verify that these maps indeed satisfy the axioms of dyna-
mical systems in state space form. The smoothness claims are also easily verified
directly in view of the simplicity of the state transition map and the fact that the
output map and the original dynamical system are essentially identical.

The above theorem, although too trivial and general to be of significance
in specific instances, yields a rather interesting canonical decomposition of non-
linear dynamical systems into a linear, time-invariant, reachable dynamical
part followed by a memoryless nonlinear part.4 Note also that the dynamical
part in this decomposition may be described by the partial differential equation

#x(z, t)/& 8x(z, t)/cgz, z <= O,

with the boundary control x(0, t)= u(t) and with solutions defined in an ap-
propriate sense. The function x(z, t) for z >= 0 then plays the role of the state at
time t, and the partial differential equation describes the evolution of the initial
state x(z, to) resulting from the input u(t). Notice also that in the above realization
the map y inherits linearity and time-invariance of G.

It should be noted that the equivalence of a dynamical system and a state
space realization of a dynamical system might nevertheless lead the latter model
to produce an output which could not be the result of any input to the former
model. Such outputs result from initial states which are somewhat artificial in
the sense that they cannot be produced by past inputs. The equivalence of a
dynamical system and one of its realizations is thus really a zero initial state
equivalence.

Notation. Let G denote a dynamical system in state space form, x0 X,
to R, and u U. Then the function defined by

y(t, dp(t, to, Xo, U), U(t)) for t> T=> to,

0 otherwise,

4 It was pointed out to the author that similar decomposition due to Wiener [19] and Balakrishnan
El6] have appeared in the literature.
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will be denoted by QrG(to, Xo, u) (or Qry(to, Xo, u) when there is no danger of
confusion).

3. Fundamental properties of dynamical systems. A number of fundamental
concepts related to dynamical systems and their state space realizations are
introduced and discussed in this section: they relate to the influence of the control
on the state (reachability, controllability, and connectedness), of the state on the
output (observability and irreducibility), and of the input on the output (stability
and continuity).

DEFINITION 7. The state space of a dynamical system in state space form
is said to be reachable if given any x e X and e R, there exists a to e R, to =< t,
and a u e U such that qS(t, to, 0, u) x. A dynamical system in state space form
is said to be controllable if given any Xo e X and to e R, there exists a e T, _>_ to,
and a u e U such that q(t, to, Xo, u) 0. The state space of a dynamical system
in state space form is said to be connected if given any Xo, x X there exists an
element (tl, to) R- and a u e U such that b(t, to, Xo, u) x.

Reachability thus requires the map b(t,., 0, .) to be onto X, whereas con-
trollability requires that 0 be in the range space of b(., to, Xo,.). Note that
reachability, controllability, and time-invariance imply connectedness.

DEFINITION 8. A dynamical system in state space form is said to be observable
if for any to e R, knowledge of Qtoy(to, xo, 0) (uniquely) determines xo 6 X. The
state space of a dynamical system in state space form is said to be irreducible if
for any given o R and Xo e X there exists a Q,ou U, such that knowledge of
Q,oy(to, Xo, u) (uniquely) determines Xo e X.

Observability thus requires the map y(to,., 0) to be one-to-one on X, whereas
irreducibility requires the map y(to,’, u) to be one-to-one on X by choosing
(QtoU)(X). It is clear that observability implies irreducibility and that the nomen-
clature "irreducible" is quite appropriate since if the state space is not irreducible,
then there exist at least two initial states which will be completely indistinguishable
under experimentation: these two states are thus entirely equivalent, and nothing
will be lost by eliminating one of them from the state space.

The above nomenclature is common (although far from standard) in the
related literature with the possible exception of irreducibility which is often taken
to indicate the set-theoretic minimality of the state space. Observability and irre-
ducibility are equivalent for linear systems with a finite-dimensional smooth state
space realization. The simplest example of systems in which these concepts are
different are systems with multiplicative control described, e.g., by 2 uAx. It
should also be remarked that the above definitions, although natural, are not the
most convenient ones for certain applications. Although it can be shown that every
dynamical system has a realization with a reachable state space, it is sometimes
very difficult to discover exactly what states are reachable (and to define X then
appropriately). For instance, in systems described by partial differential equations
these reachable states have certain smoothness properties which are not a priori
known; therefore, in certain applications it is much more convenient to adopt
an "almost" reachability requirement. The same remark holds for the following

See, for example, the proof of Theorem 1.
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definitions which, in addition, require an appropriate choice of the topology on
the state space.

DEFINITION 9. The state space of a dynamical system in state space form
is said to be uniformly reachable if there exist a continuous function ’R + --, R +

(R + denotes the nonnegative real numbers) with cz(0) 0 and a constant T => 0,
such that for any x e X and e R, there exists a u e U with Ptu 2 0( .,Y such
that 4(t, t- T, 0, u)= x. Uniform controllability and uniform connectedness are
similarly defined. A dynamical system is said to be uniformly observable if there
exist a strictly monotone increasing continuous function/’R / R with (0) 0
and lim_ / (a) + and a constant T e R, T __> 0, such that for any x e X
and to e R,

IIPo+ rQoy(to, x, O)[ >= ( x ).

The state space of a dynamical system in state space form is said to be uniformly
irreducible if with/ and Tas before, the inequality

[IPto+ TQto(Y(to, X1, U) Y(to, x2, u))[[ 2 >= fi(l[xx x2 I)

holds for all x, x2 X, to R, and some u U.
The above definitions differ somewhat from those in the literature. Most of

the papers concerned with uniform controllability for linear systems follow
Kalman’s [20] original definition, which imposes many more restrictions than the
definitions used here. In particular, it requires any control which makes the
transfer from state 0 at time Tto state x at time to be such that PQ_ Tu

2

>= (llxll) > 0.
The most efficient realization of a dynamical system is one in which the state

space is reachable and irreducible. This indeed guarantees that every output which
can be observed as a result of initial conditions and inputs could have been ob-
served by properly choosing the past input and that two different initial conditions
will lead to different outputs by properly choosing the input. Two realizations
which are both reachable and irreducible are thus isomorphic. They differ in the
sense that their state spaces are labeled differently. The one-to-one onto map
between these state spaces may, in general, be a function of time, however. A
realization of a dynamical system in which the state space is reachable and ir-
reducible can thus properly be called minimal, a notion which has many more
substantive implications for linear systems. In looking for reachable and irreducible
realizations it is natural to consider as the candidate for the state space the equi-
valence classes of those inputs up to time which yield the same output after time t,
regardless of the input after time t; more precisely, by considering the equivalence
class {Pu[ Qy is fixed for all Q,u} as a typical element of the state space. The
difficulty with this representation is that, in general, the state space itself then
becomes a function of time. There are two methods of getting around this difficulty"
one is to modify the original axioms and definitions so as to allow for a state space
which is itself a function of time; the other is to define a dynamical system as a
causal and a noncausal map depending on whether one considers time moving
forward or backward from the initial time. The state is thus alternatively required
to summarize past and future, and the state space thus has many more invariant
properties with respect to time. This device has been used successfully by Kalman
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21] and others in their study of systems described by the Volterra integral equation

y(t) w(t, r)u(r) d

with separable kernel w. This principle rests on dubious physical grounds, however,
and leads to technical difficulties for infinite-dimensional systems. The above
problems do not occur in stationary systems.

Recall that a mapping between normed spaces is said to be bounded if it
maps bounded sets into bounded sets. It is said to have a finite gain if there exists
a K < such that for any p >= 0 the ball with radius p gets mapped into the ball
with radius Kp. The infimum of all real numbers K achieving the above inequality
is usually called the gain of the operator.

DEFINITION 10. A dynamical system, G, is said to be input-output stable
if it maps bounded sets of small signals in U into bounded sets of small signals in
Y. It is said to be finite-gain input-output stable if it is stable and if there exists a
K < such that for any small signal u U, IlGul -<_ Kllu[. The infimum of all
such real numbers K will be denoted by GII. A dynamical system G is said to be
input-output continuous if it is stable and if the map G is continuous (in the topology
induced by L2(V,) and L2(Vr) as a map from U f’l Le(V,) into Y f3 L2(Vr). It is
said to be input-output Lipschitz continuous if G is actually Lipschitz continuous.

It can be shown [14, 2.4] that a dynamical system is finite-gain stable if and
only if the gain of Pt,GQto is bounded for all to, e R, uniformly in to and l-

In fact,

G lim Pt,GQto I,
o,t

and this limit is approached monotonically. A similar relationship holds for
Lipschitz continuity.

Related, but not identical, are the following more familiar Lyapunov stability
concepts for dynamical systems in state space form.

DEFINITION 11. The equilibrium state of a dynamical system in state space
form is said to be globally attractive if for any xo X and to R,

lim b(to + T, to, Xo, 0) 0.

It is said to be un!lormly globally attractive if this limit is uniform in to. It is said
to be stable if for any e > 0 and o R there exists a 6(e, to) such that b(to + T, to,
Xo, 0)[ =< e for all T >= 0 whenever IXol _<_ . It is said to be uniformly stable if
6(, to) may be chosen independent of to. A dynamical system in state space form
is said to be bounded if for any xo X and to R, qS(to + T, to, Xo, 0) is bounded
on the half-line T >= 0. It is said to be uniformly bounded if this bound may be
chosen independent of to. A dynamical system in state space form is said to be
globally asymptotically stable if the equilibrium state is globally attractive and
stable. It is said to be uniformly globally asymptotically stable if the equilibrium
state is uniformly globally attractive, uniformly stable, and uniformly bounded.

The usual method of proving stability of systems in state space form is
to consider an appropriate Lyapunov function. The following definition of a
Lyapunov function is a convenient one for the present discussion.
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DEFINITION 12. Let V be a mapping from X R into R +, with V(x, t) 0
if and only if x 0. Then Vis said to be a Lyapunovfunction for a dynamical system
in state space form if for any Xo X and to R,

(i) V(c/)(t, to, Xo, 0), t) is a monotone nonincreasing function of for >__ to;
(ii) limT-o V(dP(to + T, to, Xo, t), to + T) O.

The function V will be called a uniform Lyapunov function if, in addition, the
limit in (ii) is uniform in o and if V(x, t) is bounded in for all x X. The function
V is said to be decrescent if there exists a continuous function a’R / - R / with
a(0) 0 such that V(x, t) <= a(I]x for all x X and R. It is said to be positive

definite if there exists a monotone increasing continuous function fi’R + R +

with fl(0) 0 such that V(x, t) >= fl(xll) for all x X and R. It is said to be
radially unbounded if there exists a continuous function 7"R+ R+ with
lim_ + 7(a) + ov such that V(x, t) >__ 7( Ix for all x X and R. If V is a
Lyapunov function for a dynamical system in state space form, then the equilibrium
state is globally asymptotically stable if V is positive definite, and the dynamical
system is bounded if V is radially unbounded. If V is a uniform Lyapunov function,
then the equilibrium state is uniformly globally attractive if V is positive definite,
and uniformly stable if Vis positive definite and decrescent the system is uniformly
bounded if Vis radially unbounded, and uniformly globally asymptotically stable
if V is radially unbounded, positive definite, and decrescent. Notice also that
decrescency implies the last condition in the definition of a uniform Lyapunov
function, and thus a .decrescent Lyapunov function for a uniformly globally
asymptotically stable system is a uniform Lyapunov function.

The main purpose of this paper is to study the relations between input-output
stability and global stability. It seems reasonable to expect that an input-output
stable system will be globally stable if inputs sufficiently influence states and if
states sufficiently influence outputs. Then internal instability should reflect into
external instability. That this can be made precise is shown in the next section.

4. Input-output stability and global stability. This section establishes the
fundamental relationship between input-output stability and global stability.
In trying to obtain these internal stability implications from external data, one
defines certain functions which depend on the external variables only. In order
for these functions to be well-defined and to qualify as suitable Lyapunov functions,
a number of additional assumptions have to be made, and it is at this point that
reachability, controllability, observability, and input-output stability become
relevant. There are two natural functions to consider for this purpose:

(i) V(x, t) inf PtQtoul 2, where the infimum is to be taken over all to -<_
and u U with th(t, to, 0, u) x (the infimum (supremum) over the void set is by
assumption + (- )), and

(ii) Vo(x, t) - [[Q,y(t, x, 0)[[ .
The symbolism is clear: the first function is inspired by reachability, and the
second by observability. V is well-defined if the state space is reachable, and Vo
is well-defined if the state space is reachable and if the dynamical system is
input-output stable. Indeed, let u U be such that b(t, to, 0, u) x. Then

Q,y(t,x,O)]2 =< ]GPu 2 <_ G 2 Ptu 2.



LYAPUNOV FUNCTIONS FOR INPUT-OUTPUT SYSTEMS 17

If Vo(x, t) is well-defined, then it is clearly monotone nonincreasing along un-
driven solutions and approaches zero when oe since

Vo(4(t, to, Xo, o), t) IIY( b( to Xo, 0), 0)112 d

The function Vr is also monotone nonincreasing along undriven solutions, although
this is not as immediate. The argument used in the demonstration of this fact will
repeatedly be used in the sequel and will therefore only here be done explicitly.
Thus, consider V(b(tl, x, t, 0), tl) with t >= t, and denote b(t:, x, t, 0) by X

Then V(x, t) infllP,,Qou[I 2. The state of the dynamical system can be driven
to x at time t by first driving it from 0 at time to to x at time and then applying
zero control until time t. This is, in general, a suboptimal control for reaching
X at time t, even when it is driven to x at time in an optimal fashion. This
suboptimal strategy thus shows that V(x, t) =< V(x, t).

The basic relationships between input-output stability and global stability
are stated in the following theorems.

THEOREM 2. A uniformly observable realization of an input-output stable
dynamical system with a reachable state space is globally asymptotically stable and
bounded, and Vo is a positive definite radially unbounded Lyapunovfunctionfor it.

Proof It suffices to show that Vo is a positive definite radially unbounded
Lyapunov function. By reachability and input-output stability, V0 is well-defined.
By observability, Vo 0 if and only if x 0; it is monotone nonincreasing and
approaches zero along undriven solutions since

IlY(Z,b(z,t x O) 0) 112Vy

It remains to be shown that V is positive definite and radially unbounded. This,
however, is an immediate consequence of uniform observability.

Note that in the above theorem the uniform observability condition cannot
simply be relaxed to only observability, even if at the same time one assumes
uniform reachability rather than merely reachability.

THEOREM 3. A uniformly observable realization of a finite-gain input-output
stable dynamical system with a uniformly reachable state space is uniformly globally
asymptotically stable, and V and Vo are positive definite radially unbounded de-
crescent uniform Lyapunovfunctions for it.

Proof From finite-gain input-output stability it follows that

and thus that

Vo(x, t) _<_ G v(x, t).

Vr is well-defined and decrescent by uniform reachability, and Vo is well-defined,
positive definite, and radially unbounded by uniform observability. Thus both
Vo and V are positive definite, radially unbounded, and decrescent, and the
theorem follows if it can be shown that Vo(ck(to + T, to, Xo, 0), to + T) approaches
zero as T oe, uniformly in to. Notice that with T as in the definition of uniform
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observability it follows that

Vo(c(to + T, to, Xo, 0), + T)[ Vo(xo, to) <= 1

where a and fl are as in the definitions of uniform reachability and uniform observ-
ability. This implies uniform convergence of the Lyapunov function V0 since for
any e > 0 and M < Do there exists a 6 > 0 such that fi(a)[a(a) >= 6 > 0 for all
0 < e a =< M < oo. Hence the system is uniformly globally asymptotically
stable, which in turn implies that V is a uniform Lyapunov function.

Note that finite-gain stability (or uniform smoothness) and uniform observ-
ability yield that every control u transferring state 0 at time to to state x at time
requires

P,9.,oU >= -/(I
a condition which is usually part of the definition of uniform controllability [20].
As a final remark in this section, note that the fact that the inputs and outputs take
their values in inner product spaces is inessential and that the results hold, mutatis
mutandis, if these spaces are merely normed spaces. The inner product structure
becomes very important in the next section, which is concerned with passivity.

5. Lyapunov functions for passive systems. The notions which will be intro-
duced in this section are those of passivity and certain concepts related to energy.
It will be assumed in this section that the inner product spaces under consideration
are real.6

DEFINITION 13. Let U Yand let G be a dynamical system from U into Y
Then G is said to be passive if for all u U and R, (Ptu, PtGu} > O. It is said to
be strictly passive if G el is passive for some e > 0.

This terminology is to be interpreted as follows" (u(t), y(t))v, represents
the instantaneous power delivered to the system from the outside. Thus (P,u, P,y)
represents the total energy at time delivered to the system from the outside. If
regardless of the termination and in the absence of initial excitations this energy
is nonnegative, then the system is passive viewed from its input-output terminals.

It can be shown (see [14, 2.17]) that if G is input-output stable, then it is
passive if and only if (u, Gu >__ 0 for all small input signals u.

DEFINITION 14. Let G be a dynamical system in state space form. Then the
required energy, Er, is defined on X R as

Er(x, t) 6_4_ inf (P,u, P,Gu),

where the infimum is to be taken over all to and u e U with P,ou 0 which
yield 4(t, to, O, u) x. The available energy, E, is defined on X x R as

E,(x, t) sup (Pt, Qtu, Pt, Qty(t, x, u)>.
ueU
ta>_t

The cycle energy, Ec, is defined on X R as E Ea. Thus

Ec(x, t) inf (P,u, Pt, Gu),

Complex inner product spaces can be treated equally well by considering the real part of the inner
product in the definitions of passivity and energy.
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where the infimum is to be taken over all to and with o __< <_ and u e U
with Prou 0, which yields b(t, to, 0, u) x.

The available energy is thus the maximum energy which can be extracted
from a system, whereas the required energy is the energy needed to excite a system
to a given set of initial conditions. The cycle energy is the minimum energy it
takes to cycle a system between the equilibrium and a given state. Note that all
of the above energies are defined in terms of input-output relations.

LEMMA 1. Consider a realization ofa passive dynamical system and assume that
the state space is reachable. Then Ea, Er and E exist (i.e., E,, Er, E < ) and are
nonnegative. Moreover, 0 <= E,, E <= E.

Proof That E and Ec are finite and nonnegative follows immediately from
passivity and reachability. Hence, since E, + Ec Er, E, < E.

It remains to be shown that Eo is nonnegative. This follows by considering
Qtu 0, which shows that the supremum in the definition of Ec is taken over
a set which contains zero. This completes the proof of the lemma.

The inequality Ea __< E formalizes the intuitive notion that passive systems
cannot supply more energy to the outside than has previously been supplied to
them from the outside. Note that none of the above notions satisfactorily defines
the stored energy, E(x, t), which is an internal property of a dynamical system
and thus usually a function of the realization. The passivity definition employed
here is purely input-output. Similar definitions of internal passivity can be made,
and the theory for linear time-invariant dissipative systems [22] is available. One
can then pose the question of whether or not every input-output passive system
has a passive realization. These ramifications fall beyond the scope of the present
paper. It would be interesting to verify that the stored energy in a passive reali-
zation of a passive system satisfies the inequality E, _<_ E <= Er, as it should.

The cycle energy E is a measure of the degree of irreversibility of a system.
This is the intuitive basis for the following definitions.

DEFINITION 15. A passive dynamical system in state space form is said to
be irreversible if E(x, t) 0 only if x 0. It is said to be uniformly irreversible
if there exists a monotone increasing function 7 :R + R + with ,(0)= 0 and
lim_. + 7(a) + m such that for all x e X and R, E(x, t) >= (llxll). It is said
to be reversible if E 0, i.e., if Er E,.

THeOReM 4. The available energy, E,, and the required energy, E, are de-
crescent uniform Lyapunovfunctions for a uniformly observable realization ofa pas-
sive finite-gain input-output stable dynamical system with a uniformly reachable
state space.

Proof It will first be shown that E is decrescent. By the Schwarz inequality,

It thus follows from finite-gain stability that there exists a constant K < such
that E,(x, t)<= K infllP,ull 2, where the infimum is to be taken over all to _-<
and u U with Prou O, c(t, to, O, u) x. By uniform reachability, E,(x, t) is thus
decrescent. It will now be shown that Er is a Lyapunov function. That E(x, t) is
nonincreasing along undriven solutions follows from its definition and by letting
u 0 from to until t, using an analogous argument to the one used in 4 in
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showing that V is monotone nonincreasing. By Theorem 3,

qS(t0 + T, to, Xo,0)0 as T---, ce,

uniformly in to, which by decrescence indeed implies that Er is a uniform Lyapunov
function. Since E, __< Er, it remains to be shown that Ea is monotone nonincreasing
along undriven solutions. This follows from an analogous argument to the one
used to show that E, is nonincreasing. This completes the proof.

Theorem 4 is not as convincing as one might like it to be since it does not
make any claims about the positive definiteness of the Lyapunov functions. This
positive definiteness can be obtained using somewhat stronger hypotheses. The
available energy E, will be positive definite if the feedback system with the dynam-
ical system G in the forward and some constant gain k > 0 in the feedback loop
remains a well-defined dynamical system. This is the case under weak additional
assumptions on G. The resulting control to be used to show definiteness of Eo
is the solution e of the feedback equation Qt(e + kG(t, x, e)) 0. This corresponds
to the input which results from a termination of the system with a positive resistor.
The required energy E will be positive definite if Eo is or if the system is strictly
passive (rather than merely passive). A third possibility is to require uniform
irreversibility, since Ec _-< E.

6. Feedback systems. One of the main reasons for being interested in stability
stems from its importance in feedback control. The canonical form of the feedback
system considered in this paper is shown in Fig. 1, and the closed loop system is
thus described by the implicit equations

(FE) (I + G)e u, y Ge.

FIG. 1. Thefeedback system under consideration

It will be assumed that the input signal space U and the output signal space
Yare the same and that G is a dynamical system from U into Y. Two questions
related to the well-posedness of this feedback system arise:first, whether or not
the closed loop feedback system still represents a well-defined dynamical system
in its own right and, second, whether or not the state space induced by a realization
of G will also qualify as the state space for the closed loop system. These issues
fall beyond the scope of this paper, and it will be explicitly assumed rather that
these well-posedness conditions are satisfied. It is thus assumed that:

(i) (I + G)-1 exists (as a map from U into itself) and is causal. This implies
that the closed loop system G(I + G)-1 I- (I + G)-1 is itself a dynamical
system from the input space U into the output space Y.
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(ii) If G is described in state space form with state space X, then X also qualifies
as the state space for the closed loop dynamical system G(I + G)- 1, and a unique
solution to the feedback equations exists for any initial condition Xo e X, initial
time to e R, and input u e U.

These well-posedness questions have been investigated in the literature
[14, 4.23, [15] and the simplest sufficient conditions essentially impose a restric-
tion on the feedthrough in G, in addition to some smoothness conditions on the
open loop system. They are satisfied in most models and, in particular, whenever G
contains a pure or generalized delay.

In the study of feedback systems it is important to establish conditions on the
open loop .operator in order to draw conclusions about the closed loop system.
The first questions thus answered are those related to controllability and irreduci-
bility.

THEOREM 5. Consider the feedback system described by equations (FE). Then
teachability (controllability, connectedness, irreducibility) of the state space reali-
zation of the open loop system implies reachability (controllability, connectedness,
irreducibility) of the associated state space realization of the closed loop system.
Uniform reachability (controllability, connectedness, irreducibility) ofthe state space
realization of the open loop system implies uniform teachability (controllability,
connectedness, irreducibility) of the associated state space realization of the closed
loop system provided the open loop system is in addition uniformly smooth.

Proof Preservation of reachability, controllability, or connectedness is
essentially obvious. Indeed, let ul be a control which results in the desired transfer
for the open loop system. Then the control u u + GUl will clearly result in
the same transfer for the closed loop system. Irreducibility of the closed loop
system will be established by contradiction. Assume therefore that there exist
X1, X2 X, Xl @ x2, and to R such that

QtoG(I + G)- l(to, X1, hi) QtoG(I + G)- l(to, X2, U) for all u U.

This implies that

Q,oG(to, Xl, ul) QroG(to, x2, Ul)

for all U which can be written as

Ul u Q,oG(I + G)- l(to, Xl, u), u e U.

Since Ul can thus be taken to be any element of U by choosing u ul + QoG(to,
xl, ul), this shows that

QtoG(to, xl, ul) QoG(to, x2, Ul) for all Ul e U.

Hence, the open loop system is not irreducible whenever the closed loop system
is not irreducible. To show uniform reachability, let u be a control such that
b(t, to, 0, u) x with to T and T as in the definition ofuniform reachability.
The control u + Gu then transfers the closed loop system from state 0 at to T
to state x at t. Since



122 JAN C. WILLEMS

uniform reachability of the closed loop system thus becomes a consequence of
uniform reachability of the open loop system if IIPGQ_ 11 is uniformly bounded,
which in turn is a consequence of the uniform smoothness assumption. Preserva-
tion of uniform irreducibility is shown in a similar way. This completes the proof.

The above theorem contains no surprises with the possible exception that it
does not state the preservation of observability under feedback. This is in fact
untrue, and it is necessary to consider nonlinear systems to obtain satisfactory
counterexamples. The system uAx, y---Cx will lead to a counterexample
for the contention that closed loop observability follows from open loop observa-
bility. This phenomenon is by and large a consequence of the definition of observa-
bility which is really observability under zero input. If one were to modify this
definition and require that for all given inputs u U the response to different
initial states should be different, then this observability under arbitrary inputs
would indeed by preserved under feedback. These two types of observability
are equivalent for linear systems. Note that the above theorem states the equiva-
lence of teachability (controllability, connectedness, irreducibility) of the open loop
and the closed loop system since putting positive unit feedback around the closed
loop system gives back the open loop system. The fact that only feedback systems
with unit feedback are being considered is also inessential to the basic result.

7. Lyapunov functions for feedback systems. In trying to define Lyapunov
functions for input-output stable feedback systems, one can of course apply the
techniques developed by 4 and 5. Such an approach is not very promising since
the computation of some of the Lyapunov functions defined there requires detailed
knowledge of the closed loop system, whereas it is desirable to pose the calcula-
tions and variational questions entirely in terms of the open loop dynamical system.
This holds, in particular, for the function Vo defined in 4.

It can be shown [13] that a feedback system is finite-gain input-output stable
if and only if there exists a constant e > 0 such that the inequality
>- e IlPtUll holds for all u U and R. In fact, e- may be taken as any real number
larger than the gain of (I + G)-. It should also be remarked that for linear feed-
back systems stability, continuity and finite-gain stability are equivalent.

Now consider the following two functions which are defined as variational
problems and will lead to Lyapunov functions for feedback systems"

(i) V,(x, t)= inf]]PtQto(U + y(to, O, U))[I 2 when the infimum is to be taken
over all u U and to s/ such that 4(t, to, 0, u)= x (4) and y denote the state
transition and output reading map of the open loop dynamical system).

(ii) V(x, t) -inf(]lPtQ,(u + y(t, x, b/))[[ 2 e:[[PQ,u[[2), where the infimum
is to be taken over all u U and ta >_ t.

Txao 6. Assume that the feedback system described by equation (FE) is

uniformly observable, finite-gain input-output stable, and that the state space is

uniformly reachable. Let K denote the gain of (I + G)- and let 0 <
Then the feedback system is uniformly globally asymptotically stable and V and V
are positive definite radially unbounded decrescent uniform Lyapunov functions
for it.

Proof Note that uniform global asymptotic stability and the claims about V
follow from Theorem 3. It will now be shown that V is finite.
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Let u e U and to <= be such that PtoUl 0 and 4(t, to, O, U l) X. Then

Pt,Qt(u + y(t, x, u))= P,,(Q,u + P,u + y(to, O, Q,u +
Pt(ul + y(to, O, Ptul)).

Thus,

Pt,Qt(u + y(t, x, u)) 2 >= e2 Pt,(Qu + Ptul) 2 Pt(ul + y(to, o, PtU1))[I 2

2 Pt(u + y(t0 0 Pul))ll 2e2 n,, O,u 2 + e21ntu
and

V(x, t) >__ e2[lpulll 2 IIP,(Ul + y(to, o, Pul))ll 2.

Since the right-hand side of this inequality depends on PtUl only, the result follows.
The fact that V is nonnegative follows from taking u G(I + G)-l(t,x, 0).
That V is monotone nonincreasing along solutions follows from the usual argu-
ment explained earlier. To show that

V(ch(to + T, to, Xo, 0), to + T) - 0 as T -
uniformly in o, it suffices to show that V is decrescent since qb(to + T, to, Xo, 0)

0 as T oc uniformly in to. It follows from the above inequality that

V(x, t)__< inf(llPt(Ul + y(to, O, PtUl))ll 2 f,2llPtUll[2),

where the infimum is to be taken over all to _-< and U e U with P,oUl 0 and
b(t, to, 0, u l) x. Decrescence thus follows from uniform reachability and finite-
gain stability. Positive definiteness and radial unboundedness follows by con-
sidering u e -G(I + G)-l(t, x, 0) which yields V(x, t) >__ fl(llxll) by uniform
observability. This completes the proof.

The standard methods for proving stability of feedback systems is to show that
the open loop gain is less than unity (small loop gain theorem) or to show that the
open loop dynamical system may be viewed as the cascade of two passive systems
(positive operator conditions). These cases admit special consideration and are
treated in the remainder of this section.

Consider therefore the following two functions:
(i) rl(x,t)=-inf(llQ,ul] 2- IlQty(t,x,u)ll2), where the infimum is to be

taken over all u e U with Itull < oe, and
(ii) Vz(x, t) inf(llP,ull IIP,GulI2), where the infimum is to be taken over

all to e R and u e U with Ptou 0 and qb(t, to, 0, u) x.
THEOREM 7. Assume that the feedback system described by equations (FE)

is uniformly observable, that the open loop dynamical system has gain less than unity
and that the state space is uniformly reachable. Then the feedback system is finite-
gain input-output stable and uniformly globally asymptotically stable and V1 and Va
are positive definite radially unbounded decrescent uniform Lyapunov functions
for it.

The case in which the open loop consists of the composition of a dynamical
system G1 followed by a memoryless dynamical system G2 whose gain product is
less than unity has received a great deal of attention and leads to a Lyapunov
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function which only depends on G1. Consider therefore the following functions:
(i) V(x,t) -inf(]]Q,u 2 IG1]]-2 Q,Ga(t,x,u) 2), where the infimum is

to be taken over all u U with ]lull < oo, and
(ii) Vd(x,t)= inf(llPtul[ 2- IIGIlI-zlIPtGulI2), where the infimum is to be

taken over all to R and u U with Ptou 0 and b(t, to, 0, u) x.
THEOREM 8. Assume that the feedback system described by equations (FE)

is uniformly observable and that the state space is uniformly reachable. Let G G2G
where G1 is a uniformly controllable, uniformly observable dynamical system and
G2 is a memoryless dynamical system. Assume that the product of the gains of G
and G2, IIGll] ]IG2]], is less than unity. Then the feedback system is finite-gain
input-output stable and unijbrmly globally asymptotically stable and V and V
are positive definite radially unbounded decrescent uniform Lyapunovfunctionsfor it.

Proof The proofs of Theorems 7 and 8 offer no surprises considering the
previous theorems, and the details will be omitted. The stability claims follow
from the so-called small-gain theorem [5] for input-output stability and Theorem 2.
Existence of V1, V2, V and V follows from the small gain condition, decrescence
from uniform reachability, and positive definiteness by taking u 0. Mono-
tonicity along undriven solutions requires a minor modification of the usual
argument. Consider, for instance, the function V’ of Theorem 8. Let tl >= to and
x q(tl, to, Xo, 0), with q the state transition map of the closed loop feedback
system. Choose u on (to, l) to equal e P,Q,o(1 + G)-l(to, Xo, 0). Thus,

V(xo, to) => -lie 2 + Ga[-2 Gl(to, Xo e) 2 + VT(x1, t).

Since, however,

e 2 + Glll-2]lp,Q,oG,(to, Xo, e) 2 G2p,QtoGl(to, Xo ,e) 2

-2GI Pt,QtoGl(to, Xo, e)ll 2

24- Ga -2)[Pt,Q,oG(to, Xo, e 2

and IIG]1-2 IG2 ]2 > 0, V(xo, to) V(x1, tl) as desired. This completes the
proof.

Theorem 8 is particularly useful, for instance, when G1 is linear and G2 is
nonlinear or when G1 is linear and time invariant and G2 is time-varying. The
variational problems which then result are indeed much simpler if one applies
Theorem 8 than those needed in Theorem 7.

The two theorems which follow are the counterparts of the preceding ones,
but with passivity conditions replacing the small gain condition. The stability
theorem which lies at the basis of these results states that a feedback system is
finite-gain input-output stable if the open loop dynamical system G is the composi-
tion of a passive system, G1, and a strictly passive finite-gain input-output stable
system, G2. This decomposition is usually not the result of physical considerations,
but rather a mathematical device which allows one to prove stability of the closed
loop system.

Assume thus that G, G1 and G2 with G G2G1 are dynamical systems in
state space form with state spaces X, X1 and X2 respectively. The space X1 x X2
certainly qualifies as another state space for G but will, in general, be much larger
than X, particularly if the latter is minimal (i.e., reachable and irreducible). In
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general, this is true in stability applications since the factors G and G2 are usually
not natural decompositions of G but are constructed with the aid of so-called
"multipliers," which usually results in this inflation of the state space. Assume
now that the dynamical system G in state space form has a reachable and irre-
ducible state space X. Consider the dynamical system G G2G with state space
X )< X2 and assume that the state (xl, X2) t X )< X2 is reachable at e R, i.e.,
that there exist a to =< and u e U with Prou 0 such that q51(t, to, 0, u) xl and
b2(t, to, O, Glu) x2 (bl and (D2 denote the state transition maps of G1 and G2
respectively). Consider now on this subset of reachable states at time the equiva-
lence classes of those which yield the same output after time for all u e U, i.e., the
reachable states (x’, x) and (x’, x) will be considered equivalent if

Q,G2(t, x2, Gl(t, x’, u)) Q,G2(t, X2, Gl(t, xl, u)) for all u e U.

There is (by minimality) a one-to-one and onto correspondence between these
equivalence classes and the space X. Denote by X,(Xl, x2) the element of X cor-
responding in this sense to the equivalence class derived from the reachable state
(xl, x2). The map Xt may in general depend explicitly on t. Assume furthermore
that there exist constants k and K such that

k(llxall 2 + Ilx2[I 2) IIXt(x1,X2)]] 2 g(llxlll 2 -4-IIx2112) for all tR

and reachable states (xl, x2) X1 X X2 The decomposition of G into G G2G
will then be called a compatiblefactorization of the dynamical system G.

The statement of the theorem which follows involves Lyapunov functions
defined on X1 x X2, but these can, by the above remarks, also be considered as
Lyapunov functions on the state space X provided one only considers pairs (x 1, x2)
which are reachable. The following theorem statement then becomes clear.

THEOREM 9. Assume that the feedback system described by equations (FE)
is uniformly observable and that the state space is uniformly reachable. Assume also
that the open loop dynamical system G has a uniformly reachable and uniformly
irreducible state space and that it admits a compatible factorization G G2G
into the uniformly observable dynamical systems G1 and G2 with uniformly reachable
state spaces X1 and X2 respectively. Assume that one of thesefactors is passive and
uniformly smooth and that the other is strictly passive and finite-gain input-output
stable. Then the closed loop feedback system is finite-gain input-output stable and
uniformly globally asymptotically stable, and the total available energy, E, E(,1)
+ c,=(2)-, and the total required energy, Er EI)+ =(2)_r, are decrescent uniform
Lyapunov functions for it. (The superscripts refer to the dynamical systems com-
posing G.)

Proof Decrescence of E on X x X2 follows from Theorem 4 with an appro-
priate modification in the proof in order to replace finite-gain stability by the uni-
form smoothness condition. Decrescence on X1 x X2 then implies decrescence
on X bythe inequality in the definition ofa compatible factorization. Since E, <__ E,
E, is also decrescent. The stability claims about the feedback system are well
known [5], and it remains to be shown that the energy functions are monotone
nonincreasing along undriven solutions. This will only be shown for the required
energy. The proof for the available energy is similar.
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Let (X’l, xz) e X1 x X2 anc] to e R be given, and let (Xl, X2) X X X2

denote the state of the dynamical systems G2G1 at time tl >_- to resulting from the
transfer along solutions of the undriven feedback system. Then

inf (Pt,ul, PtlGlUl) -+- inf (P,u2, PtIG2ue)
x’ ,t x’ ,t

=< inf (PtoUl, PtoGlUl) -+- inf (Ptou2, PtoG2u2)
x’ ,to x,to

nt- (Pt,Qtoc1, Pt,OtoGl(tO, Xl, c1)) nt- (PtlOtoC2, Pt,QtoG2(to, x’2, e2)),

where the notation inf_x;,,t ,, for instance, denotes the infimum over all __< t
and ux U with Ptu 0 and qS(tl, t, 0, u) x. The other symbolism is to be
interpreted in an analogous way. The inputs el and e denote respectively (I
+ G)- l(to, (x’l, xz), 0) and GI(I + G)- a(to, (x’, x’2), 0). The desired result then
follows if one notices that Qtoe2 QtoG(to, x’, e) and that Qtoel -QtoG2(to,
x’2, G(to, x], e)) since this shows that the contributions of the last two terms in
the above inequality cancel. This completes the proof.

The reader is referred to the remark following Theorem 4 for conditions
to ensure positive definiteness and radial unboundedness. Notice again that
positive definiteness on X x X suffices for positive definiteness on X by the
definition of a compatible factorization. The case in which the operator G2 is
memoryless leads, as in the small gain case, to a simplification. This is stated in the
following final theorem.

THEOREM 10. Assume that the feedback system described by equations (FE)
is uniformly observable and that the state space is uniformly reachable. Assume that
the open loop dynamical system, G G2G1, consists of the composition of a uni-
formly observable, finite-gain input-output stable, strictly passive dynamical system,
G1, with a uniformly reachable state space, followed by a memoryless passive
dynamical system, G2. Then the closed loop feedback system is finite-gain input-
output stable and uniformly globally asymptotically stable, and the available energy,
E(o), and the required energy, E1), are decrescent uniform Lyapunov functions
for it.

Proof The proof combines the ideas in the proofs of Theorems 8 and 9 and is
left to the reader.

The theorems developed here treat the small gain stability conditions and the
passive operator stability conditions. The methods can, however, easily be ex-
tended to treat conic operators as well.

8. Examples.
Example 1. Let G(s) be a p x m matrix of rational functions of s with lims.

G(s) 0, and assume that {A, B, C} is a minimal8 realization of G(s). Assume that

The norms and inner products involved in these examples are the usual norms and inner products
of Euclidean spaces. Prime denotes transposition. For the calculations involved in the solution of the
variational problems in this section, see [23, 21, 22, 23 and 25]. Although some of the problems are
not treated explicitly there, the modifications merely require algebraic manipulation and no new
methodology.

Algebraically this means that A is an n x n matrix, that the n x nm and n x np matrices (B, AB,
.., A"-XB) and (C’,A’C’,..., (A’)"-C’) are of full rank n, and that G(s) C(ls A)-XB. The full
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the poles of G(s), which by minimality equal the eigenvalues of A, are in Re s < 0.
The system : Ax + Bu; y Cx is thus finite-gain input-output stable and
globally asymptotically stable, and Theorem 3 yields as positive definite decrescent
radially unbounded Lyapunov functions the quadratic forms X’KlX and x’K2x,
where K1 is the (unique, positive definite) solution of the linear matrix equation
A’X + XA -C’C, and K is the (unique, positive definite) solution of the
linear matrix equation AX + XA’ -BB’. Clearly, these are only two of many
possible Lyapunov functions for this asymptotically stable dynamical system.

Example 2. Let G(s) be an m m matrix of rational functions of s with lim_
G(s) < , and assume that {A, B, C, D} is a minimal realization of G(s). Assume
that the poles of G(s) are in Re s < 0, that G(jo9) + G’(-jo9) is Hermitian positive
definite for all o9 R, and that D + D’ is positive definite. The n-dimensional
system : Ax + Bu; y Cx + Du and thus strictly passive, finite-gain input-
output stable, and globally asymptotically stable. The available energy, Ea(xo, to),
is given by

inf r/,
uL2(O, oo)

where r/= u’(t)y(t) dt,

subject to the constraint : Ax + Bu; y Cx + Du, x(0) Xo, and is indepen-
dent of o. This variational problem is a least squares problem and, by Lemma 1,
an infimum exists. This infimum is, in fact, attained by the feedback control

and

b/ --(O + O’)-l(C q- B’K)x

min r/ t/* x’oKxo/2,
uL2(O,c)

where K K’ is the (unique) negative definite solution of the algebraic Riccati
equation

0 -A’X XA + (C + B’X)’(D + D’)-I(C + B’X).

Note [8], 9], [10] that this implies the existence of an n x n positive definite
matrix P P’ (P K), and n m matrix L, and an m x m matrix W0 such that
(Kalman-Yakubovich-Popov)

A’P + PA -LE,

PB C’ LWo,

W’oWo D + D’.

rank condition on (B, AB, ..., A"- 1B) is equivalent to controllability, reachability, and connectedness,
and the full rank condition on (C’, A’C’,..., (A’)"-IC’) is equivalent to observability and irreduci-
bility, where these notions refer to the linear time-invariant finite-dimensional system Ax + Bu;
y Cx. For these systems, the observability considered here is equivalent to observability under
arbitrary inputs, and all of these properties hold uniformly whenever they hold. Global asymptotic
stability requires all the eigenvalues of A to be in Re 2 < 0 and is equivalent to input-output continuity
if the system is minimal.
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Since, moreover, in this (linear) case the passivity is necessary and sufficient for the
existence of the required infimum, and since passivity is equivalent to positive
realness of G(s), the above conditions (existence of K or P) are also necessary for
positive realness. Thus the available energy Ea(x, t) x’Px/2 is a positive definite
radially unbounded decrescent Lyapunov function. The required energy, E,(xo, to),
is somewhat more involved to calculate and is defined by

where

inf inf r/,
T>= 0 u.L2(- T,O)

O

rl u’(t)y(t) dt,
-T

subject to the constraint9 9 Ax + Bu; y Cx + Du, x(-T)= O, x(O)= Xo,
and is independent of to. The above variational problem is again a least squares
problem, and by Lemma 1, an infimum exists. This infimum can be characterized
as follows"

q* inf min r/= X’o2Xo/2,
T >- 0 uLz(- T,O)

where 2; P + W-1 and P P’ is the (unique) positive definite solution of the
algebraic Riccati equation

0 A’X + XA + (C- B’X)’(D + D’)-1(C- B’X).

In fact, this matrix is the same as the one appearing in the calculation of the avail-
able energy and is such that A A B(D + D’)- 1(C B’P) is an asymptotically
stable matrix. W is the (unique) solution of the linear matrix equation A 1X + XA’I
=-B(D + D’)-IB’, and is symmetric positive definite. The required energy

-1E,(x, t) 1/2x’Px + :x W x is also a positive definite radially unbounded decres-
cent Lyapunov function. The cycle energy Ec E,- Ea is given by Ec(x, t)

:x W- x. The system is thus lossy.
Example 3. Let g(s) be a rational function of s with lim_, g(s) 0 and assume

that {A, b, c’} is a minimal realization of g(s). Let k be a scalar. Assume that the
Nyquist locus of g(s) does not intersect but encircles the 1/k point in the complex
plane -p times in the clockwise direction, where p is the number of poles of g in
Re s >= 0. Then the closed loop system Yc (A kbc’)x is globally asymptotically
stable, and Theorem 6 yields as a positive definite radially unbounded decrescent
Lyapunov function x’Rx, where R R’ is the (unique) negative definite solution
of the algebraic matrix Riccati equation

O= -A’X-XA +
(kc + Xb)(kc + Xb)’

e2

with e > 0 such that [1 + kg(jco)l >-_ el > e for all co e R.

It is important to realize that this variational problem is not equivalent to the simpler one which

o_asks to evaluate infu,L2 oo,0) u’(t)y(t) dt subject to : Ax + Bu y Cx + Du, x(O) Xo. (This
latter variational problem leads again to the available energy.)
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Example 4. Let G(s) be a p x m matrix of rational functions of s with lims_
G(s) 0 and assume that {A, B, C} is a minimal realization of G(s). Assume that
the poles of G(s) are in Re s < 0, and that for all co R the eigenvalues of the
matrix G’(-jco)G(jco) are inside the open ball with radius p-2 in the complex
plane. Letf(a, t) be a Rm-valued function defined on Rp R, Lipschitz continuous
on Rp, uniformly in t, and satisfying, for some a < p, the inequality If(a, t)
_<- 1111 for all (a, t) Rp R. Consider now the nonlinear differential equation

2"(t) Ax(t)- Bf(Cx(t), t).

This differential equation may be viewed as the mathematical model of the un-
driven feedback system studied in 6 with the open loop dynamical system de-
scribed by the equations

2"(t) Ax(t) + Bu(t), y(t) f(Cx(t), t),

and the closed loop dynamical system determined by the equations

2"(t) Ax(t) Bf(Cx(t), t) + Bu(t), y(t) f(Cx(t), t).

This system satisfies all the assumptions for Theorem 8 to be applicable, and the
nonlinear differential equation is thus uniformly globally asymptotically stable
by the small gain theorem. Consider now

inf [u’(t)u(t) pay’(t)y(t)] dr,
ueL O

subject to the constraint 2 Ax + Bu y Cx, x(O) Xo. This infimum exists
and is given by x’oKxo when K is the (unique) negative definite solution of the
matrix Riccati equation

0 -A’X- XA + XBB’X + pzc’c.
Theorem 8 thus states that -x’Kx is a positive definite radially unbounded
decrescent uniform Lyapunov function for this nonlinear differential equation.
Theorem 8 yields as another positive definite radially unbounded decrescent
uniform Lyapunov function x’(K + W-1)x, where K is as defined above and W
is the (unique, positive definite) solution of the linear matrix equation

(A- BB’K)X + X(A- BB’K)’= -BB’.

Example 5. Let g(s) be a rational function of s with lims_ g(s)= 0, and
assume that {A, b, c’} is a minimal realization of g(s). Assume that the poles of
g(s) are in Re s < 0 and that there exists a real number a >__ 0 such that for some
constant > 0, Re ( + jco)g(jco) >_ e > 0 for all co >_ 0. Let f(a) be a real-valued
function defined on R, Lipschitz continuous on R, and satisfying for some 6 > 0
the inequality f(a)/a > 6 > 0 for all a e R, a 4: 0. Consider now the nonlinear
differential equation 2’(0 Ax(t)- bf(c’x(t)). This differential equation may be
viewed as the mathematical model of the undriven feedback system studied in 6
with the open loop dynamical system described by the equation

2, Ax + bu; y f(c’x),
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and the closed loop dynamical system described by the equations

Yc Ax bf(c’x) + bu, y f(c’x).

The open loop dynamical system can be viewed as the cascade of the two systems"
a linear time-invariant system with transfer function (s + a)g(s) followed by a
nonlinear system which is the cascade of a linear time-invariant system with trans-
fer function 1/(s + ) followed by the memoryless nonlinearity f(. ). The state
equations of the first system are

c Ax + bu, y ac’x + c’Ax + c’bu.

This system satisfies the assumptions of the system of Example 3 which thus
yields expressions for the available energy, the required energy, and the cycle
energy. The state equations for the second system are. -az + u, y- f(z).
The available energy Ea(z, t) for this system is independent of to and is defined by

where

Ea(zo) inf inf r/,
T>_ 0 u6L2(O,T)

u(t)y(t) dr,

subject to -z + u, y f(z), z(O) Zo. Thus

with

r F(z(T)) + a z(t)f(z(t)) dt- F(zo)

F(z) af(a) da.

Since F(a) >= 0 and af(a) >= 0 for all a e R, and since the value of

z(t)f(z(t)) dt + F(z(r))

can be made arbitrarily small by proper choice of u, it follows that

Eo(zo) F(zo) af(a) da.

Similarly, the required energy

Er(zo) F(zo) af(a) da.

The cycle energy Ec for this first order nonlinear system is thus zero, and the system
is reversible. It is a simple matter to show that the above factorization of the system
5c Ax + bu, y f(c’x) is a compatible factorization as defined in 7. Notice
that reachable states satisfy the condition Zo C’Xo, which defines a hyperplane
in the space R" R. Theorem 9 thus yields as positive definite radially unbounded
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decrescent Lyapunov functions for the nonlinear differential equation 2 Ax
bf(c’x) satisfying the conditions enumerated earlier (i.e., the conditions of the

Popov criterion):

(i) V(x)=-x’Px + f(a)da, where P P’ is the (unique) positive

definite solution of the algebraic Riccati equation o

1
0 A’X + XA + c,b(Oc’ + c’A b’X)’(oc’ + c’A b’X).

-1(ii) V(x) + x I47 x, where W is the (unique) solution of the linear matrix
equation

A1X + XA’
bb’ b
2c’b

with A1 A (ac’ + c’A b’P),

and is symmetric positive definite.
Example 6. Path integrals [23, 26], [25].
LEMMA 2 [23, p. 170]. Assume that x(t) is an n times differentiable function of

and that aii, i, j O, 1, ..., n, are constants. Then the

t, dix(t) dix(t)
r j dt

i,i= o dti dti

is independent ofpath (i.e., it depends only on the values of x(t) and its derivatives at

to and 1) ifand only if the polynomial

h(s) aj(s’(- s) + (- s)isi)
i,j=O

vanishes identically.
This lemma leads to rather specific formulas for the Lyapunov functions

described in this paper. For instance, Theorem 3 thus yields as a Lyapunov func-
tion for the differential equation p(D)x(t) 0 with D d/dt and p(s) a polynomial
with all its roots in Re s < 0,

V(x, x{* ..., x"- ) inf inf t/
T> 0 x(t)lx(- T) x(n- x)(- T)= 0

x(O)=x,...,x(’- x)(0)=x( )

where rl o_ r (P(D)x(t))2 dt. Let r(s) be a solution of the polynomial equation
p(s)p(-s) r(s)r(-s), and let (pp)+(s)= p(-s) and (p)-(s)= p(s) denote the
solutions with poles respectively in Re s > 0 and Re s < 0. Now rewriting r/as

o
[(p(D)x(t))2 (r(D)x(t))2] dt + (r(D)x(t))2 dt,

-T

one observes that by Lemma 2 the first integral is independent of path and thus
depends on the values of x, x(1), x("- 1) only. The integrand in the second
integral is nonnegative and should hence be made as small as possible. By choosing

Compare with the results of [24].
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r(s) (p) + (s) p(- s) and letting T + oe, the contribution of this second
integral can indeed be made arbitrarily small and yields a positive definite radially
unbounded decrescent Lyapunov function for p(D)x(t) 0, the quadratic form

V(x, 2,..., x"- 1)) [(p(D)x(t))2 (p(- D)x(t))2 dr,

with x(t) any n times differentiable function such that

x(O) X, "’’, X(n- 1)(0) X(n- 1)

and

lim x(t) x(,- 1)(t) 0.
t-

If g(s) is chosen such that

lim
q(s)

and Req(Jco) >_ 0 for all co,
p(jco)

then Theorem 4 yields as Lyapunov functions

o 1
Er(X 2, X(n- 1)) [p(D)x(t)q(D)x(t) -((Pgl + q)+(O)x(t))2] dt

and

fo 1
E,(x, 2,..., x("-1)) [p(D)x(t)q(D)x(t) -((Pgl + q)-(D)x(t))] dt

with x(t) any n times differentiable function such that

X(0) X, "’’, X(n- 1)(0) X(n- 1)

and

lim x(t) x.- l)(t) O.
t

9. Conclusions. The development of the results and the techniques described
in this paper evolves in three stages: the first one introduces and compares the
input-output description with the state space description of dynamical systems
and shows their equivalence. The second part in the development leads to the
equivalence of input-output stability and global stability under appropriate
controllability and observability conditions; the third issue is the construction of
Lyapunov functions.

The methods for constructing Lyapunov functions involve, for the most part,
variational problems and are posed in the framework of systems with inputs and
outputs this notwithstanding the fact that the system for which global asymptotic
stability (in the sense of Lyapunov) is to be shown is an autonomous (undriven)
system. The results thus obtained serve as a further relationship between the areas
of dynamic optimization and stability theory and focus interest on a class of opti-
mization problems, some of which will, in fact, lead to singular controls.
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It is felt that the importance of this paper lies in its theoretical contribution
in demonstrating the equivalence between global asymptotic stability and input-
output stability, which, as expected, merely requires appropriate controllability
and observability (more precisely: reachability and uniform observability).
It also serves to unify the two main approaches to stability theory: input-output
stability and Lyapunov stability. In this latter class it unifies and generalizes the
various available results by posing the construction of these Lyapunov functions
as variational problems.

The results of the paper could also serve as a starting point to develop tech-
niques which will lead to suitable Lyapunov functions for estimating the domain
of attraction for nonglobal stable systems. This is a problem of great practical
importance, and the methods of the paper lead to tractable variational problems
which could be used in such an analysis.
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THE DISTRIBUTION OF 2 n GAME VALUES AND
PROGRAM OPTIMA*

DONALD J. SOULTS" AND H. T. DAVID

1. Introduction. In this paper we derive an expression (2.14) for the distri-
bution of the value V of a 2 n game when the n columns of the game matrix are
distributed independently, each according to a bivariate distribution satisfying
certain continuity conditions.

The sort of expression obtained is best illustrated under the further assumption
that the columns are identically distributed. Suppose F is that common distribu-
tion, and let e(p, v, F) be the probability under F of the half-plane p -+- (1 p)x2

> v. Then, if F satisfies certain continuity conditions, P{ V > v} is representable
as an integral of t"- l(p, v, F):

(1.1) P{ V > v} a,- l(p, v, F) dW(p).

Either of two functions W(p) may be used in (1.1). Of these, one typically has a
discontinuity at 0 and the other typically has a discontinuity at 1.

The expectation of the distribution (2.14) is the value of a two-stage game in
which Nature, at the first stage, randomly selects the game to be played at the
second stage. The random selection is according to 1-Ij Fj, where Fj is the distribu-
tion of the jth column. Hence the expectation of (2.14) is a possible valuation of a
statistical population of 2 n games of which a randomly selected one eventually
is to be played.

By a familiar correspondence between games and programs, we obtain as
well the distribution (3.2) of the optimum of the linear program

(1.2)
min {bly + b2Y2},

aljY q-- a2jY2 cj, j 1,2,..., n, Yl,Y2 > 0

where the bi and the cj are nonrandom and positive, and where the n vectors
(alj azj are random and independent. Because of the possibility that (1.2) is
infeasible, this distribution typically is improper, with the probability deficit
equal to the probability of infeasibility (cf.(3.3)).

The distribution (3.2) and probability (3.3) provide in effect closed expressions
for the propagation of variability from the technological matrix to the optimum;
hence, they seem of possible interest for sensitivity analysis.

As indicated below, the early parts of our argument apply to the general
m n case. However, we have not managed to arrive at representations similar to
(1.1), (2.14) or (3.2) for m >= 3.

There is a vast literature in stochastic programming, indicated, for example,
in [53. We dwell solely on the distributional problem, to the exclusion of decision-

* Received by the editors February 17, 1970, and in revised form June 12, 1970.
"f Boeing-Aircraft Company, Renton, Washington 98055.
: Department of Statistics, Iowa State University, Ames, Iowa 50010.
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making and economic considerations. References [1], [2], [4], [6], [7], [8] and the
references cited therein have similar emphasis.

2. The value distribution. Let % be the m-simplex, i.e., the set of points
p’(p(’) ..., p(")) with p(i)>= 0 and p")= 1. Consider an m x n game matrix
11Xj [, 1, ..., m; j 1, 2, ..., n. The value of the corresponding game is

V max f(p),
pam

wheref(p), continuous and concave on am, is given by

f(p) min p(i)xij.
j= 1,2,..-,n i=

Hence the event V > v is equivalent to the event"

E "for at least one p in %, f(p) > v.

Let p,, P2, "’", P be the points of a suitable grid G in am. Define the approximat-
ing events

E= U E,,
k= 0,1,...,v

where E, f(Pk) > v.
It is readily verified using the continuity of f(p) that E is the set-theoretic

limit ofE if G[I 0, in which case [3, p. 40]

(2.1) lim P{E} P{E},

and inclusion-exclusion gives

k=0
(k, k2)

k <k2

(2.2) + Z Z (ka, k2, k3)
kl <k2 <k3

where, for example,

+ (-ly(O, 1,2, ..., v),

<k,, k2, k) P{E,, V E, E.}.

We now discuss a reduction of (2.2), leading to (2.5) when m 2. Consider
any index set (k, ..., kh), to be denoted by . Denote the corresponding proba-
bility (k, ..., kh) by (,) and the corresponding subset (Pk,,’’’, Pkh) of G
by (). Let cg() be the convex hull of() and let 5e(#d) be the set of extreme
points of

It is useful to single out sets oX( with the property that

(2.3)

Probabilities (;U) whose corresponding index sets satisfy (2.3) cancel in (2.2);
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hence they can be excluded from the summations in (2.2). In other words, the sum-
mations in (2.2) need be extended only over index sets X satisfying

(2.4) cg(j#) n [G- ()] .
The cancellation of terms <;U) with J{" satisfying (2.3) is due to two facts"

(i) In view of the concavity off over am, [9(1) (,2)] implies
(,2)]. In other words, given (o) is the samefor all index sets ,;Ufor which

(ii) For given 5, consider all index sets Jtfor which (J#) 5 andfor which
(2.3) is satisfied. Of the probabilities .) in (2.2) corresponding to these index sets,
half appear in subtracted sums, and half in added sums. For example, if Gv

(p, p’), then the index sets J with 5() 5 and 5/’, 5 U (p), U (p’), and
5 U (p, p’), and it is clear that, if the term (...) of (2.2) corresponding to 5
appears in a subtracted sum, then so must the term (...) corresponding to
5 U (p, p’), while the terms (...) corresponding to 5 U (p) and U (p’) must
appear in added sums.

We next consider expression (2.2), and its reduction by cancellation, for the
special case m 2, with Gv the grid composed ofthe evenly spaced points Pk (k/v,
1 k/v). For this case, the preceding considerations specialize as follows. Assum-
ing first that Jg is not a singleton, we have that cg(j) is the closed line segment
(sf) just containing all the points of (sf), (;f) consists of the endpoints of
(J,() and condition (2.4) specifies that, excepting its endpoints, J(J) contains
no points of G. Again, if J contains only k, then cg(ag)= (J#)= (P0, and
(2.4) is met. In other words, (2.4) is satisfied either when sg is a singleton or when
(Jt) consists of two adjacent points of the grid, and the cancellation of terms
(...) corresponding to all other index sets J reduces (2.2) to the more manage-
able expression

v-1

(2.5) <k>- <k,k+ 1>.
k=O k=O

Further, the summands of the second sum in (2.5) may be written

(k,k + 1) =P X + 1 X > v,

k + 1)v Xa2 +

+ 1 X2n > V, X1, + 1 X2n > v

and similarly for the summands (k).
Now define:
F :A probability distribution on the plane,
A(p, v):the region pxl + (1 p)xz > v,
B(p, v):the region px + (1 p)x2 <- v, x2 >-_ v,
C(Pl, P2, v):the region px + (1 pl)x2 > v, pzxl q- (1 pz)x2 > v,
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v, F): { A(p,
fl(p, v, F): Pv{ B(p, v)},
(Pl, i02,

Then, assuming independence of columns, i.e., among pairs (Xi,Xi), and
supposing that (Xlj, Xj) is distributed according to Fj, expression (2.5), and hence
P{E}, may be written

a -,v, -,,v,F + a(1,v, Fj).
k=O j=l Y j=l V V j=l

In accordance with (2.1), we must now take this to the limit with v. To this
end we need the following lemma.

LEMMA 1. Suppose that {O(p)} is a sequence of continuous functions on
[0, 1], converging uniformly to O(p). Let {Fj;j 1, n} be any set of bivariate
distributions such that the n functions (p, v, Fi) are continuous in p for p [0, 1] and
the n.functions y(p, pe, v, F) are uniformly (with respect to P [0, 1]) continuous
in pa at Pc P. Then

lim a v, ,, v, Fj
k=0 j=

(2.6)

j=l dO

Before proceeding to the induction on n that verifies the lemma note that the
introduction of the sequence {(I)v} is not an idle complication beyond what we
actually require; rather, the (I)v seem required in the induction argument. Also, to
abbreviate, set

(2.7) 1-[ a(p, v, Fi) =- c(p, j, n).
i4:j

Proof To begin with, the right-hand side of (2.6) is well-defined, since O(z)
(z, j, n) is continuous and fl(z, v, Fj) is nondecreasing.

For n 1, we must show that the limit with v of

is zero. But

Z -,V,

so that (2.8) is bounded by

k=0 V

+ I sup
O_<k_<v-1

-,v,F y
V

kk+l

-,, v, F O(p) dfl(p, v, F)
V V

,v,F) fl --,v,F ,v,F

-, v, F O(p) dfl(p, v, F)
V
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of which the first term tends to zero by the continuity of (I) and monotonicity of
and the last by the uniformity of the convergence of the (I)v.

To complete the induction using evident abbreviations we write the expression
on the left-hand side of (2.6):

Regarding the first term on the right-hand side of (2.9), set

(I)*(p) (I)(p). [(e(p, v, F,) + 7(P, P + 1/v, v, F,))/23,

so that product of the first two braces of the summands of that term may be
written (*(k/v); and (I)*(p), in view of the assumed uniform continuity, tends
uniformly with v to

(2.10) (I)*(p) _-- ((p)o(p, v, F,).

Hence the induction hypothesis for n 1 implies that the first term of (2.9) tends
with v to

(2.11) (*(p)a(p,j, n 1) d(p, v,Fj).
j=l

Similarly, by using the induction hypothesis for n 1 and defining

[ n-iI nl-i1 1 Fj)/](I)**(p) _= (I)(p). a(p, v, Fj) + 7 P, P + -, v, 2
j=l j=l V

**(p) tends uniformly to

n-1

(2.12) (**(p) =_ (b(p) 1-[ a(P, v, Fj),
j=l

and the second term on the right-hand side of (2.9) tends to

(2.13) (I)**(p) dfl(p, v, F,,).

By using (2.7), (2.10) and (2.12) it is clear that (2.11) and (2.13) add to the desired
right-hand side of (2.6).

Substituting (I)(p) 1 in Lemma 1 now gives the limit required in (2.1) and
the conclusion that

(2.14) P{ V > v} a(p, v, Fi) dfl(p, v, FI) + (1, v, Fi)
1=1 i=1

when the columns of Xi2][ are independently distributed according to distributions
Fj satisfying the continuity conditions of Lemma 1.
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Defining

v)
fl(p’ v, Fj) for p e [0, 1),

W(p,
o(1, v, Fj)/n for p 1,

we can abbreviate (2.14) to

(2.15) P{ V

Finally, define

B*(p, v)" the region px + (1 p)x v, x2 v,
fi*(p, v, F)" PF{B*(P, v)}.

Since

(p, j, n)

i=1 i=1

an expression alternate to (2.15) is

(2.16) P{ v >
j=

where

v)
fl*(P’ v’ Fj) forpe(0,1],

W](p
(0, v, Fj)/n for p 0.

We denote the right-hand side of (2.14), (2.15) or (2.16) by J(v;F,..., F,).

3. Implications. Consider the linear program (LP)"

min {u + u},
(3.)

Xu + X2ju2 1, j= 1, ..., n, u, u2 O.

It is well known that, for yz 1, LP has the optimum z > 0 if and only if the
game G with matrix [[Xj[[ has the value y > 0. Hence assuming independence
among pairs (XIj, X2j) with (Xj, X2j) distributed according to F satisfying the
continuity conditions of Lemma 1, we have, for > 0,

P{optimum of LPe (0, t)F, ...,
(3.2)

Consider now the program (1.2). With the change of variables u byi, that
program may be written"

min {u + u2}

(alj/dj)u + (a2j/d2j)u2 1, j 1,..., n, ua,u2 O,
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where dij bicj and so is, in fact, essentially of form (3.1). Hence suppose inde-
pendence among the pairs of coefficients (a 1, azj) for the program (1.2), and denote
the distribution of (alj/dlj, azj/d2j) by Ft. Then, if the Fj satisfy the continuity
conditions of Lemma 1, the probability that the optimum M of (1.2) is in (0, t)
is given by J(1/t; F1,..., F,). Now the optimum M must be positive, and the
alternative to positive M is that (1.2) is infeasible. Hence our stochastic analysis
of (1.2) is completed by noting that

(3.3) P{(1.2) infeasible} 1 lim J(s;F1, ..., F,).
s0+

Section 2 also provides some information about the geometric behavior of
P{V> v} or P{M e(0, t)}. For example, concerning the former, suppose that
all Fj are the same, say F, and that F, besides satisfying the continuity conditions
of Lemma 1, also is such that fl(p, v, F) is strictly increasing for p e [0, 1]. Then by
defining

p max (p, v,F),
O=<p__<l

it is clear that P{ V > v} is geometric in p, in the sense that, provided p > 0,

The values of the two 1 n games corresponding respectively to the two rows
of XjII are of course geometric in a(0, v, F) and a(1, v, F) respectively.

Finally, it is of interest to verify the second formula of [2] for m 2. This is
readily done by choosing the Fj circular and centered at (v, v), in which case (2.14)
yields

P{ V > } (n)(1/2)"- 1(1/4)

as required.
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ERRATUM"
OPTIMAL CONTROLS FOR SYSTEMS WITH TIME LAG*

A. HALANAY

In 4, p. 231 the inequality expressing the maximum principle should read

H(t, if(t), )(fll(t)), :(flk(t)), U, l(fll(t)), t(flk(t)), b)
+ H()’l(t), )(’l(t)), )(t), )(fik(l(t))), ()’,(t)), U,

(/h(7,(O)), 6)()

+ H(7(t), )(7g(t)), )(fl,(y(t))), ..., (t), ff(yg(t)), (t(flx(y(t))),... u, b)(t)

_<_ the same sum where u is replaced by 0(t).

On p. 233 the coordinate kp should be

k Fp(t, (t),..., Yc(fi(t)), u, O(fil(t)), (fl(t)), b)

-Fv(t,Y(t), ..., (fi(t)), (t), (fi(t)),..., (fi(t)), )

+ [F(yl(t), )(71(t)), )(t), ..., )(fi(71(t))), fi(71(t)), U, fi(fi(7,(t))), b)

-Fp(7l(t), :(7,(t)), :(t), ..., :(flk()’,(t))), O(71(t)) O(t),

/(/k() (t))),/)]) (t)

+ [F(y(t), )(7(t)),..., )(t), O(y(t)), ..., u, /)

--Fp(y(t), )(y(t)),..., )(t), O(7(t)), , if(t),/)])(t).

This Journal, 6 (1968), pp. 215-234.
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OUTPUT CONTROLLABILITY AND SYSTEM SYNTHESIS*

A. S. MORSEf

Abstract. The geometric theory of linear multivariable systems is extended by introducing the
concept of a controllable output subspace. Necessary and sufficient conditions for an output subspace
to be controllable are given. As an example application, controllable output subspaces are used to
solve a generalized state-feedback decoupling problem.

1. Introduction. It has recently been shown that the geometric theory of
[1] can be successfully applied to a large class of problems in. linear systems
synthesis. In this article, the theory is extended to encompass systems of the form

(1) (t) Ax(t)+ Bu(t),
(2) y(t) Cx(t) + Du(t)
which differ from those previously considered by the presence of D in (2). The
extended theory is based on the concept of a controllable output subspace which
is discussed in the next section. This concept is closely related to the idea of a
controllability subspace which plays a key role in a number of problems in linear
systems synthesis. As an application of the extended theory, conditions under
which the above system can be decoupled with state feedback are found.

With regard to (1) and (2), x is an n-vector, u an m-vector and y a p-vector.
All matrices above and below are constant, real-valued and of appropriate size.
Script letters are used for real vector spaces; f, , 0 are the state, control and
output spaces respectively for (1) and (2). Matrices and their maps are denoted
by the same symbol. For a linear map M :/ e, {M} or / denotes the range
of M. The notation {AI} is defined as

{A[} + AM + + An-1,..

It will be convenient to regard Y" and o# as subspaces of g f . With
so defined, P (respectively Q) denotes the projection from g onto f (respectively
along 0 (respectively f). Use will be made of the extended maps

A’ #, e-- APe;

B "ll #, u -- BuC g - , e -- CPeD "# , u -- Du.

Note, in particular, that P P., C QC CP, P and Q/.
Below A (respectively B, C, D) and its extension $ (respectively B, C, ) will be
denoted by the same symbol A (respectively B, C, D). The interpretation, in each
instance, will be clear from the context.

Received by the editors May 26, 1970.
"[-Office of Control Theory and Application, NASA Electronics Research Center, Cambridge,

Massachusetts. Now at Department of Engineering and Applied Science, Yale University, New Haven,
Connecticut 06520.
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The following development is based on the results of [1] which are assumed
to be known.

2. Controllable output subspaces. With regard to (1), consider the control

(3) u(t) Fx(t) + Gv(t),

where v (q-space), (3: --* ’ and

(4) F :g //.

For the extended map F in (4) to be consistent with its associated matrix in (3),
the former must satisfy

(5) F FP.

With (3) applied to (1), the largest subspace c f which v can completely
control is given by

(6) {A + srl{UG}}.

If for fixed A, B, N c f, a pair (F, G) exists for which (6) is true, then is called
a controllability subspace of (A, B). Existence conditions providing a characteriza-
tion for controllability subspaces are given in [1].

In [1]-[3], the fundamental role played by controllability subspaces in linear
systems synthesis is discussed. However, to study systems with output relations
of the form in (2), an additional concept is required. Observe that application of
(3) to (1) and (2) affects not only state controllability, but output controllability
as well. Thus if 5 is the largest subspace of which v can completely control,
then clearly

(7) 5 (C + DF)I + {DG}
with given by (6). This suggests a problem similar to the controllability sub-
space problem of [1]. Namely, for fixed 5e, 0#, find conditions for the existence of
a pair (F, (3) and a subspace ? c Y" for which both (6) and (7) are satisfied.

Conditions (6) and (7) may be simplified.
LEMMA 1. Let the maps ’g , "ll be fixed and suppose P.

Iffor fixed G,

then

(9)

l {PflIPiG}}, =_ Qfll + Q{G},

P{I ( + 9)}, 0{IN N ( +

Conversely, if #l and 5 are fixed subspaces satisfying (9), there exists a G for
which (8) is true.

Proof. From the relation fl,P follow the identities

(10)
P{3[{/}G}} =_ {PIP{G}},
Q{3[{/}G}} =_ Q3{PflIP{G}} +

Write U {AI{/G}} and
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If (8) is true, (10) provides
But {/G} cOcNO(N+5), so {AIf)(N+)} =. Now

fl ( + 5) c N + 5 and ifU c N + 5,U N + 5. Thus 3- N? + 5.
There follows P/U P- c N and Q Q- 5. Therefore

P,, Qf,, and (9) is true.
Conversely, if (9) holds, N P and Q. By Lemma 4.1 of [1], there

exists a G such that - {/]I{/G}}. It follows from this and (10), that (8)is true.
This completes the proof.

Recalling constraint (5) and applying Lemma 1 with

=_(A + BF) + (C + DF),

B=_B+D

we can state the existence question as follows.
Let A, B, C, D, 5 be fixed. Find conditions for the existence of a map

F "ll and a subspace - such that

(11) F FP,

(12) 5 Q--,

(13)

If F and - satisfying (11)-(13) exist, 5 will be called a controllable output
subspace of (A, B, C, D). The subspace P- will be called a generator of 5.

It is possible to solve this problem and thus to characterize controllable
output subspaces. Write -(U) for the maximal controllability subspace of
(A + C, B + D) contained in a fixed space U g. A procedure for finding --(U)
is given in [1]. Our main result is now presented.

THEOREM 1. Let (A, B, C, D), l f, 5 # be fixed. Then 5 is a controllable
output subspace with generator if and only if
(14)

Proof. If 5 is a controllable output subspace with generator , then there
exist F and - satisfying (11)-(13) with N P.. Thus,

(A + C +(B + D)F)( +9) =(A + C +(B + D)F)P( + 5)

(A + C + (B + D)F)-

By Theorem 4.3 of [1], the controllability subspace - is maximal relative to

+ 5. That is, - -(N + 5) and (14) is true.
Conversely, if (14) holds, 5

as a generator if there exists an F satisfying (11) for which

(15) ( + 5) {A + C + (S + D)FI{B + D} fl ( + 5)}.
Since --_= -( + ) is a controllability subspace, by Theorem 4.1 of [1],
(A + C)ff c {B + D} + . This and (14) provide

(A + C) =(A + C)ff {B+ D} +fie {S + D} + + 5.
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By Lemma 3.2 of [1], there exists an F such that (A + C + (B + D)F) c + 5.
If F =_ FP, then

(A + C + (B + D)F)( + 5) (A + C + (B + D)F)I I + 5.
By Theorem 4.3 of [1], (15) holds for this choice of F. In addition, F satisfies (11)
as required. This completes the proof.

In general, a fixed controllable output subspace may have many generators.
It is useful, therefore, to characterize controllable output subspaces without a
hypothesis involving generators. This is easily accomplished.

COROLLARY 1. Let (A, B, C, D), 5 be fixed. Then 5 is a controllable
output subspace if and only if there exists a controllability subspace -- of (A + C,
B + D)such that

(16) 5 Q..

If (16) holds, =- P is a generator of 5.
Proof. Necessity is obvious. Take - ff( + 5) and apply Theorem 1.
For sufficiency, note that - = + 5. Thus 3- = -(N? + 5), so 5 Q@

= Qff( + 5) = 5 and P = Pff( + 5) = . It follows that and
5 satisfy Theorem 1 which, in turn, provides the desired result.

Remark 1. It is clear from Corollary 1 that 5 is a controllable output sub-
space if and only if 5 Q(y" + 5).

Remark 2. For fixed and 9 satisfying (14), let F be the class of F for
which (11) and (13) hold with - if(N? + ). By Theorem 1, this class is non-
empty. Starting with the Theorem 4.2 of [1], it is a simple matter to show that the
spectrum of A + BF restricted to can be freely assigned by suitable choice
ofF6 F.

3. Application to state-feelbaek leeoupling. Suppose in (2), the system output
y consists of k subvectors

Yx

y=

Yk

which are to be independently controlled. Algebraically, the structure of y is
equivalent to the assumption

(17) 1 ( ( k,

where i is the output subspace associated with Yi. Consider a control of the form

(18) u(t)- Fx(t) + Givi(t).
i=1

The object of decoupling is to choose F and the Gi so that v can control Yi without
influencing yj for j - i. If i is the controllability subspace of (A, B) associated
with vi, these requirements dictate that

(19)
i {A + BFJ{BGi}}, i= 1,..., k,

i (C + DF)i + {DG,}, i= 1,..., k.
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Utilizing the results of the last section, we may formulate the decoupling problem
as follows.

Find conditions for the existence of a map F’g ll and subspaces -,
.., k, such thati--1,

(20)

(21)

(22)

F FP,

{A + C + (B + D)FI{B + D} f-I -}, i= 1,...,k,

In short, the must be controllable output subspaces and they must all be
constructed with the same F.

To study this problem, use will be made of the following lemma.
LEMMA 2. Let i, i= 1,..., k, be fixed subspaces satisfying (22). Write F

for the class ofF for which (21) holds and assume F is nonernpty. Then there exists
an F Ffor which (20) is true.

Proof Let Fo. If Fo=FoP, set F=Fo. Suppose Fo#FoP. Write

@ r’l , i= 1,..., k, where is an arbitrary completion. Since

i Q, /c 5f + i. Thus,

i=1 i=1

i=1

Therefore the space =an F such that
is isomorphic to its projection on 5f and there exists

i=1 i=1

Write F FIP. Then for 1,-.., k,

(A + C + (B + D)F) (A + C + (B + D)Fo)-- c .
By Lemma 4.3 of [1], F . In addition, F FP as required. This completes the
proof.

Using Lemma 2, we can now translate the decoupling problem (20)-(22) into
a formulation for which the results of [1] are directly applicable. Define

(23) =Y’+ %, i= 1,.--,k.

The translated formulation is as follows.
Find conditions for the existence of a map F’g ll and subspaces
1, .-., k, such that

(24) {A + C + (B + D)FI{B + D} rl -;}, i= 1,..., k,

(25) + =g, i= 1,...,k,

(26) c fl ,/ffj, 1,..., k.
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It may easily be checked that (25) and (26) are equivalent to (22). If this problem
has a solution, Lemma 2 insures the existence of an F e F for which (20) is true.

Theorem 7.1 of [1] provides the solution to this problem for the case when
the number of independent open-loop system inputs equals the number of output
subvectors to be controlled. This is equivalent to the assumption

(27) dim ({B + D}) k.

We now give the solution to the decoupling problem, stated in notation
consistent with (20)-(22).

THEOREM 2. Let (27) hold. The state-feedback decoupling problem has a solution

if and only if
Q(, + c)= %,

and
k

{B +D) Z ({B + D) [ (+ )).
i=1

Furthermore, if F, is any solution,

( + c),

i=l,...,k,

i= 1,...,k.

Remark 3. Theorem 2 asserts that if a solution exists the are unique. It
follows that the generators i P3-- are also unique.

4. Conclusion. The state-feedback decoupling problem is by no means the
only problem to which the above ideas may be applied. With some effort, con-
trollable output sabspaces may be used to extend the general decoupling problem
of [2, the triangular decoupling problem of [33 and perhaps the problem of
system inversion [4].
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ON INFORMATION STRUCTURES, FEEDBACK AND CAUSALITY*

H. S. WITSENHAUSEN-

Abstract. A finite number of decisions, indexed by s A, are to be taken. Each decision amounts
to selecting a point in a measurable space (U, 4). Each decision is based on some information fed
back from the system and characterized by a subfield of the product space (l-I, U, 1-I 4). The
decision function for each can be any function 7 measurable from o to .

A property of the {o,},a is defined which assures that the setup has a causal interpretation.
This property implies that for any combination of choices of the y,, the closed loop equations have a

unique solution.
The converse implication is false, when card A > 2.

1. Introduction. In control-oriented works on dynamic games (in particular,
stochastic control problems) one usually finds a "dynamic equation" describing
the evolution of a "state" in response to decision (control) variables of the players
and to random variables. One also finds "output equations" which define output
variables for a player as functions of the state, decision and random variables.
Then the information structure is defined by allowing each decision variable to be
any desired (measurable) function of the output variables generated for that player
up to that time.

Such a setup assumes that the time order in which the various decision
variables are selected is fixed in advance. It assumes that each player acts as if he
had responsibility only for one station. It assumes that this station has perfect
memory.

For large complex systems these tacit assumptions are unlikely to hold.
In modeling more general situations it is often natural to consider the number of
decisions to be programmed as finite, even though the alternatives to be considered
can be infinite in number at each decision. But in the larger systems each "player"
is in fact some form of organization unified only by its aims and central pre-
planning of its policy. Implementation of policy is left for execution by "agents"
(which, of course, may be devices). The order in which the various agents of the
various organizations will have to act cannot always be predicted, and the informa-
tion available to different agents, even of the same organization, may be non-
comparable in the sense that, of two agents, neither one knows everything his
colleague knows.

These difficulties in specifying the information structure of a game were faced
and overcome in the early days of game theory 13, [2.

In this paper a different approach is proposed. The decision process is
considered as a feedback loop and the game is characterized by its interaction with
the policies of the agents, without prejudging questions of chronological order.
In this way the relation between causality and the existence of a unique solution
for any combination of policies can be brought into focus.

2. The classical theory. Von Neumann and Morgenstern [1] introduced a
general description of games in extensive form for the case where the number of

* Received by the editors January 15, 1970.

" Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974.
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decisions is finite and all variables range over finite sets. Their description is in terms
of the agents constituting a player’s organization. When the umpire calls one of
these agents in the course of the play, he provides him with certain data about
the situation and the agent must, on this basis, make a decision among a set of
alternatives. The agent’s decision function is decided in advance by the player.
The set of these functions for all his agents constitutes a player’s pure strategy.

One weakness of this setup was the assumption that an agent always knows
the value of the time variable (move sequence number). Soon afterwards Kuhn [2]
introduced a more general description which removes this restriction. A key device
of Kuhn is that one separate agent is provided for each possible set of data. Such an
agent will select an alternative, according to prior instructions from a player, if and
when he is called by the umpire. No data is furnished to the agent. In other words,
the decision functions are defined pointwise, with a separate agent for each point.
Most information structure theory [3]-[5], [10], [11] is based on Kuhn’s model.

The "atomization" of agents in this model is unaccetable when continuous
variables are considered for the choice variables. To define the expected payoff for
given pure strategies in a stochastic game, measurability on a-fields smaller than
the power sets is essential for the decision functions. For this reason a new formula-
tion of Von Neumann type, with the additional feature of measurability, was
constructed by Aumann [6].

For the purposes of the present paper, the Von Neumann and Aumann
formulations are inadequate because they assume a fixed known sequencing of the
decisions. The Kuhn formulation is inadequate for two reasons. First, the tree
describing the game is an expression of the general solution of the closed loop
relations. (These relations map information into decisions by the policies, and
decisions into information by the rules of the game.) For any combination of
policies one can find the corresponding outcome by following the tree along
selected branches, and this is an explicit procedure. Thus the difficulties that
might arise in solving the loop have been eliminated by defining the game in terms
of a general unique solution which must be found before the model can be set up.

Second, as Aumann has pointed out, once decisions are selected from a
continuum, measurability conditions must be imposed and this is not conveniently
feasible with a tree type model.

The "team theory" of Radner [9] is less general than the Von Neumann
description for a single player. Radner assumes that there is an initial chance
move and that the players’ agents receive information only about this chance move,
not about each other’s actions. This absence of feedback would be inappropriate
in most dynamic situations.

3. Games as multiple feedback loops. As is customary, random effects are
modeled as due to the mixed (i.e., randomized)strategy ofa player called "Chance,"
who may have several agents. Once this is done the system upon which the agents
act is completely deterministic.

Let n > 0 be the finite cardinality of the set A of all agents in the game.
Assume, without loss of gencality, that each agent in A will take one decision
during the game. If there are circumstances where an agent is never called to action,
then one can still let him make a decision which will have no effect. If an agent
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were to act more than once, then either the information available on all these
occasions is the same, and then these decisions are considered as a single one
picked from a product set, or else the information is not the same, and then one
provides a separate agent for each occasion.

Agent must select his decision from a nonempty set U on which is given a
a-field . The policy of the agent will be specified as the dependence of the
decision upon information available to him and upon the outputs of random
devices that may be used to mix a player’s strategy.

The crucial observation is that all variables in the game will be determined
by the decisions actually taken, that is, by the element u of the Cartesian product
u I-Ia U. Note that this Cartesian product consists of those maps u of A
into the union of the Us which satisfy u(e) =- us e Us for all in A. This definition
does not require any ordering of the set A.

For a nonvoid subset B of A, denote by PB the projection of the product
Haa Us upon the product ]-IB Us. The projection P(u)is just the restriction of u
to the domain B. Let P(u) P(u) =- us. Let 1-In ff be the product a-field on

1-In Us and let if(B) be the smallest a-field on U such that Pn is measurable.
Note that B B implies -(B) -(Be). The a-field if(A) 1-lA, also
denoted by -, is the finest field to be considered on U.

The outcome of the game, that is, the list of payoffs to the various players,
is determined by u. These payoffs are functions from U into real numbers, measur-
able on ft. Likewise, any data, about the situation, received by agent a, is informa-
tion about u and will determine a a-field , the information field of agent .

For a nonstochastic game and if only pure strategies are considered, the policy
that agent is assigned by his organization can be any function 7: U U
measurable as a map of the measurable space (U, o) into (Us, o). Denoting by
F this set of functions, let F HeA F.

Then for the combination of policies 7 F one has the problem of solving the
closed loop equations

(1) P(u) 7(u) for all e A.

When random effects are present, a sample space (, N, P) for the joint
behavior of all random devices is introduced. ’ is a a-field on the set fl and P a
probability measure on (, ’). For each agent a a-field c is given. The
possible policies of agent e are the functions

7:U x -Us
such that /-1()= x ,. Again F, will denote this set of functions and

Then for a given combination of policies F the problem is to find, for each
o in , solutions u (dependent on o) to the closed loop equations

(2) P(u) y(u, oo) for all e A.

One would like that there be one and only one solution for each o, with ’-measur-
able o-dependence. One also would like this solution to be obtained by actual
play of the extensive form of the game in a way compatible with causality.
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None of these properties will hold in general for an arbitrary information
structure characterized by nonvoid sets A, Us and a-fields ,, with the possible
additional specification of f, N and ,.

For such a structure to become a game one would have to specify a partition
ofA into players, a probability measure P on (fL ), the mixed strategy ofthe chance
player’s agents and the payoff function for each other player. The selection of
(, , ) and N must take into account that each player or coalition of players
uses an independent random device and that the chance player must be considered
as a separate coalition in that respect.

Only the information structure is of concern in this paper.

4. Somebasic questions. What condition on the fieldso expresses the causality
requirement? Since the requirement is a heuristic one, a formal condition (property
C below) will be stated and strong arguments given to relate it to the idea of
causality.

Define property S (solvability) as follows: For each 7 F and co f there
exists one and only one u e U satisfying the closed loop equations.

If property S holds, then for each 7 e F the solution defines a map M from
f into U. Property SM holds when this map is always measurable from (fL )
into (U, ). The importance of this property is that it makes the payoff of each
player measurable on the sample space, so that the expected payoff can be defined.

Another important consequence of property SM is that the induced fields
o, inverse images under M of, are contained in N. Thus conditional expecta-
tions can be defined with respect to o. Conditional expectations with respect to

are meaningless because this field is not on the probability space f. On the
other hand, the meaningful conditioning on o yields results that may actually
depend on 7. Casual treatment of this point has been a source of confusion in
stochastic control theory.

The following relations hold among these properties: C implies SM but,
surprisingly, SM does not imply C when more than two agents are involved.

5. The causality property. The main difficulty is one of notation. Let n be the
cardinality of the set A of agents, and for 1 __< k __< n denote by Sk the set of all
injections of {1, 2,..., k} into A, i.e., the arrangements without repetition of k
elements from A. Let S + I.J 7,= Sk, So {} and S So U S +.

For 0 <= <= j <= n let Tj" $2 Sz be the truncation map which restricts
s e $2 to the domain {1, ..., i} or to for 0.

For s e S denote by ]s] the range of s and by s the cardinality ofls]. Note that
s SIII

It will be assumed that for all in A, and x in Us, the singleton set (x) belongs
to. As a consequence, the singletonsof U belong to 1-[. In particular,
the singletons of U belong to .

Physically, decisions can be considered as events in space-time. Then the
causality condition means that, for any play of the game, the actions of the agents
can be ordered and that the information available to an agent may depend on
decisions of agents acting earlier but cannot depend upon the decisions of agents
acting at concurrent or later times. In the language of relativity theory two agents
act at concurrent times if the interval separating their actions is of spatial, as
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opposed to temporal, character. For different plays of the game the order may
turn out to be different because the decisions made were different and these
decisions affect the space-time positions of other decisions.

Thus the causality condition requires that the field o, subject to the condition
that the set of agents acting before e is B, is contained in the field (B) determined
by the decisions of the earlier agents.

A way of stating this requirement precisely is the following.
Property C. An information structure {Uo,,a,}aeA is said to possess

property C when there exists a map qg" U --, S, such that for all k, s, E satisfying
__< k __< n, s ((z1, tk) Sk, E , one has

(3) E ["1 (T,o q)- l(s) 6 (IT- l(s)l).

Note that in general a set E in o need not belong to (B) for any proper
subset B of A {}. Neither is it necessary that the set (T q)- l(s) belong to
for any . Also note that for k 1 one has To(S) and () {, U}.

In abbreviated notation the property can be stated as the existence of q such
that for 1 =< k =< n and s (, ..., k) in Sk, one has

o VI (To q)-X(s)= ff((z1,... (Zk_ 1)"

The function q9 need not be unique, if only because a transposition of concurrently
acting agents cannot have any effect.

LEMMA 1. If property C holds with qg, then for all s S +,
(4) sll (19) I(S) e "(1T sll-a

Proof. For s e Sk one has s k and since U belongs to 0 for all a, (3) with
E U yields (4).

This lemma says that after k- 1 agents have taken their decisions, the
selection of the next agent to act is thereby determined mathematically. None of
the agents, though, need to know this selection. Even the selected agent need not
know that he is the kth one to act nor which k 1 agents have already acted.

LEMMA 2. The function T" q9 has a constant value (*) and , {, U}.
Proof. Lemma 1, with s 1, shows that T] q9 is measurable on ff()

{5, U} and is therefore a constant. Denoting this constant by (a*), property C
with k and s (*) gives for any set E in ,,
which shows that , {, U}, completing the proof.

The interpretation of Lemma 2 is that there has to be at least one "starting
agent" and that a starting agent cannot have any information about decisions
taken since none have been taken yet. For instance, many games begin with
either one oftwo agents depending on "the toss." In that case the starting agent is a
chance agent who decides according to a fixed mixed strategy the outcome of the
toss. The selection of the next agent then depends on this outcome that is on the
first agent’s decision.

The same argument as in Lemma 2 shows that the function T q9 is measur-
able on ({0*}).
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6. The umpire’s information fields. Continuing with the assumption that
property C holds with function qg, the possibility for the umpire to organize the
play in an orderly manner is to be demonstrated. To this end, introduce the
umpire fields (k) defined as follows:

(5) ’k { [(Z,o)-l(s)UI fllforallsSk, f(Isl)}
sS,

forl <_ k <_ n.

Heuristically (k) is the field characterizing the information available to the
umpire after he has seen k agents take their decisions.

LEMMa 3. The collections of sets -(k) are a-fields on U. (1)= ({e,}),
.(k) C and (") .

Proof. That the k) are indeed a-fields follows from Auxiliary Lemma 1
(see Appendix) by specialization, noting that {(T, qg)- l(s)ls e Sk} is a collection of
pairwise disjoint sets covering U. For k I{sll 1 this collection has only one
nonempty member (T] <p)- 1(,) U. Thus

(a) {F(,)IF(,) ({*})} ({*}).
Each set Fs in (5) belongs to a subfield of . The same is true for each set

(T, q)- l(s) by virtue of Lemma 1. Thus each set in (k) belongs to .
For k s n one has Is] A and -(Isl) . Therefore, given a set F in, one may take F F for all s e S, in (5). This represents F as a set in -(").

Hence (").
A most important fact is that the umpire fields are nested.
LEMMA 4. (k) c (k+ 1) for 0 <= k < n.

Proof. The assertion is trivial for k 0. For 0 < k < n and E e (k), one has

E U [(T, (p)-l(s) f-1 F]
seSk

with F e -(Isl) for all s

Now since T, T+1 T,+I one has

(T,o (40) -1 (T+I T+lO (0) -1 (T,+I (D)-I (T+ 1)-1
for the inverse set mappings. Thus

Then

(To q)-l(s) U {(T,+ q)-’(s’)ls’ e Sk+l, s T+’(s’)}.

E U [F f’l U {(T,+I qo)-l(s’)ls’ e Sk+,, s T+ I(S’)}]
SSk S’

U U {F fl (T’+lo q))-l(s’)ls e Sk, s’ e Sk+ , s e T+ I(S’)}

U [FT+,(s,) N (T,+I q)-1(s’)].
s’Sk

But if s T+ I(S’) then, as sets, Isl Is’l, and therefore (Isl) (Is’l) so that

Comparison with (5) shows that E e (k+ 1) which proves the lemma.
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Heuristically, Lemma 4 says that the umpire enjoys perfect recall. The next
lemma says that when the umpire has obtained decisions of k 1 agents he is able
to tell which agent comes into play next.

LEMMA 5. For 0 < k <= n, T, q is measurable on

Proof. It suffices to show that for any s’ in Sk the set (T, q)- l(s’) is of the form

(6) U [(T,_I q)-1(@) I-I &]
sS-

with F in (Isl) for all s in S_ 1"

Let s* Tkk_l(S’) Sk_ and let F (T, q)-l(s’) for s s*, noting that,
by Lemma 1, this set is in .(Is*[), and Fs K5 for s Sk- {s*}.

Then (6) becomes

(T,_ (St).lo q)- (s*) (T, q)

Since s* T_ 1(St) the first of these sets contains the second and the intersection
is just the second set, establishing the claim.

7. The causal solution process. Assuming that property C holds with function
qg, it will now be shown that for ? s F the closed loop equations

(7) P(u) V,(u, o) for all A

admit, for each to, a unique solution and the dependence of this solution upon to

is measurable. Furthermore the solution process can be organized in a recursive
way, corresponding to causal play of the game under the direction of the umpire.

LEMMA 6. Equations (7) cannot admit two distinct solutions u, o for the same
decision functions 7 and the same value of to.

Proof. Since to is fixed, one need only consider the section 7(’, to) of the
functions Vs. These sections are -measurable and will be denoted by 7,(" for
brevity.

Assume then that for some u, fi U and for all in A, one has both P,(u)
7(u)and P() 7().
By Lemma 2, the relations

(8) =(,, ,),T(q(u)) T(q)(u))= s

(9) P,(u) P,(a), i= 1,..., k- 1,

hold trivially for k 1. But when (8), (9) hold for some k one has

(1 O) P(u) P()
Indeed, otherwise the sets

E )akl(Pak(bl)) and E

would be disjoint sets in the field o,k. This is so because of the assumption that the
singleton sets {P(u)} and {P(fi)} in U,k belong to ,. Then by property C, the
set

F E CI (To )-l(s),
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which contains u and the set

v E ["1 (T,o 99)- (s),
which contains , would be disjoint sets in the field ({, ..., a_ }). But since
that field is generated by the function P{,,...,_ ,} which takes the same value at u
and fi, a contradiction of Auxiliary Lemma 2 (see Appendix) is obtained.

If k n, then (8), (9), (10) state that u fi; if k < n, then one will have

(11) s’ T,+ ,(99(u)) T,+ ,(99(fi)) s’.

Indeed otherwise u and fi would belong respectively to the disjoint sets

(T,+ 99)-l(s’) and (T,+ 99)-1(,). By Lemma 1 these two sets both belong to
the field -({al, .", ak}). This field is determined by the function Pt,,...,k}, which
by (9), (1 0) takes the same value at u and ft. Thus auxiliary Lemma 2 would again be
contradicted.

Now with the adjunction of (10) and (11), the relations (8), (9) hold with k
increased by unity. Thus Lemma 6 follows by induction.

The successive steps of the recursive solution process, given a set of maps
7’U x gl U, are described by maps

M’UxU,

where the superscript , refers to the system of decision functions and k 1,
These maps are defined with the help of an arbitrary reference element r e U.

The action of M, is defined as follows"

(12)

P(u) for a e T,_ 1(99(u))1,

P,(M,(u, to)) 7(u, to) for a (99(u))k,

P(r) otherwise.

LEMMA 7. The function M is measurable, as a map of the measurable space
(U , -- 1) ) into the measurable space (U, )).

Proof. The set U can be partitioned into the sets (T, 99)- l(s) with s ranging
over S. By Lemma 5 these sets belong to -t- 1) and, a fortiori, to .tk) (Lemma 4).

The restriction of M to each set in the partition leaves the sequence
s (a l, "", a) unchanged because it preserves the values u,,...,uk_, upon
which the restriction of T, 99 to the same domain depends.

On each set in the partition, the division of the agents into the three groups of
(12) is fixed. By the definition of the umpire fields it thus suffices to check that for
each s (al, "’", a) on S the restriction ofM, to (T, 99)- l(s) gl is measurable
from the field ({a, ..., a_,}) to the field ({al, "’", a}). By definition
of the latter field, it suffices to check the measurability of P; M,, restricted to the
same domain, for 1, ..., k. Now for 1,..., k- 1 the restriction is the
projection Pi defining ff({al, "", ak-1}). For the index k the function 7 is
obtained. This function is measurable on o 3 and the intersections of sets in

o with (T, 99)-1(s) are in -({al, "’", a-l}) by virtue of property C. This
establishes Lemma 7.
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Heuristically, the maps M{, correspond to the idea ofstate transition equations.
From that point of view it is the field k) that represents the state (of knowledge
of the umpire).

THEOREM 1. Property C implies property SM.
Proof. Since M? is measurable on o) and o)= {, U}, this

function may be considered as a measurable map ] of (fL M) into (U,
For 1 < k =< n define, recursively,

(13) M,(o9) Mk(M_ 1(o9), 09).

Then M, is the desired solution map. Indeed, the procedure (13) establishes in
succession and leaves thereafter invariant the following equations"

(o(u)) *,

u, ,(u, co),
(14)

((u)),

u,, ?,(u, ).

Therefore, the closed loop equations (7) will be satisfied.
The solution is uique for each by virtue of Lemma 6.
Finally, by auxiliary Lemma 3, the composition of measurable functions

yields measurable functions

(,) (v, ).
For k n one has ff ff (Lemma 3), so that the solution map is measurable
as claimed.

8. Noncausal information structures. In exploring the possible validity of the
implication S C, only sections G(’, ) for fixed fl are involved. Therefore
the -dependence of ? will be suppressed.

The precise situation is described by the following theorem.
THEOREM 2. Property S implies property C when n or 2. The implication is

false for n > 2.
Proof. (i) Suppose n 1, and property S holds. Then A {a}, U U,

c . If a set E in d is nonempty and has nonempty complement U,
then choose Uo E, o EC and (u)= Uo for u E, o otherwise. Then is
measurable on and the closed loop equation u u G(u) has two distinct
solutions uo and o. Since this contradicts property S no such set E can exist,
which means that {, U}. Then property C holds as claimed. By interchang-
ing Uo, o in the definition ofG a contradiction to existence, instead ofto uniqueness,
is obtained. The two types of contradictions correspond to the two forms of the
classical liars paradox.

(ii) Suppose n 2and S holds. Then A {a, fl}, U U x U,, G x ,
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If for some fixed u’ U one had a set E in such that both E and its comple-
ment E have a nonempty intersection with the set {ulP(u) u’), then a contra-
diction to S is obtained by taking 7(u) u’ and constructing 7, as in (i). Hence
all sets E in are cylindrical, in the sense that (u,, u)e E implies (fi,, u)e E for
all fi in U,. This means that c ({fl}). Likewise Je c ({e}). Therefore
property C will hold if and only if at least one of J, is the trivial field {, U}.
Suppose this is not the case. Then there are sets Eel, Fe such that
U E + U, U F + F are proper partitions and E x Ue, F x U, eo.

o -o o -o otherwise,Select u E, u U, u F, fi U. Define ,(u) u for u F Us, us
7a(u) u for u E Ua, fi otherwise. These functions are measurable on the
respective information fields and the closed loop equations admit the two distinct
solutions u u rio -o(u, fi) This contradiction proves the claim.u)and

(iii) That the implication does not hold for n 3 (and, afortiori, for larger n)
is shown by the following counterexample which is adapted from a counter-
example of R. L. Graham [7] to the corresponding conjecture in combinatorial
set theory.

With A {z, fl, } let Us U U {true, false} so that card U 8 and
2v. The notation xy will denote the Boolean expression "x and (not y)."

Let be the field generated by uafi. It consists of , U, {ulua true}, and
{ulua false}. Likewise let Ja be generated by ufi and by u,fia Then each
agent has a choice of four possible decision functions giving a total of 64 possible
combinations. It is easily verified that for each of these combinations the closed
loop equations are satisfied by exactly one of the eight elements of U. Since none
of the information fields is trivial, property C does not hold while property S does.

Thus the normal form of a game with such a structure is perfectly well-defined.
The strategies determine the outcome, but the extensive form ofthe game cannot b’e
played without some form of precognition.

Since the counterexample used in Theorem 2, part (iii), is nonrandom it
trivially satisfies property SM. This shows that property SM does not imply
property C.

The last question is a purely technical one: when C is not assumed, does
property S imply SM? In most special cases of interest the answer is yes, but in the
generality of the present paper this assertion appears to be false, though a counter-
example is not on paper.

9. Conclusions. The facts brought to light above are contributions towards a
systematic information structure theory. They are entirely compatible with the
more usual state equation-output equation formulation, as long as it is realized
that (i) the classical information structure is a very special one, and (ii) output
equations matter only by virtue of the fields they determine: different outputs
determining the same fields are equivalent.

The information fields belong to the lattice of all subfields of . When
games differ only as to information, relations between values and information can
be derived accordingly.

Various important notions can easily be made precise within the given
framework. For example, define a station as a set of agents, belonging to the same
organization, such that the set of information fields of these agents is totally
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ordered under inclusion (i.e., nested). A player (or coalition) enjoys perfect recall
when his whole organization forms a single station. Then it is clear that the
derivation of Aumann’s theorem on behavior strategies in [6] holds for games
atisfying property C when the player under consideration enjoys perfect recall as
just defined.

A physical interpretation of the noncausal information structures with
property SM, which exist by Theorem 2, appears rather difficult [12].

Appendix. A measurable space (X, ) consists of a set X and a a-field M of
subsets of X. A function f from measurable space (X, ) into measurable space
(y, cg) is called measurable when the inverse image under f of any set in cg belongs
to.

The following facts are simple exercises in Boolean algebra.
AUXILIARY LEMMA 1. Let S be a nonempty set equal to the disjoint union of the

sets {Eili I}, where 1 is a nonempty index set. For each in I let i be a a-field
on S (more generally an 5-class in the sense of LoOve [8, p. 59]). Then the collection

of sets

(( ( -JieI (Elf3 Fi)[fr all i I, Fi i}
is a a-field (respectively, 9:-class) on S.

AUXILIARY LEMMA 2. Let f be a function from set X into measurable space
(Y, ) and let f- l(cg) be the a-field generated on X by f Assume that for some
xl, x2 in X, one has f(xx) f(x2). Then there is no set in that contains Xl but
not x2

AUXILIARY LEMMA 3. Let (X,), (y,cg), (y2,cg), (Z,@) be measurable
spaces and let (Y Y2, cgl cg2) denote the product space with the product field,
the smallest field such that projections are measurable. Suppose the functions f:
(X,)(Y,,), f2:(X,)-(Y2,2) and g:(Y Y2,Cg c2)--*(Z,) are
measurable. Then the function h :(X, )- (Z, ) defined by h(x) g(f(x), f2(x))
is measurable.
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NECESSARY CONDITIONS FOR JOINING OPTIMAL SINGULAR
AND NONSINGULAR SUBARCS*

J. P. McDANELL? AND W. F. POWERS

Abstract. Necessary conditions for the optimality of junctions between singular and nonsingular
subarcs are developed for singular optimal control problems. Previously known necessary conditions
concerning the continuity and smoothness of a piecewise analytic optimal control at a junction are
clarified and extended. The main result is that the sum of the order of the singular arc and the lowest
order time derivative of the control which is discontinuous at the junction must be an odd integer when
the strengthened generalized Legendre-Clebsch condition is satisfied. Also, new necessary conditions
which do not require an analyticity assumption are developed. These aid in characterizing problems
which may possess nonanalytic junctions.

1. Introduction. Optimal control problems in which the control variables
appear only linearly admit the possibility of the occurrence of singular extremals.
The analysis of such problems is complicated by the fact that the solution, in
general, consists of some combination of singular and nonsingular subarcs, the
number and sequence of which are not known a priori. If the solution is totally
singular, recent results [1], [2] are available to prove optimality in a large number
of cases. If the solution is totally nonsingular, it is the familiar bang-bang control
generated by a switching function with isolated zeros, as determined by the
minimum principle. However, the mathematical characterization of optimal
controls which contain both singular and nonsingular subarcs is far from complete.

This paper is concerned with the problem of characterizing the continuity
and smoothness properties of the optimal control at a junction between singular
and nonsingular subarcs. The analysis was motivated by the preliminary results
obtained in this direction by Kelley, Kopp and Moyer [3] and Johnson 4].
We shall comment on their results in a later section.

2. Problem statement. The class of problems to which this analysis applies
is the following. Determine the scalar control u*(t), [to, tl], which minimizes the
functional

(2.1) J(u) G(t:r, x(tg)) + [Lo(t, x) + L,(t, x)u] dr,

where the system equation is

(2.2)

subject to the constraints

(2.3)

(2.4)

+/- fo(t, x) + f.(t, x)u

lu(t)l K(t), [to,

{to, X(to), tz, x(tz)} e s.
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Here x is an n-vector and S is a closed subset of R2n+ 2. The functions fo, fu, Lo, L,
are assumed to be analytic in both arguments in a suitable domain; K(t) is assumed
to be analytic in a neighborhood of each junction and lu(t)l < K(t) almost every-
where on the singular subarcs. Of course, the usual case lul <= K with K const.
is included as a special case. We restrict attention to a scalar control in order to
simplify notation. A similar analysis holds for each component of a vector control.

Clearly, the Hamiltonian for this problem is linear in the control, i.e.,

H(t, x, 2, u) 2rfo(t, x) + Lo(t, x) + [2rf,(t, x) + L,(t, x)]u.

The multiplier equations are then given by

(2.6) 5[ Hx(t, x, 2, u),

where Hx is also linear in u. The coefficient of u in (2.5) is called the switching
function, which we shall designate as 4(t), i.e.,

(2.7) (t) =_ I-l.(t, x(t),

The minimum principle (i.e., Pontryagin’s maximum principle in a minimum
form) states that for almost every e [to, tc] and each u satisfying lul <= K(t), the
optimal control u*(t) must satisfy

(2.8) H(t, x(t), 2(t), u*(t)) <= H(t, x(t), 2(t), u).

Therefore, as is well known, on each open subinterval of [to, s] there are two
distinct possibilities for u*. Either

(2.9) u*(t) K(t) sgn b(t)
or

(2.10) b(t) _= 0.

Equations (2.9) and (2.10) define, respectively, the nonsingular and singular
subarcs of the optimal control.

The class of problems defined above will be called singular control problems,
even though only a portion of the total trajectory may be singular.

3. Notation and definitions. The following definitions will clarify the
terminology used in this paper.

DEFINITION 1. A real-valued function g is said to be piecewise analytic on an
interval (a, b) if for each tc (a, b) there exist tl (a, tc) and t2 (tc, b) such that g is
analytic on the open subintervals (tl, tc) and (to, t2).

DEFINITION 2. A junction between singular and nonsingular subarcs of the
control is said to be a nonanalytic junction if the control is not piecewise analytic
in any neighborhood of the junction.

DErINmON 3. Let u be an optimal singular control on the interval It1, t2],
and let (d2q/dt2q) [H,(t, x, 2)] be the lowest order total derivative of H, in which u
appears explicitly with a coefficient which is not identically zero on [t t2].
Then the integer q is called the order of the singular arc.

Implicit in Definition 3 is the property that u first tppears explicitly in an even
order derivative of Hu i.e., it is correct to refer to q as an integer. For a proof of
this property see Robbins [5].
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We also need the well-known generalized Legendre-Clebsch necessary
condition for optimality of singular subarcs [3].

THEOREM (Generalized Legendre-Clebsch condition). On an optimal singular
subarc of order q, it is necessary that

Condition (3.1) hereafter will be called the GLC condition. By the strengthened
GLC condition we mean that strict inequality holds in (3.1).

In this paper it will be convenient to consider the lowest order derivative of a
function to be its zeroth derivative, by which we mean the function itself. We shall
use the notation

g(O) g, g(i) dig/dti, i= 1,2,

Also, where the context makes the meaning clear, we shall use u to designate the
optimal control instead of u*.

4. The junction theorems. As indicated in 1, the theory for totally singular
and totally nonsingular optimal controls is rather well developed. The main
difficulty with singular control problems occurs when both singular and non-
singular subarcs are present. Since a useful sufficient condition for such problems is
not available, one is led naturally to the study of necessary conditions which are
valid in the neighborhood of a junction between singular and nonsingular subarcs.
It is expected that such conditions can be used to eliminate candidate extremals
and/or predict beforehand the way in which singular and nonsingular subarcs
must be joined, e.g., whether the optimal control is continuous or discontinuous
at a junction.

If the optimal control is well-behaved in a neighborhood of a junction, then
the following property must hold.

THEOREM 1. Let t be a point at which singular and nonsingular subarcs of an
optimal control u are joined, and let q be the order of the singular arc. Suppose the
strengthened GLC condition is satisfied at t, i.e., (-1)q(c3/c3u)Ht,2) > O, and assume
that the control is piecewise analytic in a neighborhood of t. Let u) (r O) be the
lowest order derivative of u which is discontinuous at t. Then q + r is an odd integer.

Proof. Since Htu2q) is the lowest order time derivative of H, which contains u
explicitly, from (2.2), (2.5) and (2.6) we see that it must have the form

(4.1) Htu2q)(t, x, 2, u) =- A(t, x, 2) + B(t, x, 2)u.

Define the functions e and fl as follows:

(4.2) a(t) =- A(t, x(t), 2(t)),

(4.3) fl(t) =-- B(t, x(t), 2(t)).

From the hypotheses it is clear that and fl are continuous and have at least r
continuous derivatives at to. The switching function q as defined by (2.7) has exactly
2q + r 1 continuous derivatives at to.

Let e be a nonzero real number of arbitrarily small magnitude such that

tc + e is a point on the nonsingular side of t and t e is a point on the singular
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side. Let u, and Us designate the control u on the nonsingular and singular sides of
to, respectively. By u,i)(tc) and ui)(t) we mean the limit as e - 0 of ut(t + e) and
ut(t e), respectively.

We wish to expand 4(t + e) in a Taylor series about to. Let k 2q + r.
Then btk) will be the lowest order derivative of the switching function b which is
discontinuous at t, and since b 0 on the singular side of t, the first nonzero
term of the Taylor series will be the term containing q5tk). Noting that

(4.4) b)= -E + flu]

we can write

(4.5) 4(t + e)= . et)(t) + [3(-i)(tc)u,i)(t) + o&),
i=0

where Leibniz’s formula [6, p. 184] for differentiation of a product has been used
to differentiate flu,.

On the singular arc,

(4.6)

Therefore, -flus, and

(4.7) r) 7[_ flus]
i=0

Substituting from (4.7) into (4.5), we have

(4.8) b(t + G) . i=0

((2q) ( ._[_ U O.

u’)(t)] + o(8t’).

Ifr > 0,

(4.9) u,i)(tc) ui)(tc), i-0,-..,r- 1.

Therefore, (4.8) becomes

+ o().
(4.10) dp(tc + e) -.[3(tc)Eu(,)(tc)- u)(tc)]

Let a=-sgnb(tc + e) so that u,(t)= aK(t). Then recalling that u,(tc)
lim_o u,i)(tc + e)we have

(4.11) u,(tc) =- aKi)(tc), 0,..., r.

Now consider the following series expansion on the singular arc"

(4.12) aK(tc- e)- U(tc- e)= L (-e)i[aKti)(tc)- ui)(tc)] + O(er)"
i=0 l!

The right-hand side of (4.12) can be simplified using (4.9) and (4.11) to obtain

(-)
(4.13) aK(tc- e)- u(t- e)= [u(,)(tc)- ur)(t)] + o(8r)r!
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Substituting from (4.13) into (4.10) and recalling that k 2q + r, we obtain

(4.14) qS(tc + e) (- 1)
re2qr!

k!
fl(tc)[aK(t- e)- U(tc- e)] + o(e*).

From the application of the minimum principle on the nonsingular subarc (see
(2.9)) we have a 1 if dp(tc + e) < 0 and a -1 if b(t + e) > 0. Therefore, the
following inequality must hold:

(4.15) (-1)r2qfl(tc)[K(t ) 4- u(t )] < 0.

From the GLC condition we have

(4.16) (- 1)afl(tc) > O.

Multiplying the left-hand side of (4.15) by the positive quantity in (4.16) we obtain

(4.17) (-1)+2fl2(tc)[K(tc e) +__ U(tc e)] < 0.

Since lu(t)l _-< K(t) for all [to, ty], and the singular arc is assumed to be interior
almost everywhere, the bracketed quantity in (4.17) is strictly positive, regardless
ofthe choice of sign on

___
U(tc e). Also ez > 0 regardless ofthe sign of e. Therefore,

condition (4.17) reduces to

(4.18) (- 1)+ < 0

from which it is clear that q + r is an odd integer. This completes the proof.
Theorem 1 implies the following important corollaries.
COROLLARY 1. In q-even problems, assuming u is piecewise analytic and the

strengthened GLC condition is satisfied, the optimal control is continuous at each
junction.

COROLLARY 2. In q-odd problems, assuming u is piecewise analytic and the
strengthened GLC condition is satisfied, the optimal control either has a jump dis-
continuity at each junction, or else the singular control joins the boundary smoothly,
i.e., with continuous first derivative.

In the corollaries above, especially Corollary 1, which applies to the q-even
case, the assumption that u is piecewise analytic is not to be taken lightly. In fact,
the authors have not seen or been able to produce a q-even example with a con-
tinuous junction, i.e., the junction is usually nonanalytic if q is even.

The conclusions reached by Kelley, Kopp and Moyer [3] are consistent with
those stated in Corollaries 1 and 2, with one important exceptionthey ruled out
the possibility of a continuous junction for q-odd problems. This erroneous
conclusion resulted from the claim that continuity of u implies (c/u)H,2)> 0
which is not true in general, as can be seen from (4.15) (in which fl =_ (c/c3u)H,)).
That such a junction is realizable will be demonstrated by means of a simple
example in a later section.

Theorem 1 requires that the strengthened GLC condition be satisfied at the
junction point. While this is the usual and most important case, the possibility
exists that the GLC condition is satisfied with equality. To treat this case, note from
Definition 3 that for a qth order singular arc the GLC expression (3/63u)Hu2)
(i.e., fl) cannot be identically zero on the singular subarc. Therefore, in view of our
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analyticity assumptions, a derivative of some order must be nonzero at the
junction point tc even if fl(tc) 0. This leads to the following theorem, which is a
generalization of Theorem 1, but is stated separately to avoid obscuring the result
for the important case covered by Theorem 1.

THEOREM 2. Let tc be a point at which singular and nonsingular subarcs of an
optimal control u are joined, and let q be the order of the singular arc. Assume that
the control is piecewise analytic in a neighborhood of c. Let utr) (r >= O) be the lowest
order derivative of u which is discontinuous at to, and let (m) (m O) be the lowest
order derivative of the GLC expression (t3/3u)H2q)=- fl which is nonzero at tc.
Then, (i) if m <= r, q + r + m is an odd integer’(ii) if m > r, -sgn [fltm(t+)fltm(t-)]

(-- 1)q +r*".
Proof outline. The proof is similar to that for Theorem 1; however, in order

to obtain a nontrivial term in the Taylor series expansion for (tc + ), one must
consider higher order terms with the result that (4.15) is replaced by

(4.19) (-1)"e.z+fl(.’)(tc)[K(t e) +_ u(tc e)] < 0.

A Taylor series expansion for fl(t) on the singular arc yields

(4.20) fl(t F.)
(-- ’)mm)()-- -- O(g,m)m!

where the subscripts s and n on flm)(t) indicate the limit at tc on the singular and
nonsingular sides, respectively. Since fl")(t):# 0, from the GLC condition and
(4.20) we have

(4.21) 1)a + m,mm)(tc > O.

From (4.19) and (4.21) it follows that

(4.22) (- 1)++"flm)(t+ )flm)(t < O.

If m <__ r, flm) is continuous at t, in which case (4.22) implies that q + r + m is an
odd integer. If m > r, fl") may not be continuous at t, and the conclusion of
Theorem 2 for this case follows.

The main restriction in Theorems 1 and 2 is the assumption that the control is
piecewise analytic in a neighborhood of the junction. This hypothesis is usually
satisfied on the singular subarc, but not always on the nonsingular subarc. Thus,
we are led to consider properties which do not require the assumption ofanalyticity,
as stated in the following theorem. The functions A and B in this theorem are those
defined by the identity (4.1).

THEOREM 3. Let u be an optimal control which contains both nonsingular
subarcs and piecewise continuous, q-th order singular subarcs.

(i) IfH2) 4:0 on the nonsingular side of a junction, then the control is dis-
continuous.

(ii) If A O, B :A O, and K :/: 0 at a junction, then the control is discontinuous.
(iii) If u is piecewise continuous on the nonsingular subarc, H,2) 0 on the

nonsingular side of a junction, and B :/: 0 at the junction, then the control is
continuous.
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Proof. Using the same notation as in the proof of Theorem 4.1, and recalling
that H{u2q) 0 on the singular subarc, we have for case (i),

(4.23) (tc) + (tc)K(tc) 4:0 (tc) + fl(tc)us(tc)

from which we obtain [us(tc)[ - K(tc). Therefore, u is discontinuous.
For case (ii), 0(t)= 0 and /(t)- 0 imply u(t)= O, and since K(t)4: O,

the control is discontinuous.
For case (iii) we have

(4.24) (t) + (t)u,(t) 0 (tc) + (tc)U(tc).

Since (tc) 4: O, we must have u,(tc) u(tc).
Case (ii) of Theorem 4.3 may appear to be a rather special case, but it occurs

frequently enough to be of interest. Note that this result is independent of an even
or odd assumption. Because of this, we can couple (ii) with the previous result for
q-even problems to obtain the following interesting property.

COROLLARY 3. If q is even, A(t, x, 2) 0, K(tc) 4: O, and B(tc, X(tc), 2(tc)) :/= 0,
where tc is a junction point between optimal singular and nonsingular subarcs, then
the junction is nonanalytic.

Proof. Assume the contrary, i.e., that the optimal control is piecewise analytic
in a neighborhood of tc. Then by Corollary 1 the control is continuous at tc, but by
Theorem 3 (ii) the control is discontinuous, which supplies the necessary
contradiction.

In the next section this corollary will be used to predict the nonanalytic
junction in the well-known Fuller problem.

5. Example of a nonanalytic junction. Consider the Fuller problem [7],
which is to minimize

subject to

1 X2’ XI(0)-- 1 0,
(5.2)

2 u, x2(0) 2,

(5.3) lul 1,

where T is fixed. The Hamiltonian, the multiplier equations and the switching
function are given by

(5.4) 2H /1x2 qt._ /2u _. _x1

Jl -xl, 2x(T) 0,
() , , (T) 0,

(5.6) q5 -= H, 22
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The lowest order derivative of Hu which contains u explicitly is

(5.7) Htu4) u

from which we see that the order of the singular arc is even, namely q 2. Also,
the strengthened GLC condition holds, and A(t, x, 2) 0. Thus, we have precisely
the conditions of Corollary 3, indicating that any junctions which occur must be
nonanalytic junctions.

This problem has been studied thoroughly by Fuller [7] and Johansen [8],
and the result is well known. The singular arc is given by

(5.8) U X X2 "--O.

Since 1 4-0, the initial control must be nonsingular. The nonsingular arc is
characterized by the nonlinear differential equation

(5.9)

The solution of (5.9) yields a switching function with an infinite number of zeros
such that the ratio of the lengths of successive intervals between zeros is a constant.
If T is sufficiently large, the resulting nonsingular (bang-bang) control drives the
state to the origin in a finite time to, with an infinite number of switches occurring
in a neighborhood of to, at which point the optimal control becomes singular.
The control is clearly discontinuous at the junction point t, as it must be according
to (iii) of Theorem 3. Even though q is even, Corollary 1 is not violated because the
control is not piecewise analytic in a neighborhood of the junction.

The predicted behavior at the junction is useful knowledge for numerical
computational schemes; e.g., Jacobson [9] was able to successfully compute
bang-bang solutions for this problem with T sufficiently small so that the singular
arc did not occur. However, for large T the nonanalytic junction came into play.
After computing about ten switches, the method became unstable [10].

Note that the optimal control for this "innocent looking," second order
example is measurable but not piecewise continuous. Aside from its physical
applicability, the existence of such examples is useful for motivating the assumption
of measurable controls in the proof of the minimum principle.

6. Example of a smooth junction with q odd. This example demonstrates not
only the realizability of a smooth junction with q odd, but also the dependence of
junction phenomena upon boundary conditions. For this case we consider the
performance index

(6.1)

where T 2.985. The equations of motion and constraints are given by

1 X2, XI(0 0, xx(T) ax,
(6.2.) c2 /2, X2(0 1, xz(T)-- 0-2,

(6.3) lu[ _-< 1.
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The Hamiltonian and the multiplier equations are given by
2 2(6.4) H 21X2 -1- ,,2u -3v X2 -X1,

(6.5) 1 X1, 2 --/1 X2"

The switching function and its second derivative are

(6.6) q5 H. 22,

(6.7) ,= -xl- u

so the singular arc is first order i.e., q is odd. From (6.7) we see that the strengthened
GLC condition is satisfied. Setting the right-hand side of (6.7) equal to zero and
substituting in the equations of motion (6.2), we can readily verify that a singular
arc emanating from the initial state (0, 1) is given by

(6.8) us= -sint, xl =sint, Xz-COSt.

If the terminal state (al, a2) is chosen to lie on the trajectory (6.8), the solution
is totally singular, as can be shown by the sufficient conditions in [1] and [2].
However, in this pa/per we are concerned with junctions. Consider the case where
(71 "-0, (72 --N/2. For this case we propose as a candidate for the optimal
control

-sin t, [0, n/2),
(6.9)

1 t Ire/2, T].

This control is admissible and satisfies all the necessary conditions for optimality,
including that of Theorem 1. There is a junction at tc /2. The control and its
first derivative are continuous at to, but the second derivative is discontinuous,
so we have r 2, q 1, and q + r is an odd integer.

The authors are unaware ofany workable sufficient conditions in the literature
which are applicable to this particular type ofproblem, i.e., nonconvex and contain-
ing both singular and nonsingular subarcs. Consequently, we employed a gradient-
type numerical method to justify that the candidate control is indeed optimal,
within the bounds of a numerical justification. The modified conjugate gradient
method of Pagurek and Woodside [11] was used with penalty functions to enforce
the terminal constraints. The result is shown in Fig. 1. The control is continuous
and smooth at the junction as expected.

It is apparent that the fortuitous occurrence of this smooth junction is a direct
result of our judicious choice of the terminal boundary conditions. In fact, to
generate this phenomenon, the form of the candidate control was first selected
on the basis of intuition; then a convenient point on the resulting trajectory was
selected as the fixed terminal state, and finally the corresponding time was taken
to be the explicit final time.

By changing the terminal state, we were able to generate discontinuous
controls, which undoubtedly are the usual case. These are shown in Figs. 2 and 3.
For these cases r 0, and the condition of Theorem 1 is satisfied again. To further
emphasize the special character of the smoothjunction, the phase plane trajectories
for the controls in Figs. 1-2 are given in Fig. 4.
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x,(T) 0

x=, T) x/-
Computed Control

Proposed Optimal Control

FIG. 1. Example ofan optimal control which & continuous at a singular-to-nonsingularjunction with q odd

f

xI(T) .157

x2(T) -1.492

Computed Control

Proposed Optimal Control

FIG. 2. A typical discontinuous junction

T
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x (T) .065

x2(T) -1.336

Computed Control

Proposed Optimal Control

f5r T
4

FIG. 3. A predominantly singular control with discontinuousjunction to a short nonsingular subarc

(2),/

// ’-(11

FIG. 4. Phase plane trajectories for the controls in Figs. and 2
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7. Conclusion. Necessary conditions for the optimality of junctions between
singular and nonsingular subarcs in singular optimal control problems have been
developed. Necessary conditions developed previously by Kelley, Kopp and
Moyer [3], which involve an analyticity assumption, have been clarified and
extended. The main result in this direction is that the sum of the order of the
singular arc and the order of the lowest time derivative of the control which is
discontinuous at the junction must be an odd integer when the strengthened
generalized Legendre-Clebsch condition is satisfied. Also, new necessary conditions
which do not involve an analyticity assumption have been developed. These
conditions aid mainly in characterizing problems which may possess nonanalytic
junctions.

It should be emphasized that these are local necessary conditions for optimality.
Yet, as indicated by the example in 6, the point at which a junction occurs is
determined mainly by initial and terminal boundary conditions, i.e., by essentially
nonlocal information. This means that any junction theory which, for example,
might be used to establish criteria for switching between singular and non-
singular arcs in an indirect computational scheme will have to take such nonlocal
information into account.

It is becoming increasingly apparent that a close relationship exists between
singular problems and bounded state problems [12], [13]. In this regard it is
interesting to note that the result of Theorem 1 bears some similarity to a result
of Jacobson, Lele and Speyer [13] which identifies certain properties of optimal
trajectories associated with odd order state space constraints. Such similarities
suggest the possibility of a duality between these two classes of problems which
might be profitably exploited.
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DISCRETE SPLINES VIA MATHEMATICAL PROGRAMMING*

O. L. MANGASARIAN’ AND L. L. SCHUMAKER:I:

Abstract. Existence, uniqueness and characterizing properties are given for a class of constrained
minimization problems in real Euclidean space. These problems are the discrete analogues ofminimiza-
tion problems in Banach space whose solutions are generalized splines. Solutions ofthese discrete prob-
lems, which are called discrete splines, can be obtained by algorithms of mathematical programming.

1. Introduction. The purpose of this paper is to investigate some constrained
minimization problems in real Euclidean space which are suggested by certain
minimization problems in Banach space whose solutions are generalized splines
(see [5], [9]). Because ofthe analogy with classical splines, and because the solutions
of the discrete problems exhibit a spline-like structure, we call them discrete splines.
Our aim here is to obtain existence, uniqueness and characterizing properties of the
discrete splines. We include two detailed examples and a section with remarks
indicating application to computing continuously constrained spline interpolants
as well as some problems for further study.

2. Definition of discrete splines. Let L be a general forward difference operator
of order m of the form

(2.1) (Ly) ay+j,
v=0

amvO, j=O, 1,...,N-m.

L maps a point y (Yo, Yl, "’", YN) in RN+ into a point in Ru-m+ 1. Denote by
No the null space of L.

For 1, 2, ..., k, let ,//// be forward difference operators oforder m mapping
points of R+ into Rl-m’+ 1, where 0 =< m =< m and

mi

(2.2) (//iY)j-" alkyd+j,
v=0

aim O, j 0, 1, "", N mi.

Let i, fl, 1, 2, ..., k, be .points in Ru-m’+ such that __< fit; that is,
each component of is less than or equal to the corresponding component of fl"

(Xij <- ij, j O, 1, ..., N mi.

Define

(2.3) U {y s Rv +1. (i ’iY i, 1, 2,’’’, k}.

* Received by the editors March 19, 1970, and in revised form August 7, 1970.
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Finally, let 1 _< p =< oo and let g RN-m+ be prescribed. Throughout this paper
we shall be concerned with the discrete minimization problems

minimize(liLy- g p)P, 1 <_ p < oo,
yU

(2.4) minimize Ly g oo, p oo,
yeU

where

and

N-m 1/p

IxjI p l_<_p<oo,
j=0

IIx max Ixl.
O<_j<=N-m

We shall call the solutions of (2.4) discrete splines. The reason for this
terminology will become more apparent in later sections.

3. Existence and uniqueness of discrete splines.
THEORWM 3.1.

(i) A solution of (2.4) exists if U is nonempty.
(ii) For 1 < p < oo, any two solutions of (2.4) differ by an element of No.

(iii) If 1 < p < oo and s U is a solution of (2.4), then it is unique if and only if
No f-I U(s)= {0}, where U(s)= {f s:f U}.

Proof of Theorem 3.1(i). This theorem is a consequence of the following more
general theorem. (For p 1 or oo, (2.4) is a bounded linear program and hence
has a solution [3, Theorem 2, p. 134] .)

THEOREM 3.2. Let A be an x n matrix, L a k x n matrix, b an l-vector, g
a k-vector,

X {x’xeR",Ax <_ b},
s {LX g}

and let q be a lower semicontinuous function on S satisfying some growth condition
such as this" There exist a S and p >__ 0 such that for any z S,

Then the minimization problem

(3.2) min {qg(Lx g)’x e R", Ax < b}
has a solution provided X is nonempty.

Proof of Theorem 3.2. Because of the growth condition (3.1) the minimization
problem (3.2) is equivalent to

min {q(z)’z S, [z 1oo =< P}.
Because q9 is lower semicontinuous on S, and because {z" Ilzlloo _-< p} is compact,
this problem has a solution provided that S is closed. We show now that S is closed.

A linear map of a closed convex set is not in general closed. For example the linear map f(X)
of the closed convex set X {x’x e RE, x2 => e-"l}, where f(x)= x2, is the open interval (0, 00).
What we show above is lhat a linear map of a closed polyhedral set is closed.
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Let be a point of closure of S. Then

(3.3) inf{e’e6R,-ee<z-=<ee, zS} =0,

where e is a k-vector of ones. But since (3.3) is a linear program, the infimum 0 is
attained at some z* S (see [3], [8]). Hence z* 0, z* S, and S is closed.
(This proof is similar to that of Laurent [7] except that we use linear programming
to establish the fact that S is closed, whereas Laurent uses a theorem of Dieudonn6
concerning the closure of the algebraic difference of two sets in a Hausdorff
.topological vector space.)

Theorem 3.1(i) follows from Theorem 3.2 by making the identifications:
x y, z Lx g, k= N-m+ 1,
q(z) (llzl )P, 1 =< p < oe, and

aio

aim 0

"imi

n N + 1, l= 2 Z=l (N mi + 1),

(Xk lx

o

aio altni N-rni+ N +

observing that all vector norms are continuous functions [4], and that the growth
condition (3.1) is satisfied as follows by (p(z) z] p)P, 1 =< p < oo. Let be any
point in S. Then for any z e S,

q,(z)<q(e) z=< e
llz I11 for some % > 0

(sinceep zoo =< ]z p, ep>0(see[4]))

Proof of Theorem 3.1(ii). Since for 1 < p < , (llz gllp)p is a strictly convex
function of z, it follows for any minimum solution y, z Ly is unique. Hence for
any two solutions yl and y2 we have that Ly Ly2 or L(y y2) 0 and hence
differ by an element of the null space No of L.

Proof of Theorem 3.1(iii). Let s be a solution of (2.4). If No f-) U(s) 4= {0},
then we may add any nontrivial element No f’l U(s) to s and obtain s + e U
and L(s + )= Ls + L Ls, and hence s + is another distinct solution.

Conversely, if s and s2 are two solutions of (2.4), then by part (ii) of this
theorem L(s --$2)--0, and hence sl- s2eNO. But s- $2 U(s2). Hence
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S1 $2 No f] U(S2), which implies that sa $2 whenever this set consists of the
zero element only.

The existence assertion (i) of Theorem 3.1 could also be established without
the use of programming theory by following the lines of the proof of a similar
theorem in an appropriate Sobolev space for the continuous analogue of (2.4)
(see [9]).

4. Necessary and sufficient characterization of discrete splines.
THEOREM 4.1. For 1 < p < a point y U is a solution of (2.4) if and only if

for l, 2, ..., k there exist vectors 2 >= 0, t >= 0 in RN-’i+ such that

k

(4.1) Ha [2,(-./#y + e,) + ,u(._////y fl)] 0
i=1

and

(4.2)

satisfy

(4.3)

where

H Ly g p)P at- H

VH 8H/yj 0, j- 0,1,.-., N,

Nmi

1=0

Proof. The conditions (4.1)-(4.3) follow by a direct application of the Kuhn-
Tucker optimality theorem of nonlinear programming [6], [8]. That they are
necessary follows from the fact that the set U is polyhedral, and hence no constraint
qualification is needed. That the conditions are sufficient follows from the con-
vexity of U and the objective function (liLy g llp)P.

These conditions completely characterize the discrete splines, although in this
generality they do not provide a very good idea of the structure of such splines.
In the next section we shall specialize problem (2.4) and thereby define what we
will call discrete polynomial splines, whose structure can then be more explicitly
delineated.

For convenience we note that for p 2,

Nmm

V( ILyl 2)2 Vj
i=0

avyv+i
v=O

(4.4)

(4.5)

(4.6)

2 aj_
/=o

avYv+l
v=O

j=0,1,...,m- 1,

j m, ..., N m,

j=N-m+ 1,...,N.
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5. Discrete natural polynomial splines. Given integers N, m, a set of integers
A= (O<=ix <i2 <’." <ik<=N}, and real numbers ? {?i}, we define a
discrete natural polynomial spline of degree 2m 1 with knots ix <.’. < ik aS a
vector y (Yo, "", Ys) which solves the minimization problem

1 S--m

(5.1) minimize
h2m_ Z (Amyi)2,

YUt(7) 0

where

(5.2) Us(?) {Y (Yo, Ys):Y ?j,J 1,2,..., k}

and

Amyi= (__l)m_
m

=o m- v Yi+v

is the mth forward difference with h 1/N.
The characterization of discrete natural polynomial splines is given by the

following theorem.
THEOREM 5.1. A vector y Us(?) solves (5.1)/f and only if, forj A,

(5.3a) A2myj_ O, j m, ..., N m,

(5.3b) Amyj O, j=O, 1,’",ix- 1,

(5.3c) Amy O, j=ik+ 1,...,N--m.

Proof. Let Ax {m, ..., N m}, A2 {0, ..., m 1} and A3 {N m

(m) we can write the following+ 1,...,N}.Bysettinga h-t2m-X)(_l)m-
m-v

with the help of (4.4)(4.6):

h2m (Amyi)2
i=o
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2
)lh4m_ 2 (-1

/=0

2
A2Amy+j_m h4m_ 2 myj_m, j A,

h4m_ 2 (-1 A"y, jeA2,

hm 2 1)l mmyl + j-m,

Now by Theorem 4.1 we have for j q A,

(5.4a) A2myj_ O, j e A 1,

(5.4b) (q)y)j--(--1)m+j+l( m

0 j
Amy O, j A2,

(5.4c) (OY)j (- 1)q A"y/+j_,. 0, j e A3.
/=0

By coupling (5.4a) for j < il with (5.4b) we obtain (5.3b). Similarly, (5.3c)
follows from (5.4c) and (5.4a) for j > ik.

Property (5.3a) asserts that the values Yi lie on polynomials of degree m 1
(since Amyi 0) in the intervals [0, ix 1 and [ik + 1, N], while between the knots
the Yi lie on polynomials of degree 2m (A2"yi 0). It is not difficult to deter-
mine how these polynomials tie together at the knots. For example, let j be a knot
ofy separated from the other knots by at least 1 i.e., ifjl, J2 are the knots preceding
and following j, respectively, then Jl < J 1 and j + 1 < J2. Let PL(t) and PR(t)
be the polynomials of degree 2m 1 on which the yi lie to the left and right of j.
Since A2myj_m_ --0, the points {y}i_+mm-I lie on PL. Similarly, since

"/ lie on PR. Thus we conclude that the valuesA2yj-=/ 0, the points {y}i_+,+
{y,}+m-l_,,+ are common to both P and PR. Consequently, AP(j- m + 1)

A"PR(j m + 1) Ayj_,,+ for v 0, 1, ..., 2m 2. If these differences
divided by h converge as N --. , then they approach the corresponding derivatives
of P and PR, and it follows that P and PR are tied together of class C2"- 2 in the
limit.

It is interesting to compare the discrete natural polynomial spline with the
classical natural polynomial spline. We recall that a natural polynomial spline of
degree 2m 1 with knots x < x2 < < X is a function s(x)e C"- 2 such that

(5.5a) s(2m)(x) 0 for X e (Xi, Xi+ 1), i= 1,2,...,k- 1,

(5.5b) s(m)(x) 0 for x < x, x > x.
These splines are the solutions of

(5.6) minimize IIf)ll 2,

where U(y)= {fenT:f(x,)= y,, i= ..., k} and H’
absolutely continuous, f() e L2}.

It is now clear how the discrete polynomial splines resemble their classical
analogues in the continuous version (5.6), while (2.4) was obtained as the dis-
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cretization of the minimization problem defining very general splines in [9].
While in general the discrete natural splines are not simply the discretized values
of their continuous counterparts, it should not be surprising that they are closely
connected, and in 7 we shall make some remarks about convergence in an
appropriate sense.

6. Examples. To further motivate the study of the minimization problem
(2.4)and to further illustrate the nature of discrete splines as well as their relation-
ship with the well-known continuous splines, we devote this section to some rather
simple examples.

i= 2_/N where h 1/N andExample 6.1. The sequence {s s(ih)}i

(6.1)

1, -2=<t<-l,

-t, -l_<t<0.
s(t)

2t, 0_<_t<l,

2, l__<t<_2,

is the unique solution of the problem"

(Ayi)2minimize -2N
subject to _} < <0 2< <l<y=__<_ -=Yo= =YN=

where Ayi yi + y+ 1. We note that the function s(t) above uniquely minimizes

2_ 2 (f,)2 dt subject to 1 =< f(-1) =< 23-, -1/4 =< f(0) =< 0, and 2 =< f(1) =< . Hence
the sequence solving the discretized problem is obtained by discretizing the
continuous solution ofthe continuous problem. (As noted above, this does not hold
in general.)

Discussion of Example 6.1. By Theorem 4.1, y (Y-2N, Y-2N+ 1,’’’, Y2u)
satisfying the constraints is a solution of Example 6.1 if and only if

Ay_ 2N 0,

A2y 0, -2N,-2N + 1, ..., 2N- 2;

(2/h)A2Yi -1 #i 2i, N, O, N,

(1 y_ u)2_ N + (y_ u )_ O, (- yo)Ao + YoHo O,

(2 yu)2u + (yu )#u 0.

It is easily checked that the above conditions are satisfied by the sequence {s}u
defined in Example 6.1. Indeed, since s hits the lower, upper, and lower constraints
respectively at -N, 0, N, we have #_u 2o #u 0 and

(2/h)A2s-u 2 2_ <= O,

(2/h)Azs 4 o > 0

(2/h)A2SN 4 2 <= O.
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The uniqueness of the solution {Si}2AN is established by Theorem 3.1(iii). We have
here

No {Y’Yi const., -2N, 2N}.
We also have that

Y (Y-2v,’", Y210e U(s) {f s:fe U}

implies that0 =< y_w _< 1/2,-1/4 =< Yo _-< 0,0 =< y =< 1/2.Thus No [-1 U(s)= {Y’Yi 0,
-2N, ..., 2N} and hence {s}2_ is unique.
Example 6.2. Let 0 < =< 1. The sequence

(i/N) (i/N)2
S

(i- N)+ ,
where is the integer satisfying

1 20+ 1) (i+ 1)2-(i+ 1) 2i 2-
1 4-- N + N2 <7<= 1 - N N N2

and

N 7 -- +-5
is the unique solution of the problem"

minimize (Ayi)2

subject to

i/N (i/N)2 <_ Yi <= i/N, i=0,1,...,N- 1,

As N --+ oo, the point i/N, which is the last point at which si is on the curve 2,
the value 1 x/7; and the si become the discretized values of theconverges to

function

t-t 0<t<l-x
(2w/-- 1)t+(1 +7-2), 1-7- t 1.

The function s(t) above is known (see [9, Example 2.2]) to be the unique solution
of the constrained variational problem"

minimize

(6.2) j (f,)2 dt subject to 2 <= f(t) and f(1) 7.
0
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Discussion of Example 6.2. By Theorem 4.1, a sequence {si} satisfying the
constraints is a solution of Example 6.2 if and only if

(2/h)Aso lao 20,

(2/h)AEsi-1 #i- 2i, i= 1,..., N- 1,

(2/h)As_ -p + 2,

Si ’i AV Si ]’lifO, 0,..., N- 1,

(-SN + ’)’N + (S, ’)N O.

It is easily checked that these conditions are satisfied by the sequence {si} given
in Example 6.2. Since for 1, ..., i, s i/N (i/N)2 (that is, s is on the lower
constraint), we have p 0, 1, ..., i. For + 1, ..., N 1, s is not on
any constraint and so 2i # 0 for these i. We have then

2 2 IN27- 2-N2-N+ -k-2N,] <0-A s_ NZ(N i)

2
Aso 2(1 h)= Po 20,

A2si ’i O, 1, ., 1,
4

-1--" N

2
-A si_ "--0, + 1, ..., N- 1.

This example was also solved numerically on a Borroughs 5500 computer
for using Rosen’s gradient projection algorithm [10] of nonlinear program-
ming. Computer time for the case of N 10 was 10 seconds and for N 20 was
40 seconds. The numerical results agreed with the known solution.

It is interesting to note that if we use the 1-norm instead of the 2-norm in this
example, that is,

minimize
i: 0

then for 1/4 =< =< 1, any nondecreasing sequence {y} satisfying the constraints
solves the problem, and the minimum value is ,. For 0 _<_ =< 1/4, any sequence
{y}g satisfying the constraints such that {y}i<_/ is nondecreasing with y_
or Y/2 on the lower constraint and {Y}_>_/2 is nonincreasing solves the problem.
If we use the -norm, that is,

minimize max (1/h)lAyil,
O<i<_N-1

then for 7 _-< 1 h, any sequence {y} satisfying the constraints with IAyl __< IAyol
h- hE is a solution. If 1 h < y __< 1, then Yi-- iT/N uniquely solves the

problem. As N o, Ayo/h - 1 and IAyil <= h for 1, -.., N 1. Both of these
problems using the 1-norm and -norm can be formulated as linear programs.
Numerical experiments verifying the results in these cases were also performed.
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7. Applications and remarks. (a) At present we see the principal application of
discrete splines as a means to obtaining reasonable approximations to the inter-
polation problems with side constraints discussed in [9]. Example 6.2 discussed
above illustrates how a rather difficult constrained minimization problem (6.2) for
determining a certain spline interpolant can be approximately solved by computing
a discrete spline. The computation of discrete splines is not difficult in view of the
many available nonlinear programming algorithms (cf. [10], [12]). By using the
artifice of an enlarged constraint set, Daniel [2] has shown that the discrete splines
converge in an appropriate sense to the spline solutions of the continuous prob-
lems. Although rates of convergence are lacking, our experience with some simple
examples indicates the practicality of this computational approach.

(b) As a possible further application, we mention the theory of best quadrature
formulas in the sense of Sard and its close connection with natural polynomial
splines (see, e.g., [53, [113). Certain summation formulas may have similar connec-
tions with discrete splines.

(c) The theory ofoptimal control was convenient in the study ofthe continuous
analogue of (2.4) in 9]. Another promising direction of investigation would be to
examine the use of discrete optimal control for (2.4).

(d) Atteia [1] and Laurent 7] have studied rather general splines in Hilbert
space settings which can be considered to subsume problem (2.4) in the special
case of p-- 2. The present investigation differs from theirs in that we consider
some very specific problems in a Euclidean space, and thus can get more explicit
characterization results.

Acknowledgments. We wish to acknowledge useful discussions with J. W.
Daniel and K. Gehner, suggestions by M. Golomb and P. Laurent, and the
computational programming of D. Kuba.
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OPTIMAL STATIONARY CONTROL
WITH STATE AND CONTROL DEPENDENT NOISE*

U. G. HAUSSMANN’

Abstract. The steady state optimal linear regulator with state and control dependent noise is
analyzed in a manner similar to that developed by Wonham [1]. By state dependent noise we mean
Gaussian white noise with coefficient linear in the state variable, and similarly for control dependent
noise. Using a Lyapunov criterion for the existence of stationary probability distributions due to

Zakai, it is possible to treat equations leading to diffusion processes with degenerate differential
generators. It is found that if the noise is sufficiently small, then an optimal control exists. Further
analysis, again using Lyapunov methods, yields conditions under which an optimal control exists no
matter how large the noise is.

1. Introduction. Consider the linear control system described formally by

(1.1) 2 Ax Bu C(u)( + D(x)2 + Efb3.
Here u is the control, (-1, (-2 and (3 are independent Gaussian white noise
disturbances, and C and D are linear in their arguments. D(x)(o2 and C(u)(ol can
represent wideband random perturbations of the system matrix A and of the input
matrix B respectively.

The problem of interest is to choose a control u q(x) which minimizes, in
the steady state, the expected quadratic cost

(1.2) {x’Mx + u’Uu}.
In [1] and [2] it is shown that if EE’ is positive definite then an optimal control
exists, provided the control and state dependent noise is sufficiently small. Using a
recent result due to Zakai [3], we are able to remove the restriction on E.
Furthermore, we show that if the control dependent noise as well as the state
dependent noise due to the stable modes affects only the stable modes, then an
optimal control exists no matter how large the control dependent noise C(u)(ol is.
Further conditions which imply the existence of an optimal control independently
of the size of the state dependent noise are also given.

We state the problem precisely in 2. In 3 we remove the restriction on E,
and 4 contains the proof that existence is independent of the noise level under
certain conditions. In 5 we apply the method to a stability problem and in 6 we
conclude with an example.

2. The problem. We consider the stochastic differential equation

(2.1) dx Ax dt Bu dt C(u) do) + D(x) do)2 + E d0)3, >= O,

where2 x R", u Rm, and 0)1, 0)2 and 0)3 are independent Wiener processes of

* Received by the editors March 31, 1970.

" Department of Mathematics, University of British Columbia, Vancouver, British Columbia,
Canada. This work was supported by the National Research Council of Canada under Contracts
67-4058 and 67-3105.

’denotes the transpose.
R denotes real Euclidean n-space with norm given by [[xll i= ixilZ} 1/2
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dimension d, d2 and d3, respectively. C and D are given by

(2.2) C(u) C’u,,
i=1

(2.3) D(x)
i=1

respectively, and A, B, C, D, E are real constant matrices of corresponding
dimensions. The pair (A, B) is assumed to be stabilizable.

If u in (2.1) has the form u qg(x) where

(2.4) lifo(x) o(y)ll -< kllx yll, x, y R",

then (2.1) is an equation of It6’s type. Hence if the random variable x(0) is independ-
ent of co, 1, 2, 3, then (2.1) determines a diffusion process

x {x(t):t >__ 0}
(see [2], [4]). Of interest to us is the case where X has an invariant probability
measure &, defined on the Borel sets ofR"; i.e., ifx(0) has the probability distribution

/,, then so does x(t), > 0. As has been shown in [5] and [6], if EE’ > 0 (i.e.,
positive definite) then suitable sufficient conditions can be given so that an invariant

# exists. In this case # is unique. Unfortunately for most problems in control
theory one does not have EE’ > 0. For example if the system is given (formally) by

so that it corresponds to

d2y dy doo 3

dt2 a2-d7 + ay + -- + u,

then EE’ is not positive definite (so that the differential generator of the associated
diffusion process is not fully elliptic) even though the system is controllable.
Recently Zakai [3] has given alternate conditions which guarantee that an
invariant # exists. However it is in general not unique. (For systems of the form
(2.5) it is unique [3].)

We define , the class of admissible control laws, to be the set of functions
qg(. such that:

(i) o satisfies (2.4) for some constant k;
(ii) an invariant probability measure exists;
(iii) for any invariant probability measure #,

(2.6)

Let L(x, u) be given by

(2.7) L(x, u)= x’Mx + u’Nu,

where ,M and N are constant symmetric positive definite matrices of dimension
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n n, m m, respectively. For to in let g,{L(x, tO)} denote the infimum of
g,{L(x,tO)} taken over all probability measures invariant with respect to X.
In [1], [2] Wonham considered the problem (with the extra restriction on E) of
finding conditions on C and D such that a control tOo exists, optimal in the sense
that

o{L(x, tOo)} inf [o{L(x, tO)} "tO e ].

We shall refine these conditions.
Let us point out here that taking the infimum of , in the definition of is

irrelevant, for under certain assumptions which we shall always make, it follows
that for the optimal control tOo, all invariant probability measures yield the same
expected cost, i.e.,

(2.8) eo{L(x, tOo)} g,{L(x, tOo)}
for all invariant probability measures/ (see Theorem 3.2).

3. Admissible and optimal controls. First we must show that is nonvoid.
Let be the differential operator given by

(3.1) 2’,V(x) 1/2 tr {C(u)’VxC(u) + D(x)’VxD(x) + E’VxxE} + (Ax Bu)’Vx,

where V denotes the vector t?V/t?xi and Vxx denotes the matrix c32V/t?xit?xj. We
assume from now on that u tO(x) in (2.1) with tO satisfying (2.4). Then is the
differential generator of X, also written simply as .

Let us consider the following control law tO and function V:

(3.2) tO(x) Kx, V(x) x’Px,

where K and P are two constant matrices, P => 0 (i.e., x’Px >= O, x R"), to be
determined such that

(3.3) oV(x) 2 L(x, tO(x))

for some 2 > 0. Unfortunately such a Vdoes not satisfy certain conditions imposed
in [3] 3 and so results of [3] do not apply directly.

THeOReM 3.1. Assume P and K exist (P >= 0) such that (3.2) and (3.3) are

satisfied. Then tO is an admissible control.
Proof. For n 1, 2,... define

(3.4)

D(x)
D.(x) D[x(n/llxll)]

C(x).(x)-- (CU(n/llxll)Kx]

if Ilxll n,

if Ilxll > n,

if Ilxll n,

if Ilxll > n.

Zakai calls this condition (B). It requires that {f(t)lx(O) a} be bounded in on any finite

interval, for any a e R", where

f(t) Vx(x(t))’[c(g(x(t))), D(x(t)), E]II

We can only conclude that f(t) <= k[1 + IIx(t)l143 for some k > 0.
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Then4

where

liD(x)- O.(x)ll Ilxll if llxll > n,

0 if Ilxll _-< n,
IIC(/x)- t.(x)ll-<_

kllxll if llxll > n,

Also D.(. and ft,(. are Lipschitz continuous with constant k (as are D(. and
C(qD(. ))). Now let x" be the unique solution of

(3.6) dx (A BK)x dt .(x) doDx + D.(x) dco2 + E do93, x(O) .
We let . be the corresponding differential generator so that

x’{A(P) + K’F(P)K + ’P + P}x + tr {e’Pe),
(3.7) ,V(x)

( n2 A}x’ 2[A(P) + K’F(P)K] + 3’P +

_
where

Ilxll _-< n,

x + tr {E’PE},

Ilxll > n,

(A(P))ij tr ((Di)’PDJ), (r(P)),j tr ((Ci)’PCJ), A BK.

Then q’,,V(x)= L’V(x) if [Ix[[ =< n, and q’,,V(x)<= q’V(x) if [[x[[ > n, because
A(P) + K’F(P)K >_ 0 as P >_ 0.

We shall require the following three properties of V"

(3.8a)

(3.8b)

(3.8c)

Thus each of the three left-hand expressions is bounded in over finite intervals,
for each x in R".

As L(x, u) x’Mx + u’Nu then there is an Ro < o such that 2 L(x, Kx)
< -r/for some r/ > 0 if Ilxtl > R0. Now the proof of [3, Theorem 1] shows that

(3.9)
1 .. V(). Pr {llx"(s) Ro) ds

for any n if x"(0) has the distribution/ +, where/+ is any Borel probability
measure on R" with compact support. Here p is the maximum of V(x) over
Ilxll -< Ro, so that ’.V(x) <__ p for all n.

4 If F is a matrix mapping R" into R", then [[FI[ denotes the usual operator norm.
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In the Appendix we show that #{1 x’- xt ]2} 0. Hence a subsequence,
which we call x’ again, converges to xt with probability one, i.e.,

Pr{lim IlxT-x, =0} 1.

By Egoroff’s theorem x’(o) converges to x,(co) almost uniformly (o). Hence for any
6 > 0 there is an n(s) such that for n > n(s),

and so5

Pr{Ix, __<Ro + 1}__>Pr{llx =<Ro}-6

Pr{llxs _-<Ro + 1} >__ limPr{lx -_<Ro}.

By (3.9) and the dominated convergence theorem (t < oo) we have

__lt g{ V({)} + q =< (p + r/)7 Pr {I x(s) =< Ro + 1 ds,

and so (see [3]) the process Xo has an invariant measure.
Now IL(x,") L(x,)l <- k x," x, 2, SO that

x L(x’) ds L(x,) ds <= k gx x’ x, 2 ds

As < oo, gx(llxll 2} < oc, gx(llxsll 2} < oe and as x(s, co)is measurable in (s, co),
then

} aslim g Ilxs x, ds lim g{ Ix, x, [2

lim g{llx Xs 2} ds.

By It6’s formula and (3.8),

It follows that x{fo L(x,) ds} V(x) + 2t. Now the argument given in [3, Theorem
2] shows that

L(x)(ax)

for any invariant probability measure . Hence g,{ Ixl 2} < m and O(x) Kx is
admissible. The theorem is established.

This limit can be shown to exist.
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COROLLARY. Under the condition of the above theorem it follows that X, is
stable insofar as

(3.10) x{Z} V(x)/rl, x[ > Ro,

where is the first passage time of x, to the set {x’l x _-< Ro).
This follows because if , denotes the corresponding random variable for x’,

then

o <_ x{V(x(t A ))} V(x)+ x V(x(s))ds

0 V(x)- x{t A z,}.
But A ,() t, and so

0 V(x)- x{t A lim ,} V(x)- x{t A }.

Now (3.10) follows by monotone convergence. Relation (3.10) implies that the
process is recurrent (and positive if is fully elliptic) [5].

Evidently (3.2) yields a solution of (3.3) if and only if

(3.11) 2 tr {E’PE}
and

(3.12) A(P) + K’F(P)K + (A BK)’P + P(A BK) + M + K’NK O.

If (A, B) is stabilizable, then K can be chosen so that A BK is stable, i.e., all the
eigenvalues have negative real parts. The following lemma shows that if C, D are
suciently small then (3.12) has a unique positive definite solution. This and
Theorem 3.1 imply that .

LEMMA 3.1. If Q > 0 and A is stable, then

(3.13) A(P) + K’F(P)K + A’P + PA + Q 0

has a unique solution P > O, provided

(3.14) e’[K’F(K + A(]e’ dt < 1.

For the proof see [1, [2].
Thus an admissible control exists if

(3.15) inf e(-r[K’F(K + A(]e(-dt < 1,

where the infimum is taken only over K such that A BK is stable. In [1], [2]
the following theorem is proved.

TNON 3.2. If (A, B) is stabilizable, M > O, N > 0, and F, A satisfy
(3.15), then an optimal control exists, of the form
(. e(x Ox.
Furthermore,
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where po is the unique solution, in the class of positive semidefinite matrices, of the
equation

(3.18) M + A’P + PA + A(P)- PB[F(P) + N]-IB’P O.

The minimum cost is

(3.19) g0o{L(x, go(x))} tr {E’PE}.
From the same proof it follows that (2.8) holds.

4. Dependence on noise. Theorem 3.2 shows that the existence of an optimal
control depends on C and D only through (3.15), although of course the actual
value of the control always depends on C and D. We now investigate (3.15) in an
effort to determine if this condition can be relaxed. Let (2) be the minimal poly-
nomial of A. It factors as follows"

(4.1) e(2) +(2)-(2),

where all the zeros of e + lie in the closed right half-plane and those of e- in the
open left half-plane. Also define

R+ {xeR":+(A)x 0), R

_
{xeR"’e-(A)x 0}.

As e / and e- are coprime it follows that R" R q) R, although the direct sum
is not necessarily orthogonal. Let P/ and P- be the projections of R onto R+
and R

_
along R and R, respectively.

The next two lemmas are useful for computation. The proofs are straight-
forward and so are omitted. However first we need some notation. Let gl, "’", g,
r <__ d2, be a basis of the range space of the n2 x d2 matrix

D

D2

(4.2)

and let G be the matrix composed of n columns whose direct sum is gi; i.e., if G is
the jth column of Gi, then

(4.3) g 1,2, ..., r.

LEMMA 4.1. Let H(co)= [hl,h2,..., h,], where hi(co)= Die). Then R"__ is
invariant with respect to H(co) for all co e Rd2 if and only if R"__ is invariant with
respect to G, 1,..., r.

LEMMA 4.2. Assume {e}] is the usual basis in R". If {ei}es spans R"_, then
is invariant with respect to H(co) for aU if and only if {D’} =_ R"_, S, where {D’}
denotes the range space ofD.
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The following lemma expresses an algebraic condition as an analytic one and
is useful for computation. Krasovskii stated a related sufficient condition [7].
Let s be an eigenvector of A, i.e., for some 2, possibly complex,

As 2s.

Let s / denote any eigenvector s for which the corresponding eigenvalue has non-
negative real part. If C is an n x rn matrix, then define Rc[A] by

(4.4) Rc[A] {[C, AC, A2C, A C]}.
Recall that {. } denotes the range space. Suppose the dimension of this space is q.
Then Ca denotes an n q matrix whose columns are a basis of Rc[A], n >= q.

LEMMA 4.3. A necessary and sufficient condition that {C}
_

R"_ is that

(4.5) rank (A 2/)Ca q

for each 2 with Re 2 >= 0.
Proof. We first note that {C} R"__ if and only if no s / lies in Rc[A]. This

follows readily by considering A in Jordan form and noting that in that case
and R"_ are orthogonal. Also note that {C} R"__ if and only if ceR"__,

1,..., m, where ci is the ith column of C, and that Rc[A] span {R,[A]’i
1,..., m}.

If ca is the ith column of Ca, then any s Rc[A] is of the form

q

i=1

It follows that some s / is in R[A] if and only if

(A /I)CA( 0

has a nontrivial solution cr for some 2 with Re 2 __> 0. A simple argument now
completes the proof.

We now wish to split our system (2.1) into two parts, one on R and one on
R"_. If R has dimension 1, we can choose a map T+ of R" onto Rl so that T+
restricted to R is one-to-one and onto, and T+R"_ {0}. Then T/ is an l x n
matrix. We denote its generalized inverse by T*+ so that

T+ T+ I, T+ T+ P + P + T*+ T*+ T+P+- T+.
Similarly define T_, an 12 x n matrix corresponding to R"_. Also define

(4.6) /3+ T+ D(Tt+)i, j 1,2,...,
i=1

and

(4.7) A+(R)u tr {(/3+)’R(/3;+)}, i,j 1,..., 11
If we let A + T/A T*+ and define A_, A_ and/3

_
likewise, then A_ is a stable

12 12 matrix.
THEOREM 4.1. If (A, B) is stabilizable (i.e., R"+

_
Rn[A], [8]), and if R"_ is

invariant with respect to H(og) for all o, then the system (2.1) has an admissible control
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go, provided that

o’ etA’- A_ I)etA -dt

sup x’etA’A(T;T_)etAx dt :xe R’_, T_x <= 1 < 1,

and

(4.9)

inf et(A+ -T+SK+r[A+(/) + K’+ F(T’+ T+)K+]ettA+ -T+S+ dt
K+

infsup x’et(A-P/BK)’[A(T’+ T+) + K’F(T% T+)K]
K

e’(- x dt" x e R, T+x N 1 < 1.

Moreover can be chosen linear in x, independent of P-x. Also (4.8) is satisfied

(4.10) l(ZD)d 2 < sup etx dr" x e R, T_x[[ N 1

Proof. As R is invariant under H(m) then

(4.11) T+D(x)o T+P+D(P+x)o T+D(TT+x)o b+(T+x)o,
where b+(y)= ’ -iD+yi. We let T+x y, T_x z. Then (2.1) becomes

(4.12) dy (A+y- T+Bu)dt- T+C(u)do + b+(y)do2 + T+Edoa,

dz (A_z T_Bu) dt T_C(u) do + b_(z) do2 + T_E do3
(4.13)

+ T_D(Ty) do2,

where b_(z)= ib(zi T_D(T[z). Consider (4.13) with y 0, u 0, i.e.,

(4.14) dz A_z dt + D_(z)do2 + T_E doa.
As (4.14) has a stable matrix, then by (4.8) and Lemma 3.1 there is a symmetric
positive definite 2 X le matrix P2 such that

(4.15) A_(P) + A’-P2 + P2A_ + I O.

As R"+ RB[A then Rl’= T+R"+ RT+B[A+] so that (A+,T+B) is
controllable [8]. Now (4.9) and Lemma 3.1 show that there are an l x rn matrix

K+ and an x matrix P > 0, such that

(4.16) K’+F(T’+PT+)K+ + A+(P) + (A+ T+BK+)’Pa

+P(A+ T/BK/) + I O.

Let 1 tr {(T+E)’PI(T+E)} 2 tr {(T_E)’P2(T_E)}, and let K K+ T/.
To show that (p(x) Kx is an admissible control we shall use Theorem 3.1.

Consider V(x) x’Px, where P T’+PIT+ + flT;P2T_ > 0 and fl > 0 is to be



OPTIMAL STATIONARY CONTROL 193

chosen so that for some 2 > 0, e > 0,

(4.17)

This condition, rather than (3.3), suffices in Theorem 3.1. Using (4.11), (4.15) and
(4.16) we have

q,V(x) y’K’+F(T’+P T+)K+y + y’K’+F(T’_PzT_)K+y

+ y’A+(P)y + Bz’A_(P2)z + B{y’(Tt+)’A(T’_P2T_)TLz

+ z’(T)’,a(T’_P2T_)T+y + y’(Tt+)’A(T’_P2T_)Tt+y}

+ 2 + 2 + y’(A+ T+BK+)’Py + y’P,(A+ T+BK+)y

(4.18) + z’A’_P2z + z’P:A_z- 2y’(T_BK+)’P2z

t 4-/2 -Ilyll 2 -/llzll 2 / fl{y’K’+F(T’_P2T_)K+y

+ 2z’tT*_)’AIW’_eW_)T*+y + y’T*+)’AT’_PT_)T*+y

2z’P2T_BK+y

_<_ , +/,

if 0 < fl is sufficiently small and 7 max (]l T*+ 2, T 2}. This last assertion is
proved as follows. Let f(y, z) be given by

f(y,z) y’{K’+F(T’_P2T_)K + + (T+)’A(T’_P2T_)T+}y

+ 2z’{(Tt_)’A(T’_P2T_)T+ P2T_BK+}y.

Consider

(4.19) Ilylla(1 1/2/) / 1/2//llzll 2 _>_ ,callYll

where c
Otherwise let IlYl kllz I,k variable in [0, oo). Then (4.19) holds for all k if

(4.20) g(k) kZ(1 1/2fl) + 1/2fl clk2 2c2k >= 0

for all ke [0, oo). But if 0 < fl < (cl + 1/2)-1 and if fl < (2c2 + c + 1/2)-1, then
(4.20) holds for all k e [0, oo). If

cl IIK’+F(T’_P2T_)K+ + (Tt+)’A(T’_PT_)Tt+II,
ce II(Tt_)’A(T’_PT_)Tt+ PT_BK+tl,

then

(4.21) f(y,z) <= clllYl 2 / 2c211Yll Ilzll.
As Ilxll 2 =< 2max {llW+ll 2, llWlle}[llyll e + Ilzll], then

21
_> t ///2 -Ilyll 2 -/llzll 2 / f(y,z)

by (4.21) and (4.19), and (4.18) is established. Now Theorem 3.1 shows that
qg(x) Kx is in
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COROLLARY 1. If {C i}
_

R"_ for it S
_

{1, 2,..., m} in addition to the
assumptions of the theorem, then an admissible control exists no matter how large Ci,
itS, is.

Proof. Existence depends on C only through F in (4.9). As F(T’+ T+)ii
tr {(T/ Ci)’(T+ C3)} and as P/C 0 for S, then F(T’+ T/) is independent of Ci,

itS.
We recall that if {ei}is spans R"_, then by hypothesis and Lemma 4.2,

{Dz}
_
R_, 6 S, so that A / (I) is independent of Di, S.

COROLLARY 2. If R"+
_

RB[A], {Ci}
_

RL, i= 1,..., m, and if
RL c fqr N[Gi] and {Di} c RL 1 n, then an admissible control exists. 6

Proof. As R"_ N[H(co)] by hypothesis then D(P-x) 0 so that A_(I) 0.
Moreover F(T’+ T/) 0 and A(T’+ T/) 0 so the conclusion follows.

Let us sum up what this last corollary says. We assume that at least the unstable
modes ofA are controllable, that the state and control dependent noise affects only
the stable modes and that the state dependent noise is due only to the unstable
modes; then an admissible control exists.

Let us now assume that the conditions of Theorem 4.1 are satisfied so that we
have an admissible control qg(x) Kx and a function V(x) x’Px such that

,,V(x) <_ . ollxll 2, . > O, o > O.

In fact ,V(x) is of the form

L’oV(x)= I(P) + fo(x, P),

where l(. and fo(x," are linear and f(x, P) <= a]lxll 2, a > 0. We can choose
q < o such that

zrtllxll 2 __> L(x,Kx),
and so

,(x’Qx) <__ l(Q)- L(x, q)(x))

if Q qP. Hence

0 >__ A(Q) + K’F(Q)K + (A BK)’Q + Q(A BK) + M + K’NK.

This condition suffices to make Wonham’s argument [1 proving the existence ofan
optimal control valid.

THEOREM 4.2. Under the assumptions of Theorem 4.1 or of one of its corollaries,
an optimal control exists and (3.16), (3.17), (3.18) and (3.19) are valid.

We point out that the following may be useful with regard to (4.9). Consider
the system

(4.22) dx/dt Ax- Bu, x(O) x

and

W(x) x(t)’Ax(t) + au(t)’u(t) dt,

N[A] denotes the null space of A.
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where (A, B) are controllable, A, B, A are real n x n, n m and n x n matrices,
respectively, A > 0, and is a positive scalar.

From the theory ofthe linear regulator it is known that inf, =Kx W(x) x’P()x,
where P() is the unique positive solution of

(4.23) A’P + PA- PBB’P/ + A O.

It can be shown that P(a) P(fl) >= 0 ira > fl > 0, and hence that lim_.o P(a) Po
exists. Then

eo inf e,(a BK)’Aet(A- BK) dt
K

LEMMA 4.4. IIeo 0/f and only if rankB n.

Proof. By (4.23),

A’Po + PoA- lim p(a)BB’p(a) + A O,
aO

and so PoBB’Po O. If rank B n, then Po O. Conversely if Po O, then

limP()BB’P() A.

Let p be the ith column vector of P(e) and let q (1/x/)B’p. Thus q --, q and
(q)’q Au. As A > 0 then the q are linearly independent. Hence rankB n.

Now we can replace the condition {D} R, 1,..., n, in Corollary 2
of Theorem 4.1 by R {B}.

The method of this section yields the following alternate form of Corollary 2.
Suppose C 0 and W is a subspace such that {D} W U= N[6],
i= 1,..., n. Suppose there is a K such that A- BK has stable modes

and unstable modes R +, where W c We also assume that there is a space
W complementary to W such that W R[A], and that W and W completely
reduce . Then an admissible control exists independently of D. If W {B},
then {D} W is not required.

5. An appcation to stability. If we set E 0 in (2.1) and if u (x) Kx,
then x(t) 0 is the unique solution of (2.1) with x(0) 0; i.e., 0 is an equilibrium
point. In this case the degenerate probability measure # with support at 0 is
invariant and {x’x} O.

Let us consider the problem of stability of the second mean. We have

d

(5.1) {x[A(P)+ K’F(P)+ A’P + PA]x,}

if P > 0, where a > 0 and 2(P) is the largest eigenvalue of A(P)+ K’F(P)K
+ A’P + PA. If 2(P) < 0, then there exist fl, > 0 such that

(5.2) ex{x;Px,} (x’Px) exp { t},
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and so g{x’tPxt} is globally exponentially stable. It follows that if there is a P > 0
such that 2(P) < 0, then the second mean is exponentially stable;i.e., (5.2) holds
with P 1. On the other hand, Theorem 4.1 and its corollaries give conditions
such that P > 0 exists and

q(x’Px) <= rlx’Px
with r/> 0. Hence if the conditions of the theorem or one of its corollaries are
satisfied, then we have exponential stability of the second mean. This implies [9]
that the zero solution is asymptotically stable with probability one. More complete
results have been obtained in [10] for systems generated by linear nth order
differential equations whose constant coefficients are distorted by white noise.

As we mentioned, the invariant measure is degenerate, and so the stationary
optimal control is of no interest. However, now the problem of minimizing

(5.3) #),{f [x,Mxt+u;Nut] dt}
has a solution under exactly the conditions of Theorem 4.1 (see [1]).

6. Example. We consider only one elementary system which does, however,
show that the results of 4 are an improvement over Theorem 3.2. Let

A B= C(u)= u, D(x)-- X
0 -1

Then

fF0- )

R=i[_’R and {C}___R2_, D(R2_)=0.

Also (A, B) is stabilizable and R
_

(B}. Hence an optimal control exists for all
values of a, fl, V.

On the other hand,

A(i) (f12 _{_ 72) [10 0{)] and 1-’(I)=02.

Then

(6.1)

0
2 inf Q(K) 02 inf

K K
et(A-K)’K’Ket(A-) dt

< inf
K

et(A- nlC)’[lk(I) + o2K’K]et(a- lK) dt

Computation shows that K [2, 0] minimizes Q(K) in the class of K’s such that
A BK is stable. Also Q([2, 0]) 2 so that Theorem 3.2 requires at least 02 < 1/2.

Appendix. We shall prove the following lemma.
LEMMA. If x(O) x"(O) with g{ ]11] 2} < 00, and if T < c, then

(A.1) lim g{llx"(t)- x(t)l 2} 0
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uniformly in for 0 <= < T. Here x(t) satisfies (2.1) and x"(t) satisfies (3.6).
Proof. We shall write x(t) as xt. Let

y, D(xs) do)s, y D,(xs) dco.

As g{ I 2} < 0(3, then g{maxo _<, <_ T x, 2 < o so

{ y, y’ll 2} g D(xs) D,(x) 2 ds

Now

D(xs) D,(x’])]l 2 =< 2 D(xs) D.(xO 2 + 2 D,(xs) D.(x2) 12.
If we let’= [0, t] (q{s" xs > n},then

{I Y, Y’II } <= 2k2{fap llxsll 2 ds}+ 2k2d{f Ilxs- xll 2 ds}
2k(al + a2)

if we set e, g{j’ae IXs 2as} and e2 e{j’ IIx- xll 2 as}. The same result
holds for Yt [.’0 C(Kxs)dco, and y’ j’; (;,,(Xs)dco,. Moreover,

However,

(A.2)

It follows that

(A BK)(x x) ds

M’ {llx x, 2} 6tk2a2 + 12k2(ax + a2),

M’ __< 6k2(2 + t) M ds + 12k2a,

M’ =< 12k2aa exp {6k2(2 + t)t} <= I(T)I.

1 ( IIXsll 2 ds o{I xsll2111x, ll>.(s)} ds

y 2ps(dy) ds,

where Ps(G)= Pr {xs G}. As e{maxo<_s<_T Ilxsll 2} < oo then the inner integral
of the last term in (A.2) converges to zero uniformly in s. This establishes (A.1).
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INPUT-OUTPUT STRUCTURE OF LINEAR SYSTEMS WITH
APPLICATION TO THE DECOUPLING PROBLEM*

L. M. SILVERMAN AND H. J. PAYNE’f

1. Introduction. Let (.4, B, C, D) be a linear time-invariant system
representation described by the equations

(1.1) 54t) Ax(t) + Bu(t),

(1.2) y(t) Cx(t) + Du(t),

where x(t) E R", u(t) Rr, y(t) R and the constant matrices A, B, C and D
are n n, n x r, rn n and rn r, respectively. For each initial state Xo E,
5 defines a mapping 5, : , where @’ denotes the input function space
over [0, ) and the corresponding output space. For simplicity, @’ will be
taken to be o, the space of r-vector functions continuous on [0, o).

In the first half of this paper ( 2-5) two basic problems related to the input-
output structure of the system ow are examined. The first is that of explicitly
characterizing the functional range of while the second is that of describing the
set of inputs which generate given elements of the range. Of particular interest
for the second problem is the set of inputs which will generate the zero output.
These problems have been considered by several authors in the single-input,
single-output case [1]-[4] with a complete solution being given in [4]. In the
multivariable case attention, for the most part, has centered on situations in
which r m and 5 is one-to-one [5]-[8], with a complete solution being given in
[8]. However, for many applications, particularly the decoupling problem, this
restriction is quite unrealistic. Hence we consider the general problem here. The
basis of our approach to the problem is the structure algorithm developed in [8].
In 2 this algorithm is described and generalized to the case rn - r, and in 3
several basic properties of the algorithm pertinent to the problems considered
are derived. A complete solution to the range and input characterization problems
is given in 4. The main results of this section are Theorems 4.1 and 4.2. Theorem
4.1 gives the necessary and sufficient conditions that a function must satisfy in
order that it be in the range of 5xo while Theorem 4.2 specifies an "inverse system"
representation which can be utilized to generate the set of all inputs u such that
w 9o[U] for any w in the range of xo. Corollaries of these theorems include
necessary and sufficient conditions for Sxo to be left or right invertible and a
measure of the rank of the transfer function matrix of in terms of quantities
defined by the structure algorithm. In 5 the results are specialized to the problem
of generating the zero output. Two equivalent characterizations of the set of
"zeroing" inputs are given, the first being an open loop specification as the set
of outputs of a fixed dynamic system, and the second, a feedback law of the type
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u Fx + Gv. A complete characterization of the class of all pairs (F, G) which
can be used for this purpose is also given. Application is also made in this section
to the problem of input isolation discussed by Wonham and Morse [9]. It is
shown that the structure algorithm very simply classifies the set of inputs which
can be isolated from the output by state feedback.

In the second part of the paper ( 6-9) application of the structure theory
developed in the first part is made to the problem of decoupling 5 with respect
to a specified partition of the outputs into p subsets either by static feedback (of
the type u Fx + Gv for F and G constant matrices) or dynamic compensation.
The static decoupling problem for the case p m r and D 0 was first defined
by Morgan [10], [11, with a complete solution given by Falb and Wolovich 12,
13], [14] and Gilbert [15]. Partial results were also obtained by Rekasius [16].
The more general static decoupling problem (with D 0) was first defined by
Wonham and Morse [9] who also provided solutions for several special cases.
The approach of Wonham and Morse differs considerably from that of previous
work on the problem with their emphasis being on geometric characterizations.
As indicated in their introduction, although they solve two large classes of static
decoupling problems their results do not lend themselves directly to computer
implementation. The approach takefi here is a completely general but algebraic
one and is well-suited to computer implementations. In this respect it is similar
to Gilbert’s [15] procedure when specialized to the case he considers.

The case D- 0 is handled with no additional complication and leads to
results more general than those of [12] and [15] even for the case p m r.

Moreover, for the case D 0, a broader class of decoupling problems is solved
than previously reported [9]. An outline of 6-8 follows.

The general static decoupling problem is defined in 6. The definition given
is essentially the same as that given in [9] for the case D 0. In 7 an explicit
algebraic characterization of the class of all feedback pairs (F, G) which decouple

preserving output controllability is given in terms of matrices defined by the
structure algorithm. This characterization consists of a set of (nonlinear) algebraic
equations, the set of whose solutions coincides with the set of all decoupling pairs,
together with a matrix rank condition which insures output controllability. As
yet, a finite algorithm for determining existence of a solution to these equations
has not been found. For many important special cases, however, solutions have
been found and a number of these are given in 8. Included in the results of this
section are the cases solved (by quite different methods) by Wonham and Morse
9]. A complete solution to the static decoupling problem when G is constrained
to be nonsingular is also given. This case includes the now standard result of Falb
and Wolovich [12] and Gilbert [15]. Emphasis throughout this section is on
constructive proofs which can be directly implemented on a digital computer.

The dynamic decoupling problem is treated in 9. This problem was first
considered in full generality (for D 0) by Morse and Wonham [18], and a
complete solution was given for the case in which state feedback is allowed. A
simple constructive solution to this problem is also given here. Moreover, the
method used here leads quite directly to a complete solution of the more practical

Recently, Morse [17] extended some, but not all, of the results of [9] for the case D - 0.
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problem--that of decoupling with dynamic compensation and output feedback
alone, while preserving output controllability and stability of the closed loop
system (see Theorem 9.3). This result completely solves the outstanding "classical"
problem of decoupling a system specified by a transfer function matrix which
originally motivated Morgan’s state variable approach to the problem (see
for references to the early literature on the problem).

2. The structure algorithm. Let qo rank D and let Do be the submatrix
formed from the first qo independent rows of D. Then there exists an m m
nonsingular matrix So such that

Using So as an output transformation yields a new system representation
defined by the equations

(2.1) 2(t) Ax(t)+ Bu(t),

(2.2) yo(t) Cox(t)+ Dou(t),

where yo(t)= Soy(t), Co SoC and Do SoD. It will prove convenient to
partition Yo and Co comformably with Do as

Yo
CoY=

370 tTo
so that Yo Cox + Dou and 37o Cox. As for the case r m (see [8]), the re-
mainder of the sequence can be defined inductively. We assume that has
the form

2.3) ) Axt)+ nut),

(2.4) y(t) Cx(t) + Du(t),

with the partitioning

y(t)
y(t)

C= D=
(t)3

where has q rows and rank q, y and C have q rows, and f and C have
m- q rows. Observe that if

0
Mk= [1; Im_q(d/dt)]’

then

Note that 37k CkX(t), hence )7k is continuously differentiable so that MkYk(t)
always exists. In the expression for MkYk(t), let Hk + and Jk + denote the matrices
multiplying x(t) and u(t), respectively, and let qk+l rank Jk+ 1. If Ok+l is the
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matrix formed from the first qk+ independent rows of Jk + 1, then there exists an
m m nonsingular matrix Sk+ such that

Sk+lJk+

Wkk + is then defined by the equations

it(t) Ax(t) + Bu(t),

(2.6) Yk+ l(t) Ck+ lx(t) + Dk+
where Yk+l Sk+lMkYk(t), Ck+l Sk+lHk+l and Dk+ Sk+lJk+ 1. It follows
from the above that Yk(t)= NkY(t), where2

k

(2.7) Nk 1- Sk-iMk-,-1, k O, 1,... (M-1 I),
i=0

is a sequence of nonsingular matrix differential operators. Furthermore, Nk and
/k are defined by Yk kY(t)and )Tk -kY(t).

It is clear that the matrices Si defined above are not unique in general. The
following method of constructing the matrices proves to be most convenient and
will be utilized in the remainder of the paper.

Let S+1 be the (unique) permutation matrix such that S’+ 1Jk+l has the
following structure. Its first qk + rows are the first qk + independent rows of Jk +
with the relative order maintained, and its last m qk + rows are the remaining
rows of Jk+ 1, also with the relative order maintained. It is clear from the form
of Jk+ that S+ has the form

(2.8) S’+

where Rk+ has qk +

lqk
0

0 Rk+
0 Rk+

qk rows and Rk+ has m qk+l rows. Furthermore,

k+l

is a permutation matrix. Setting

(2.9) Dk + k
and

(2.10) K’+ k+ kB + 1’

where

H= A AkAk_ Aj. The empty product is taken to be the identity.
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we have that Sk + can be chosen as

Iqk/l 0
(2.11) Sk + K+ Im-,tk
so that

(2.12)

and

(2.13) Ck + Rk + 1CkA K’+ 1Ck + 1.

This unique explicit representation of the algorithm will be assumed without
further comment in the remainder of the paper.

Note that if a is the first integer such that qa q, and

(2.14) Kk+ /k+ l(kBOat,
then (2.13) can be expressed as

(2.15) k+ k+ lkA Kk+ la,

O<=k<=n-1,

O<=k<=n-1,

or

(2.16) k+ -k + k(A BDtaCa), 0 <= k <= n 1.

This follows from the obvious nesting properties of the sequences Ck and
k 0, 1, n (see [8]).

3. Properties of the structure algorithm. We shall first consider the effect of
state feedback on the structure algorithm. Let u be a feedback law of the form

(3.1) u Fx + v.

Then the closed loop system is represented by the quadruple (A + BF, B, C + DF,
D). If P is any operator associated with 5 and Q is the corresponding operator of
(A + BF, B, C + DF, D), we shall say that P v Q. For example, it is clear that
A v A +BF, C v C+DFwhileBandDareinvariantunderthistypeof
feedback.

LEMMA 3.1. The operators N and the matrices Di and are invariant under
feedback of the type (3.1), and

fori =O, 1,...
Proof The proof is by induction on the steps of the algorithm. For 0, the

result is obvious. Assuming that the result holds for k then we clearly have
that

Ck "k- DkFF Hk+l q_ jk+lFHk+ kA + kBFA
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and

Jk+lF’g-Ik 1.kB Jk + 1"

.F Sk which in turn implies that Nk + Nk + 1,Hence, Sk + +
F Dk andDk+l +1

.F Sk l(Hk + Jk 1F)= Ck + Dk FCk+l + +1 + +1 +1

which completes the proof.
Remark. Lemma 3.1 yields as a special case the F-invariants observed by

Gilbert [15]. His results obtain by setting D 0 and m 1.
Let the matrix Lk be defined as

(3.2) L, E(g "(i (,-13.
The matrices Lk have many properties in common with observability matrices.
In fact, Lk identifies a subspace onto which the projection of the state of is
determined by the output alone. This follows from the relationship

(3.3) g(t) Lkx(t),

where

(3.4) ?;,(t) [Y; Yl "’" ";;,-].

LEMMA 3.2. If rank Lk rank Lk + 1, then rank Li rank Lk for all > k.
Proof Let a be the first integer such that qa q," Then by construction,

D D, and Ci C, for all _>_ a and D and C are leading submatrices of D
and C,, respectively, for i< a. Hence, by setting F =-DCa, where bJ

b’a(DaD’,)-1, it follows from Lemma 3.1 that i t ;0 for all i. Also by Lemma
3.1, L ’" L so that there is no loss of generality for purposes of the proof in
assuming that C 0 for all i. It follows from (2.12) and (2.13) that with Ck O,

(3.5) kA R+11 k+

Suppose now that rank Lk --rank Lk+ 1. This implies that there exist matrices

Pi such that
k-1

(3.6) Ok PiOi.
i=0

By (2.13) with Ck 0 we have
k-1

(3.7) (Tk +1 /k +lkA , k+1PiiA.
i=0

Therefore, by (3.5),
k-1 k

(3.8) (k+l pali+1 2 P/-l(i,
i=0 i=1

where P is an appropriately defined matrix. Substituting (3.6) into (3.8), therefore,
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determines matrices p2 such that
k-1

Ok+l Z P}Oi
i--o

so that rank L+:- rank L. The result for i> k + 2 follows by an obvious
induction argument.

THEOREM 3.1. Let a be the first integer such that qa-- qn, let fl be the first
integer such that rank La rank La / and let rank (0. Then

(3.9) a=<fl=<n-v+ 1.

Proof. The upper bound on fl follows from the observation that L1 has rank
and the fact that

rankLi-rankLi_l >- 1 fori_<_fl

by Lemma 3.2.
The lower bound on fl is clear since rank Di rank Da for > fl, again by

Lemma 3.2.
Remark. Theorem 3.1 provides a stopping rule for the algorithm.
LEMMA 3.3. There exist an integer 6, fl <= 6 <= n, and matrices Pi, 0,...,

6 1, sueh that

(3.10) ( Pi i"
i=0 j=i+a

Proof. As in the proof of Lemma 3.2, it may be assumed without loss of
generality that C-’i 0 for all i. With this assumption (k / =/k / (,A so that

(3.11) -’k
i= ’i) Ak

and

where 6 is as yet undetermined. Let W (I-I= 1/2i)(7o. Then for a fixed 6, it follows
by standard observability matrix arguments (of which the proof of Lemma 3.2 is a
generalization) that there exists an integer 7 _<_ n such that (WAr) is in the range of

[W (WAv- 1)’

Hence, there exists a first integer 6 =< n for which y so that

5-1

WAa PiWA
i=0

for appropriate matrices P. Consequently, since by (3.11), ( WA, equation
(3.10) follows.

The lower bound on 6 derives from the observation that (3.10) implies that
rank L6+ rank L6.
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Remark. The integer 6 is not as simply defined as a and ft. However, only the
form of (3.10) is of importance below and 6 need not be calculated for the main
results.

For the case qa m the results ofthis section can be considerably strengthened.
THEOREM 3.2. Ifq m, then
(i) the rows of L are linearly independent, and

(ii) a=/3=6.
Proof The proof of (i) is essentially the same as that of Theorem 3 in [8] and

need not be repeated here. That fl a follows from (i) and the fact that if qa m,
then Lj La for j >= a. That fi a follows from the fact that a 0 SO that (3.10)
is satisfied trivially with a fi and P 0, 0, ..., a 1.

A final property of the structure algorithm that will be used in the sequel is the
following lemma.

2-0.LN 3.4. Let 2 e W. Then/),2 0 if and only if LB
Proof. From the structure algorithm,

R+ CB [0"I’0]D,
and

Rk+ xCkB Kk+
so that

kB= R+ll
Kk

Hence Da2 0 implies LaB2 0. By the nesting property of Dk and the definition
of Do, one also has D2 0.

For sufficiency, if o2 0 and (oB2 0, then it is clear that 2 0.
Proceeding by induction, suppose 13k2 0. Then if B2 0, it follows that

Dk+a2 k+kB
2 O.

This completes the proof.
4. System range. In this section it will be shown that the structure algorithm

completely determines the functional range of 6e and provides a method for
generating elements of the range. Two operators derived from the structure
algorithm will be utilized for this purpose"

(4.1) Ma
d 61 di)fij,’ /=0 Pi--d j=O

(4.2) M2= 0j= /=j+l j=0 k=0

dJ- k

l=k+
l KkdJ-k

Here and below, 6 and Pi, 0,..., 6 1, are the quantities defined in Lemma
3.3 a and/ are as defined in Theorem 3.1. The matrices defined in 2 will be utilized
without further comment.
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Let k be the space of m-vector functions for which Nky is defined and con-
tinuous. Then we have the following preliminary result.

LEMMA 4.1. Let y o and let y Ny, j 0, ..., 6 1. If M ly(t) 0 on
[0, ), .Pa(t) 0 on I0, ) and )i(0) 0,j 0, fl l, then y(t) =_ 0 on 0, ).

Proof First we show that a(t)-=0 on the interval implies Tj(t)
(1-I{=o i)YtJ)(t) To see this, we proceed by induction. By the algorithm,

and

Yo(t) Roy(t)

o(t)-- Roy(t)- Kfo(t).

But .a(t) 0 implies that .j(t) 0, j 0, 1, ..., a. Therefore, 370(0 -oy(t). Let
the desired relation be true for j k 1. Then by the algorithm,

and

[ y,_(t) ]y(t)
1RkYk- (t)d

19k(t) ffkDa(t)- KYk(t).

Since k(t) =-- O, k(t) kDl(t), which establishes the suggested relation.
From the differential equation Mxy(t)= 0, the initial conditions 37(0)= 0,

j 0, 1, ...., fl 1, and the result established above, it follows that (1-[=o j)y(t)
0, hence 37,(t) 0. We proceed by induction to show that k(t) 0 for k < a.

Suppose k(t) =-- O. Then fk(t) 0 implies JkJTkl__)l(t) 0, and /k)Tk(l_)l(t) 0.
Integrating and employing the initial condition, we have -kk-(t)----0 and
Rkk_(t O. Then, since [/, /,] is nonsingular, k-(t)=--O. By induction,
37o(0 --0. Finally, since [K"/]’y(t) [y" 37]’, y(t) =_ O.

The following theorem gives an explicit characterization of the range of a
linear system under continuous inputs. A partial result of this nature was first
given in [8, Theorem 5], where the history of the problem is also detailed.

THEOREM 4.1 (Range theorem). An m-vectorfunction w defined on [0, or) is in
the range of 5exo if and only if

(i)
(ii) iw(t)l,=o iXo, 0,..., fl 1, and

(iii) (M M2Na)w(t) Ofor all [0, ).
Proof For necessity, observe that if w is the output of 5e for an initial state Xo

and continuous input v then

(4.3) NkW(t) CkX(t) + DkV(t),

(4.4) lkW(t kX(t).
Conditions (i) and (ii) follow immediately from (4.3) and (4.4). In fact, it is clear

that the two conditions are satisfied for all i= 0, 1,.... Setting k(t)-- kW(t)
and ffk(t) lkW(t), it follows from the structure algorithm that

(4.5) lk(t /k,r, 1)
,vk_ l(t) Kffa(t).
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Then, iterating, one finds

(4.6) k(t) (j-O J) W(k)(t)- j=o- (/=j+lI l)Kjff;(ak-J)(t)"
Employing Lemma 3.3, and noting that/ I for j > a, we clearly see that

(4.7) #(t) P #(t).
i=0 j=i+l

Substituting for (t) and i(t) from (4.6), one finds that w must satisfy condition
(iii).

For sucicncy, assume that w is such that conditions (i(iii) hold. Let K bc a
matrix whose columns form a basis for the null space of. Then, since has full
OW ak,
(4.s) r U
is nonsingular. Now let

and set

(4.9)
where z is the solution of

u(t) D*v(t) + Kv2(t)

v(t) %(0- C.z(t),

(4.10) (t) (A BDC)z(t) + BO(t) + BKv2(t)

with initial condition z(0) Xo. It is clear that, for any /)2, the output of Sexo with
this input has the property that Ya(t) a(t) and y satisfies properties (i)-(iii).
Defining r(t)= y(t)- w(t) and r(t)= Nr(t) we then have that r(t) satisfies (iii),
and (t) 0. Hence, M lr(t) =- 0 and since (0) 0, j 0,-.-, fl 1, Lemma 4.1
implies r(t) 0 which completes the proof.

Remark. In the case q m, it is easily seen that/ K 0 so that M1
M2 0. Thus only conditions (i) and (ii) need be satisfied to insure that w is

in the range of o. For the subcase qa- m r, therefore, the range theorem
specializes to Theorem 5 of [8]. In general, condition (iii) can be expressed in the
form

MlW(t) M2;a(t)

This equation shows that w(t) in the range of 5o is uniquely determined by ,(t)
and the initial conditions.

COROLLARY 4.1. The range of 5 is invariant under feedback of the type (3.1).
Proof By Lemma 3.1, i, ]i, ( and (M1 Mza) are all invariant under this

type of feedback. Hence, the result is immediate from Theorem 4.1.
The following theorem gives a complete characterization of the class of inputs

which will generate a particular function w in the range of 5txo.
THEOREM 4.2. Let w be in the range of o" Then 9o[U] w if and only if u

is the output of the system

(4.11) (t) (A BO])z(t) + BD]Nw(t) + SKy(t),

(4.12) u(t) -DtCaz(t) + ]3*/w(t) + Kv(t)

with z(O) xo for some/).
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Proof Sufficiency was established in the proof of Theorem 4.1. To establish
necessity, let u(t) O*aVl(t) + Kvz(t) be any input such that 5o[U w. Then
from the structure algorithm we have

and

$c(t) Ax(t) + Bv(t) + BKvz(t)

Naw(t) Cax(t + v 1(/;)

with x(0) Xo. Solving the second of these equations for v and substituting into
the first yields the pair of equations (4.11), (4.12) with z x and v v2.

Remark. The system representation (4.11)-(4.12) is a generalization of the
inverse system representation discussed in [8] for the case r m qa" For this
case observe that K 0 so that a unique u exists satisfying 5eo[U] w for a given
Xo and w. This is true more generally when a left inverse for 5exo exists. The conditions
for left invertibility are given in the following corollary.

COROLLARY 4.2. There exists a left inverse 5Lo .O 0, such that L6xo6o-- I,
the identity operator, if and only if qa r.

Proof When qa r, K- 0 so that from (4.11)-(4.12) it is clear that the
system

(4.13) (t) (A BDtaa)z(t) + BDtaaW(t),
(4.14) u(t) D taCaZ(t) + DtaW(t)

with z(0) Xo is a left inverse for 5xo.
Let a,xo {W,’w(t)I,=o--Xo, i= 0,’’’, - 1}. Then from the

remarks following Theorem 4.1, a,xo is precisely the range of 5eo when qa m.
Moreover, it is clear by Theorem 4.2 that the system representation (4.13)-(4.14)
is a right inverse for 5eo (there may be others). Hence, we have the following
corollary.

COROLLARY 4.3. There exists a right inverse 5,go’,,,o o such that

6o5xo I if and only if qa m.
Remark. Both the left and right inverse of 90o when they exist, may be repre-

sented in precisely the same way--as a dynamical system, (A Btaa, Bta,
--OCa,O) following a bank of differentiators realizing Na. When q, m r
this is seen to be the inverse system representation defined in [8].

It should also be noted that in general a representation of the "inverse system"
of lower dynamic order than that of (4.11)-(4.12) can be found. Using the procedure
outlined in the proof of Theorem 4 in [8] we can show that there exists a repre-
sentation equivalent to (4.11)-(4.12) whose dynamic portion has dimension
n rank La.

Let H(s) be the transfer function matrix of (A, B, C, D). Then another generali-
zation of the results of [8] is the following theorem.

THEOREM 4.3. rank H(s) q, for almost all s.

Proof Let denote the Laplace transform operator. Then it is clear that
for zero initial conditions,

5[NaY(t)] [C,(sI- A)-’B + D]a(s)=
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where R,(s) results from replacing the operator d/dt by s in N,, fi(s) .q[u], and
p(s) 5[y]. Since N, is a nonsingular operator,

(4.15) H(s) l(s)[Ca(sI A)-1B AV Da].

It follows immediately from (4.15) that rank H(s) >= q, rank D, for almost all s.
Also note that rank H(s)= rank H(s)T, where T is defined by (4.8) in the

proof of Theorem 4.1. It is clear from that proof that there exists V such that for
arbitrary v,

H(s)T[I(S) -O.
L(s)J

Hence, for all s the null space of H(s)T has dimension at least r q,. Hence

rank H(s) rank H(s)T <= r (r q,) q,

for all s, which completes the proof.

5. Zeroing the output and input isolation. A problem which is important in
many areas of control [2]-[4] and one which is central to the decoupling problem
is that of "zeroing the output" ofa system either by feedback or open loop control.
A complete solution to the open loop problem follows directly from the range
theorem and its corollaries.

THEOREM 5.1.
(i) There exists an input u ll such that 5o[U is identically zero on [0, )

if and only if xo is in the null space ofL.
(ii) Let xo be in the null space ofLtd. Then the output y ofS, is identically zero

on [0, ) if and only if ,(t) is identically zero on [0, oo).
(iii) Let Xo be in the null space of Ltd. Then 5exo[U] is identically zero on [0, oe)

if and only if u can be expressed as the output of the system representation

(5.1) (t) (A BOa)Z(t + BKv(t),

(5.2) u(t) -DtaCaz(t) q- Kv(t)

.[’or some v and z(O) Xo.
Proof Part (i) follows immediately from Theorem 4.1. Part (ii) follows from

the sufficiency proof of Theorem 4.1. Part (iii) follows from Theorem 4.2.
Remark. Let ((A BDaC,), BK, -D,C,, K). It is seen from part (iii)

of Theorem 5.1 that the system representation e completely characterizes the set
of inputs which zero the output ofo in the sense that any such input must be in
the range of xo. Clearly then, any system representation having the same range as
,o will generate the same set of inputs. In particular, for the case Xo 0, can
be replaced by any system which is zero state equivalent to it. Hence, by construct-
ing a minimal such equivalent (, B, (2, b) we can always find a completely con-
trollable and observable system representation whose range for the zero initial
state is the set of all inputs which will zero the output of 5o. Moreover, since
system range is invariant under state feedback, by Corollary 4.1, we can replace
(/], , , b) by (A + F,, + DF, b) for any F. Since (/],/, , b) is controllable
by construction,/] +/IF can have any distribution of eigenvalues by appropriate
choice of F [19]. We summarize these remarks in the following corollary.
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COROLLARY 5.1. There exists a system representation (.2.,/, ,/3) having
any desired set of eigenvalues with the following property"

So[U] 0 if and only/f u eo[V] for some v.

The set of inputs which zero the output of &o also has a feedback representa-
tion. It is clear from the form of (5.1)-(5.2) that the same set of inputs can be
generated by setting

(5.3) u(t) D taaX(t) -t- Kv(t).

Hence we have the next corollary.
COROLLARY 5.2. Let xo be in the null space ofLtd. Then o[U] is identically zero

on [0, ) if and only if u can be expressed in the feedback form (5.3) for some v.
In the remainder ofthis section we shall be concerned with zero state properties

of 5. The notation (A, B, C, D) (,/, ,/5) will be used if 5o[U] 5[u] for all u.
If 5o[U 0 for all u, we say that (A, B, C, D) 0.

Closely related to the problem of zeroing the output of a system is that of
isolating the output from a subset of the inputs via a control law of the type (3.1).
More precisely, suppose
(5.4) 2 Ax + Bu + Ew,

(5.5) y Cx + Du,

where w is a "disturbance input" to the original system representation (2.1)-(2.2).
When does there exist a control law of the type (3.1) such that in the closed loop
system the output is unaffected by variations of w? Equivalently, when does there
exist a matrix F such that (A + BF, E, C + DF) 0?

This problem was first stated in essentially this form (with D 0) by Wonham
and Morse [9] who also provided a solution in terms of a recursively defined
subspace. It is shown below that the solution of this problem follows quite easily
from the range theorem and that the relevant subspace (7" of [9]) determined by
Wonham and Morse is actually the null space of La. Moreover, use of the structure
algorithm gives an explicit characterization of the entire family of feedback
matrices F which will isolate a given input set.

THEOREM 5.2. There exists a matrix F such that (A + BF, E, C + DF) 0 if
and only ifLaE O.

Proof To establish sufficiency, it is first noted that the inversion algorithm is
invariant with respect to all E in the null space of La. The proof of this fact follows
by a simple induction argument based on the observation that

J+’ ,(B + E) ,B
Sin C r- C + D,,F it follows by Corollary 5.2 that if F -D and

u Fx, th closed loop system (A + BF, E, C + DF).. 0 which completes the
sufficiency proof.

Suppose now that the zero stat response of

c(t) (A + BF)x(t) + Ew(t),

y(t) (C + DF)x(t)
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is identically zero for all w. Then certainly, Niy(t)=-0 for all w and x(0)= 0.
Observe that oy(t) oX(t) so that

dNoy(t) o(A + BF)x(t) + oEW(t) =-0

which for 0 and x(0)= 0 implies CoE 0, since w(0) is unconstrained. By
Lemma 3.1 it follows that ly(t)= ClX(t). Suppose now that jE_= 0 and
/i+. ly(t) i+. ix(t). Then repeating the preceding arguments leads to Ci+. IE 0
and j+2y(t)- j+zX(t). Consequently it follows by induction that (jE 0
for all j 0, 1, ..., which completes the proof.

Since the matrix [ K] is nonsingular, any feedback matrix F can be
expressed in the form

(5.6) F-- taF + KF2,

where F1 is a qa n matrix and F2 is an (r %) x n matrix. With this notation, a
useful characterization ofthe class ofmatrices which will isolate a given disturbance
matrix E can be given.

THEOREM 5.3. Let E be such that LtE 0 and let F be expanded in the form
(5.6). Then (A + BF, E, C + DF) 0 if and only if
(5.7) (, + F,)(A BDC. + BKF2)JE 0

forj=O, 1,...,n- 1.
Proof By Theorem 5.1, part (ii), if Xo 0, the output y of the system (A + BF,

E, C + DF) is identically zero on [0, ) if and only if Ya(t) is identically zero on the
interval. Now

where
fa(t)-- (C "k- DaF)x(t),

2(0 (A + BF)x(t) + Ew(t).

Hence ,(t) =- 0 for all w if and only if

(5.8) (, + O,F)(A + BF)JE O, j 0,..., n 1.

With F represented by (5.6) this equation becomes

(5.9) (C-’, + Fx)(A + BF)E O, j 0,..., n- 1.

It remains to show that (5.7) and (5.9) are equivalent. It is clear they are equivalent
forj 0.

Suppose (5.9) holds for j 0, 1,--. n 1 and (5.7) holds for j 0, 1,... k,
and consider

(5.10) (a + F,)(A + BF)k+’E (, + F,)(A + BF)(A + BF)kE.
By (5.6),

(5.11) BF BO]FI + BKF2,

and using (5.9) with j k we have

(a + F)(A + BF)+E (a + F1)(A BDtaa + BKF2)(A + BF)E.
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Continuing in this way by using (5.9) and (5.11) with j k 1, k 2,..., 1, one
finds that

(a + F1)(A + BE)k+ 1E (a Af_ F1)(A BD + BKF2)k + 1E.

Hence by induction, (5.9) implies (5.7). That (5.9) follows from (5.7) is easily
established by reversing the steps of the proof.

When E is contained in the column range of/3, i.e., E BG for some matrix G,
it follows from Lemma 3.4 that if DaG 0, then LaE 0 (the reverse implication
is also true if D 0). This observation together with Theorems 5.2 and 5.3 yields
a characterization of the class of all feedback laws of the type

(5.12) u Fx + Gv

which will zero the output of 6eo.
THEOREM 5.4. Let F be expanded in the form (5.6). Then

(5.13) (A + BF,BG, C + DF,DG),- 0

if and only if
(5.14) DaG 0

and

(5.15) (a + F)(A BDtaCa + BKF2)BG 0

for j O, 1, n 1.
Remark. The class of all pairs (F, G) which zero the output of o can be

determined explicitly from (5.14) and (5.15); each G satisfying (5.14) and each
F2 yield a set of matrices F which satisfy the linear equations

(5.16) (C + F1)Q(F2, G)= O,

where

Q(F2, G)= [BG "... (A- BDtaa + BKF2)n-’BG].
Note that if G K, the range of Q(F2, K) is the same as that of Q(0, K). Hence, we
have the following special case of Theorem 5.4.

COROLLARY 5.3.

(5.17) (A + BF, GK, C + DF, DK) 0

if and only if
(5.18) (C + DaF)Q(O, K O.

Note that in contrast to (5.16), equation (5.18) is linear in F.
Since left invertibility of a system is of particular importance in many applica-

tions, we shall conclude our general study of input-output properties with a
summary of several equivalent characterizations of left invertibility in Theorem 5.5
below. Verification is straightforward and will be left to the reader. 3

(B) denotes the column range of B and rl(Lt denotes the null space of L.
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THEOREM 5.5. The following statements are equivalent"
(i) 5exo is left invertiblefor all Xo;

(ii) rank H(s) r for almost all s;
(iii) rank D r;

(iv) rank r.
LB

IfD O, then the following statements are also equivalent to the above"
(v) r/(La) (B)- O;
(vi) if E # 0 is contained in (B), then there exists no matrix F such that

(A + BF, E,C)O;
(vii) if Xo :/: 0 is contained in (B), then there exists no input u ll such that

xo[U] 0 on [0, oo).

6. State feedback decou#ing. Consider a partition ofthe output of(A, B, C, D)
into p nonempty subsets of components

Yl(t)].(6.1) y(t)

and let m denote the size of the subvector y (0 < m and Ef=l mi-- m). This
partition induces a corresponding partition of C and D"

C1 D

P.

where C and D each have m rows.
The basic decoupling problem we shall consider is that of finding a control

law of the type

u(t) Fx(t) + Gv(t)
(denoted as (F, G)), where

va(t)].v(t)

is such that the ith input set v affects only the ith output set yi. Let G be partitioned
comformably with v as

(6.3) G= [G’ GP].

Then a more formal definition is the following.
DEFINITION 6.1. The feedback pair (F, G) decouples (A, B, C,D) (relative to

the output partition (6.2)) if and only if

(6.4) (A + BF, BGi, C + DJF, DGi) O, j # i.
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The state feedback decoupling problem then consists of finding a pair (F, G)
satisfying (6.4) for a specified output partition. It is clear that the pair (F, 0) will
always decouple (A, B, C,D) so that without any further constraints the state
feedback decoupling problem always has a solution. However, if the ultimate
purpose of decoupling is to control the output of the original system in some non-
trivial way, additional constraints are necessary. One such constraint is output
controllability [20] of the closed loop system.

Defining

(6.5) Q(F, G)= [BG (A + BF)n-’BG]
and

(6.6) P(C, D, F, G)= [(C + DF)Q(F, G) iDG],

we have that the well-known necessary and sufficient condition for output control-
lability of (A + BF, BG, C + DF, DG) is (see [20])

(6.7) rank P(C, D, F, G) m.

If the closed loop system is decoupled, then this condition is clearly equivalent
to saying that

(6.8) rank P(C D F,G)=mi, i= 1 p

DEFINITION 6.2. The feedback pair (F, G) output controllably decouples
(A, B, C, D) if and only if (6.4) and (6.8) hold.

For the case D 0 the definition of the decoupling problem is equivalent
to that of Wonham and Morse [9]. Other constraints on the decoupled system
may also be desired such as the state controllability, observability, stability, etc.,
but the output controllability constraint appears to be the weakest meaningful one.

In the following sections we shall develop criteria and algorithms for de-
coupling based on the results of 4 and 5. To do this, however, some new notation
is required. Let C and D be partitioned as in (6.2). Then F is defined to be the
matrix formed by deleting C from C and A the matrix formed by deleting D
from D. Also with G partitioned as in (6.3), define f to be the matrix formed by
deleting G from G.

We shall have occasion to perform the structure algorithm described in 2
on the subsystems (A, B, C, D) and (A, B, Fi, A). The matrices appearing at the
jth stage of the algorithm for (A, B, C, Di) will be denoted as

(6.9) C=
’J

Dj

where q rank is equal to the number of rows in bj and C. Also, define a,
to be the first integer such that rank ba, rank ,. For notational simplicity,
we write /,, ai and C/,, Ca,.

Similarly, for (A, B, F, Ai) the appropriate matrices appearing at the jth step
of the algorithm will be denoted as

(6.10) r} ~ A}
Fj 0
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where rank is equal to the number of rows in and r. Furthermore,
ai is defined to be the first integer such that rank A, rank A. Again for simplicity,
write --iA, A, and F, F,.

With the above notation, observe that condition (6.4) can be restated in two
equivalent ways"

(6.11) (A + BF, B6

(6.12) (A + BE, BD, C + DF, Difli) O, 1, ..., p.

Furthermore, the output controllability constraint (6.8) has the equivalent
formulation

(6.13) rankP(F A F Di)= m_ mi, i= 1 p

7. Decoupling characterizations. In this section we shall provide two alternate
characterizations of the class of state feedback decoupling pairs. It will be shown
in the following section that both characterizations are useful in that one leads
to necessary conditions and the other to sucient conditions for decoupling.

First, define ff(G) to be the family of feedback matrices F such that the pair
(F, G) zeros all but the ith set of outputs, i.e.,

(7.1) (Gi) {F’(A + BF, BG’,F’ + AF, A’G) 0}.
A complete characterization of (Gi) is provided by Theorem 5.4.

Following the development of 5 we first note that any feedback matrix F
can be uniquely represented in the form

(7.2) F ],Fil + K,Fi2

where K is a fixed matrix whose columns form a basis for the right null space of
A,,. Further, define

(7.3) Q(F,2, G’)= [BG’ (A BA,F, + BKiFi2)n-’BG3.
Then the following is an immediate corollary of Theorem 5.4.

COROLLARY 7.1. F

(7.4) (, + F,)Q(62, G) O.

Similarly, denoting by ff*(fli) the family of all matrices F for which

(A + BF, , C + DiF, Di) 0

and representing F as

-t Ki Fi2(7.5) F D,,Fi +

where K7 is a fixed matrix whose columns fo a basis for the right null space of
D,,, we may define

(7.6) Q(F2,

Again by Theorem 5.4 we have the following corollary.
COROLLARY 7.2. F

(7.7) (C,, + F)Q(F2,) O.
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The output controllability criterion (6.8) admits of considerable simplification
when F is restricted to (Gi). Let

(7.8) Pi(F2, G) [(C D-A,,F,*- + DKiF,2)Q,(F,, G) D*G].
LEMMA 7.1. If F e (Gi), then

G(7.9) Q(F, G) Q(F2, ),

(7.10) P(C, D’, F, G’) (F,, G’).

Proo Let Fo F, + F. Then by direct substitution,

(A +

Hence, by (7.4) and a straightforward induction argument it follows that

(A + BF))BG’= (A Bf, + BK,F2))BG’, j 0, 1,...,

which establishes (7.9). Equation (?.10) follows by a similar argument.
Similarly, we define

(7.11) P(F2, i)

A parallel proof to the above establishes the next lemma.
LM 7.2. If F ff*(fli), then

(7.12) Q*(F, n’) Q F*i’,

(7.13) P(F

The first major characterization of decoupling pairs is given by the following
theorem.

THeOReM 7.1. The pair (F, G) output controllably decouples (A,B, C,D) if
and only

(7.14) N,G= O, i= 1,..., p,

(7.5)

(7.16) rank Pi(Fi2, Gi) mi, 1, p.

Proo It follows by Theorem 5.4 and Corollary 7.1 that (7.14) and (7.15) are
necessary and sucient for (F, G) to decouple (A, B, C, D). In light of Lemma 7.1,
equation (7.16) is just a restatement of the output controllability criterion.

By a parallel proof, we also have the following characterization of decoupling
pairs.

THeOReM 7.2. The pair (F, G) output controllably decouples (A, B, C, D) if and
only if
(7.17) D,,f =0, i= 1,...,p,

(7.18) (,,, + F])Q(F’2, n’) O, i= 1,..., p,

(7.19) rank P’(F’2, f) m m, i= 1, ..., p.
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A considerable simplification of the decoupling characterization results if
attention is restricted to the class of decoupling pairs for which G is square and
nonsingular. Such decoupling pairs which preserve the original number of
independent inputs to (A, B, C, D) can be justified in many problems either from
physical or mathematical constraints. An example of the latter is the important
special case in which the number of inputs to (A, B, C, D) equals the number of
output partitions (in particular, when D 0, mi 1 and m r we have the prob-
lem of Falb and Wolovich). The simplification obtained when G is nonsingular
is that output controllability is always preserved independently of F.

LEMMA 7.3. If G is a square nonsingular matrix, then (A, B, C, D) is output
controllable if and only if (A + BF, BF, C + DF, DG) is output controllable for
any F.

The proof of this lemma is essentially the same as for the well-known results
for state controllability [2], and will be omitted.

Following immediately from Lemma 7.3 and Theorems 7.1 and 7.2, respec-
tively, are the two simplified characterizations.

THEOREM 7.3. The pair(F, G), with G square and nonsingular, output controllably
decouples (A,B, C,D) if and only/f (7.14) and (7.15) hold and (A,B, C,D) is output
controllable.

THEOREM 7.4. The pair (F, G), with G square and nonsingular, output control-
lably decouples (A, B, C, D) if and only if (7.17) and (7.18) hold and (A, B, C, D) is

output controllable.

8. Decoupling criteria. In this section, the decoupling characterizations as
expressed in Theorems 7.1-7.4 of the previous section will be employed to develop
explicit criteria for the existence of decoupling pairs (F, G). The results presented,
while not representing a complete resolution of this question, do include within
them all known previous results [9]-[15], as well as several important extensions.

In general, the determination of decoupling pairs (F, G) is difficult since F
and G are interrelated in a highly complicated way through the equations (e.g.,
(7.14)-(7.16)) characterizing output controllable decoupling. With additional
constraints on G, however, the problem becomes quite tractable.

The first group of results in this section derive from the choice G K, where

(8.1) K= [;,

with the Ki as defined in the previous section. Theorems 8.3-8.5 present sufficient
conditions for the existence of a matrix F to complete a decoupling pair of the
form (F, K).

The remaining results of this section pertain to those situations in which G
is chosen to be (or must be) nonsingular. Necessary and sufficient conditions are
derived for a decoupling pair of this type to exist.

The column space of a matrix A will be denoted as [A]. Let Qi be a matrix
whose columns form a basis for [Qi(0, Ki)] and let Q’ be a matrix whose columns
form a basis for [Q’(0, K’)]. Pi and P’ are defined similarly.

The following two lemmas are basic to the development of the necessary
condition expressed in Theorems 8.1 and 8.2 and the sufficient conditions expressed
in Theorems 8.3-8.5.
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LEMMA 8.1. If T,Gi= 0, then

(8.2) [Q,(F,2, Gi)]

(8.3) [P,(Fi2, G’)]
_
[].

These relationships hold with equality if G K.
Proof To establish (8.2), it need only be shown that there exists a matrix L

such that Qi(Fi2, Gi) Qi(0, Ki)L. Since ,G 0, G KiM for some matrix M.
Then Qi(Fi2, Gi) consists of blocks of the form (A- B,, + BKiFiE)kBKiM,
k 0, l, .-., n 1, so that it is sucient to establish the existence of a matrix L
(not the same for each block) satisfying a similar relationship for each block. Now,
if each such block is expanded, each resultant term is of the form BKN or
(A Bf,)3N, j k, for some matrix N (not the same for each term). Hence
each te is expressible in the form Qi(O, K)P for some matrix P (not the same
for each term), which establishes (8.2). That equality holds when G K follows
from the invariance of the controllability space of the pair (A- B,,,BKi)
under feedback.

GTo establish (8.3), define matrices M and N by G KM, Q(F2,
Qi(O, K)N. Then, employing an obvious partitioning,

Pi(Fi2,Gi)=(O, Ki)
F,:O,F,, 6i

The condition of equality when G K follows from invariance of controllability
matrices under feedback.

A parallel fo of this lemma is established in an identical fashion.
LEMMA 8.2. If ,i O, then

These relationships hold with equality i K.
A parallel can be drawn here with the work of Wonham and Morse [9]. It is

clear from the various definitions that for the case D 0, [Q] is the maximum
dimension controllability subspace which is simultaneously in the null spaces of
C, j i. For the more general situation it is clear that [P] is the largest
output controllability subspace in Rm’ which can be generated while simultaneously
zeroing y(t), j i. These remarks lead to the following necessary condition.

THEOREM 8.1. There exists a pair (F, G) which output controllably decouples
(A, B, C, D) only if
(8.6) rank Pi mi, 1,..., p.

A similar argument establishes the following theorem.
THEOREM 8.2. There exists a pair (F, G) which output controllably decouples

(A, B, C, D) only if
(8.7) rank P m mi, 1,..., p.

Theorem 8.1 provides a useful point of departure for the development of
sufficient conditions for decoupling. For if (8.6) is satisfied, output controllability
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is guaranteed by the choice G K and, as will be seen, the further conditions to be
imposed on F are considerably simplified. On the other hand, a parallel approach
starting with the choice fi= K’ is not in general possible since there may not
exist a G to simultaneously realize all the K.

As suggested, considerable simplification is achieved if attention is restricted
to the choice G K.

It follows from Theorem 7.1 and Lemma 8.1 that if condition (8.6) is satisfied,
the pair (F, K) output controllably decouples 5 if and only if the equations

(8.8) (F, + A,F)Qi 0, i= 1,..., p,

have a solution for F. (We have used the fact that FI ,,F.) Since Q does not
depend on F, this set of equations is linear in the elements of F. Hence standard
techniques can be utilized to determine if a solution exists. If no solution exists,
however, it cannot be concluded that a solution to the original decoupling problem
does not exist, since a solution may still be possible with matrices G whose columns
do not span the null space of As,.

Let

(8.9) F A

Then a special case for which a solution to (8.8) exists is given in the next theorem.
TaEOREM 8.3. If rank Pi mi, i= 1,..., p, and g[F c [A, then there

exists a pair (F, K) which output controllably decouples (A, B, C, D).
Proof Since [f’] [z], there exists a matrix F such that/F -P. This

choice satisfies (8.8) which completes the proof.
Although it is not possible to develop useful sufficient conditions along similar

lines by considering the choice f K’, the following lemma provides a link so
that the characterization of Theorem 7.2 may be employed for a useful parallel
result.

For a fixed partition of G in the form (6.3), we have the next lemma.
LEMMA 8.3. If,G O, 1,... p, then ai’) O, 1,..., p.
Proof From the structure algorithm developed in 2, it is clear that for any i,
1, .-., p, the rows of Da, can be expressed as a linear combination of the rows of

Nj for any j - i. Hence, if NjG 0, j - i,/a,G 0, j - i, i.e., Oa,fi O.
Lemma 8.3 allows one to consider the choice G K in connection with the

first two conditions, (7.17) and (7.18), of Theorem 7.2. The satisfaction of these two
guarantee decoupling, while (8.6) guarantees output controllability. Using Lemmas
8.2 and 8.3, one now sees that it is sufficient for decoupling to require that a solution
for F exist for the set of equations

(8.10) (Cai -+- D,,F)Qfl O, i-- 1,..., p,

with F given by (7.5).
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Let

I?ll al
c= o=

Then, by a proofanalogous to that for Theorem 8.3, we have the following theorem.
THEOREM 8.4. If rank Pi mi, i= 1,..., p, and [(] c [/], then there

exists a pair (F, G) which output controllably decouples (A, B, C, D).
A special case of this result is the following.
COROLLARY 8.1. If rank Pi mi, 1,..., p, and the rows of are linearly

independent, then there exists a pair (F, G) which output controllably decouples
(A,B,C,D).

The sufficiency conditions expressed in this corollary, while only a specializa-
tion of the conditions of Theorem 8.3, will be seen to be necessary as well if it is
required that G be nonsingular.

Under the conditions of Corollary 8.1, a class of decoupling pairs can be
explicitly displayed. The independence of the rows of/3 implies the existence of a
right inverse, /3 r. Hence, the pair (-/3,K) output controllably decouples
(A, B, C, D).

Let

O. [01 ...
Then another special case for which a solution to (8.8) is guaranteed is given in the
next theorem.

THEOREM 8.5. If rank Pi mi, l, p, and the columns of Q are linearly
independent, then there exists a pair (F, G) which output controllably decouples
{A, B, C, D). Moreover, under these conditions, the pair (F,, K), with

output controllably decouples (A, B, C, D).
Proof Equation (8.8)can be rewritten as

A,(FQi F,Qi, 1,... p.

Since the rows of A, are linearly independent, a solution for FQi for each of these
equations exists. Specifically,

FQi=- " i=1, p0i

Collecting these equations, we have

Since the columns of Q are linearly independent, F F is a solution of (8.8)
which, together with G K, output controllably decouples (A, B, C, D).

Remark. The general solution of (8.8) is obtained by noting that the complete
solution for FQ is

FQ FaQ + KF2,

where F2 diag (F2) and Fi2, 1, ..., p, are arbitrary. (Fi2 has the same number
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of rows as Ki has columns, and the same number of columns as Qi has columns.)
This in turn yields

(8.14) F F, + KFzU2*.
This general form for F will now be utilized to show that when the conditions

of Theorem 8.5 are satisfied and rank n, decoupling can be achieved with
A + BF strictly stable (all eigenvalues having negative real part).

To see this, first note that by Lemma 8.1 the columns of form a basis for
[O(F, K)3. Performing the coordinate transformation z C)-x, where x is the
state of the deoupled system, one can then readily verify that

.3i Q-’(A + BF,)Q + Q-’(BKF20-

has the block diagonal form

A= .. + ..
Ap 0 BpFp2

and

o 1= O-’BK= "..

The pairs (,/i) are clearly controllable, so that (3i +/iF2) can be assigned any
desired spectrum by choice of F2 (see 18]). Hence,/] and therefore (A + BF) can
be assigned any spectrum with an F of the form (8.14).

A corollary of Theorem 8.5 is Theorem 4.1 of Wonham and Morse [9] (stated
somewhat differently).

COROLLARY 8.2. Suppose D 0 and m n, with rank C n. Then there
exists a pair (F, G) which output controllably decouples (A, B, C, D) if and only if

(8.15) rank Pi mi, 1,-.., p.

Proof Since the number of rows of P is m, necessity follows from Theorem
7.1. To prove sufficiency, consider the matrix CQ. By construction, CQj O, # j,
and CJQ P, i.e., CO diag (P), so that rank CO E’= rank P/= n. Since
rank C n it follows that rank C) n. Also, since FJQj 0, j 1, ..., p, and
rank F n mj, rank C)j _-< rnj. Since each C)j has full column rank, it follows
that Q has n linearly independent columns. Then the desired result follows im-
mediately from Theorem 8.5.

If the necessary condition of Theorem 8.1 is satisfied but no solution to
(8.8) exists, the next logical step is to choose a G of smaller dimension than K and
re-examine the decoupling conditions. A guideline for a second choice of G is
available from the characterization theorems, Theorems 7.1 and 7.2. From the
definition of K, it is evident that G must be chosen in the form G KiN in order
to satisfy (7.14). Hence, a reasonable approach is to select a set N, 1,..., p,
then examine (7.15) and (7.17) for the possibility of a solution for F. Equation (7.17)
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should be examined first to determine if a set Fi2 1,..., p, exists to achieve
output controllability. Then if this proves successful, (7.15) can be examined by
standard techniques, since for Fi2 fixed, this equation is linear in the elements of
F 1. As yet, no way of generally terminating this algorithm after a finite number
of steps has been found.

At this point, we shall return to the condition utilized in Corollary 8.1--that
/3 have linearly independent rows. It will be shown that for a large class of systems
this condition is both necessary and sufficient for decoupling.

LEMMA 8.4. If there exists a nonsingular matrix G such that for some F the pair
(F, G) decouples (A, B, C, D), then the rows of are linearly independent.

Proof If (F, G) decouples (A, B, C,D), then from (7.17), Oa,GJ= O, i:/: j;
hence/SG must be block diagonal. Also, since the rows of Oa, are linearly inde-
pendent and G is nonsingular, the rows of Da,G are linearly independent. Due to its
block diagonal structure, it follows that the rows of/3G are linearly independent.
Then since G is nonsingular, the result follows.

THEOREM 8.6. There exists a pair (F, G) with G nonsingular which output
controllably decouples (A, B, C, D) if and only if

(i) (A, B, C, D) is output controllable, and
(ii) the rows of are linearly independent.
Moreover, if conditions (i) and (ii) are satisfied, the pair

(8.16) /= -/3r, ( Eb*" K*],

where the columns of K* form a basis for the null space of , output controllably
decouples (A, B, C, D).

Proof Necessity follows by the preceding lemma and Theorem 7.4. Sufficiency
follows by observing that ( and ff satisfy conditions (7.17) and (7.18), respectively.

The following corollary covers a case considered by Wonham and Morse 9,
Theorem 5.1].

COROLLARY 8.3. If r p, then there exists a pair (F, G) which output control-
lably decouples (A, B, C, D) if and only if

(i) (A, B, C, D) is output controllable, and
(ii) the rows of are linearly independent.
Proof It is clear that if r p, the G matrix of any pair which output control-

lably decouples must have rank r so that the result follows by the preceding
theorem.

Remark. If (ii) holds and r p, then it is clear that D, is a row vector and
rank /3 r. Hence, if (i) and (ii) hold, (- /3-1, /3-1) output controllably de-
couples (A,B, C,D). For the case D 0, Wonham and Morse [9] also give a
necessary and sufficient condition for the existence ofa decoupling pair when r p.
Their condition is quite different in form from that given above. One advantage
of the present formulation is that it reduces to the "standard" result given by
Falb and Wolovich [12] for the subcase r p m. It is clear from the structure
algorithm and the above remark that with D 0 and r p that if (ii) holds, there
is a row r of C such that

ai riAai- B
and

ai-- riAai,
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where aiis the first positive integerj such that riAj- 1B # O. Hence, ifC contains only
one row for all i, A* and/3 B* in the notation of Falb and Wolovich [12],
which makes the equivalence with their results apparent.

In our notation, therefore, the Falb-Wolovich result takes the following
form.

COROLLARY 8.4. If rn p r, there exists a pair (F, G) which output control-
lably decouples (A, B, C, D) if and only if
(8.17) rank/3 m.

Moreover, if (8.15) is satisfied, (-D-1,/3-1) is a decoupling pair.
Proof Condition (i) of Corollary 8.3 is redundant in this case since rank/3 m

implies the decoupled system is invertible, a stronger condition than output
controllability.

When the conditions of Corollary 8.3 are satisfied, it is also possible to give a
characterization of the complete class of decoupling pairs.

LEMMA 8.5. Suppose p r, (A, B, C, D) is output controllable, and has linearly
independent rows. Then there exists a matrix F such that the pair (F, G) output
controllably decouples (A, B, C, D) if and only if G has the form
(8.8) G -/5- A,
where A diag (/i) is any nonsingular diagonal matrix.

Proof Necessity follows immediately from (7.17). For sufficiency, note that
G of the form (8.18) satisfies (7.17). By noting that F -/3- satisfies (7.18) and
applying Theorem 7.4, the proof is completed.

In order to delineate the class of matrices F which together with a G of the
form (8.18) output controllably decouple (A, B, C,D), some additional notation
will be needed. Let Ei be the identity matrix with the ith column deleted, let Pi

n rank Q’(0,/3- y:i) and let Hi be any Pi x n matrix having rank Pi such that

(8.19) HiQ.,,(O, - 1-,i) 0, 1, ..., p.

Also, let

(8.20) H

p

Then we have the following theorem.
THEOREM 8.7. Suppose p r, (A,B, C,D) is output controllable, and f) has

linearly independent rows. Then (F, G) output controllably decouples (A, B, C, D) if
and only if G has the form (8.18) and F has the form
(8.21) V--- /-1(__ _1_ FH),

where F diag (fi) and fi, 1,..., p, is an arbitrary 1 Pi matrix.

Proof Lemma 8.5 established the form of G. The necessary and sufficient
conditions for (F, G) to output controllably decouple (A, B, C, D) then reduces to
the requirement that F satisfy (7.15) here rewritten in the form

(8.22) (,, + ,,F)Q,(F,2 i)= O, i= 1,..., p.
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Note that fi /3-1AEi, hence a,f 0. Therefore, since rank fi r 1, one
can take K’ f2i, and, by applying Lemma 8.2, N[Q.*,(F’2,f2i)J N[Q’(0,
/5-1AEi)]. As A is a nonsingular, diagonal matrix, it can be seen that Hi satisfies
(8.19) if and only if HiQ.*,(F’2, f2i) 0. Then F in the form (8.21) is seen to satisfy
(8.22). For necessity, note that any F can be expressed as

(8.23) F --/- 1 -k- /- 1M

for some M. Substitution of (8.23) into (8.22) yields the requirement that

where

Qi ,/- yi) oM *0 i= 1,...,p,

and
(iii) ((for j O, 1 is in the row range of H
Remark. As a consequence of (iii) above, it can be assumed without loss of

generality that if

(8.24) L

and fli is the first integer such that rank Li rank Li/l 7i, then the first 7i
rows of H can be chosen to be the first 7i independent rows of La,.

Following from Lemma 8.6 and Corollary 8.3 is a simple representation of
the class of all decoupled systems for which the conditions of Theorem 8.7 hold.
First note that (8.19) implies

(8.25) HBD-

The form (8.21) is then seen to include all solutions F.
This. characterization of decoupling pairs appears to be new even for the

subcase r p m. It is, however, quite similar to Gilbert’s characterization [15,
Theorem 5]. Moreover, the above characterization can be utilized to very simply
resolve the question of eigenvalue placement in the decoupled system. This
method is also similar to, but somewhat more direct than, Gilbert’s procedure.

The following lemma is equivalent to the related result of Gilbert 15, Lemma
1] so that the proof can be omitted.

LEMMA 8.6. Let H be the matrix defined by (8.19) and (8.20). Then
(i) the rows of H are linearly independent,
(ii) there exists a matrix A such that

Hi(A B-) AiHi
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where bi is a Pi x 1 matrix. It is clear from Lemma 8.6 and (8.25) that

H(A + BF)H*
0 (Ap b,f,)

where F is any matrix of the form (8.22) and H H’(HH’)-.
If J is any matrix whose columns form a basis for the right null space of H

and

T j, (j,j)- 1j,,
jt

is used as a coordinate transformation, it can then be verified that the class of
decoupled systems (T(A + BF)T-1, TBG,(C + DF)T-1, DG) has the following
explicit form (assume without loss of generality that D Do and C C)"

(A1 blfl) 0

T(A + BF)T-1 0

0 (Ap- bpfp)

_Jt(A Bb-1 nt Bb- lH)Ht Jt(A BD- l()j_

b@l O. IDIGI.TBG
DG

0 b p DPG

J*B9 A _1

where

DiG

with e the ith row of/, and

where

Ieioil if Di s/= O,

0 if D O,

(C + DF)T-1
(C ..1_ DIF)T 11L(C" + DPF)T

[ f I ifDi#0’
(Ci + DiF)T -1 [Eimi_l

E if D 0
mi

i-1and El is an x n matrix whose kth row is the ( .i= lP + k)th row of I. and f is
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the row vector f with all entries replaced by zero except those indexed

=1PJ + k,k 1, ..., p.
Several results follow directly from this characterization. The most important

is the following which generalizes and reformulates the related results of Gilbert
[15] and Wonham and Morse [9].

THEOREM 8.8. Suppose p r, (A, B, C, D) is state controllable and the rows of b
are linearly independent. Then there exists a pair (F, G) such that (A + BF, BG,
C + DF, DG) is output controllably decoupled and strictly stable if and only if
Jr(A Bb-ld)j is strictly stable.

Proof. Controllability of (A, B, C, D) implies that the pairs (Ai, bi) are con-
trollable so that (A + bf) can be assigned any desired spectrum by choice of
f/. It is also clear that the eigenvalues of Jt(A Bb-l)j are invariant under
decoupling feedback.

Remark. Under the hypothesis of Theorem 8.8, (A, B, C, D) is left invertible
and the dynamic part of the left inverse has the representation (see (4.13)-(4.14))

(A BD- I Bb- 1, D- , D-1).
It is clear, therefore, that a sufficient condition for stable decoupling when D
is nonsingular is that (A,B, C,D) be "minimum phase" in the sense that the
eigenvalues of the inverse system have negative real part.

It is also clear from the characterization of decoupled systems that the trans-
fer function matrix Z(s, F, G) has the form

where

Z(s, F, G) diag (Z(s, F, G)),

,f _1 (sI- A -k- bifi)-lbi2 -k- ei)t :fi O,
-I

if D
Zi(s, V, G) I_E,-1

Um,(SI- A + bf)-lb2i if Di= 0.

Hence, the transfer function matrix of the decoupled system can be assigned any
desired pole pattern.

9. Open loop and dynamic decoupling. As seen in the previous section, a
complete solution to the state feedback decoupling problem is not yet possible.
Moreover, even for the class of systems in which the decoupling problem is resolved,
stable decoupling by state feedback is not always possible. This has motivated
the examination of more general decoupling laws [15], [18], [20]. Morse and
Wonham [18] have shown that if the class of decoupling laws is sufficiently en-
larged, necessary and sufficient conditions can be given both for decoupling and
stable decoupling (the conditions turn out to be identical). This problem will also
be considered here. It is shown below that the open loop characterization of
zeroing inputs given by Corollary 5.1 leads to a very simple proof of the general
decoupling criterion as well as an explicit realization of a dynamic decoupling
law. Moreover, this approach leads to a considerably stronger result--a necessary
and sufficient condition for stable, dynamic decoupling with output feedback only.

We shall first consider the open loop decoupling problem.
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Let q/ denote a subset of the input space q/of 5e and let 5o denote the system
defined by the quadruple (A, B, CJ, DJ) with initial state Xo. Then the following
definition of an open loop decoupling set of inputs will be adopted. It is essentially
equivalent to the open loop decoupling definition given in [18].

DEFINITION 9.1. A family of input sets {’}’= output controllably decouples
if and only if"

(i) 6e[u] 0 for j =/= and u q/i; and
(ii) for every 2 e Rm’ there is a e q/ such that pi(1)= 2, where p(1) is the

response of 6e to fi evaluated at 1.
The following theorem gives a necessary and sufficient condition for the

existence of a decoupling family. This result is equivalent (for the case D 0) to
the corresponding result of Morse and Wonham [18, Theorem 6.2]. The proof is
believed to be simpler and more constructive.

THEOREM 9.1. There exists a family of input sets {’i= which output con-
trollably decouples if and only if
(9.1) rank Pi mi, 1, p.

Proof Necessity. Suppose {@’i)’= output controllably decouples 6. By
Corollary 5.2 the set i ofall inputs u for which 6o[U] 0 forj - can be generated
by the feedback law

(9.2) u-- , ta’,X q- KiP.
Moreover, P is the output controllability matrix of 5e subject to feedback of the
form (9.2). Hence if condition (ii) of Definition 9.1 holds, P must have rank mi
since by condition (i), ’i ’i.

Sufficiency. If rank P mi, then by definition, the set of input functions
generated by the feedback law (9.2) with x0 0 satisfies conditions (i) and (ii) of
Definition 9.1.

Remark. As seen the the previous section, it is not generally true that all the

#i can be generated simultaneously with a single feedback law. However, as was
shown in Theorem 5.1, the set q/ can be generated in an open loop manner by the
system representation ,
(9.3) i__. (A B,F,)z + BKivi,

(9.4) u -A,F,z + Kivi

with z(0) 0. It is clear, therefore, if we set

p

b/--"

i=1

where u is the output of (9.3)-(9.4), decoupling is achieved with the dynamic
control law defined by the direct sum of the system representations .

More generally one can define a general dynamic control law by a pair of
functions characterizing a dynamical system - coupled from

(9.5) z(t) (9(t, to, Z(to), Xtto,t],

(9.6) u(t) M(t, z(t), x(t), v(t)),
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where (9 is the state transition function [22] of -, z(t) E’, the state space of
-, v , the input space of the closed loop system and M is the readout function
[22] of -. The overall response of - can be represented by a single operator

(9.7) u(t) o,zo[t, v],

where it is understood that to 0, x(0) Xo, z(0) Zo and v Vto,t1. Let v be
partitioned as in (6.3) and let _-i rt vi] o zo[t, v] when v 0,j - i. The closedXOZOL,,

loop system will be denoted as
A general definition of dynamic decoupling can now be given.
DEVINITON 9.2. The control law (9.7) output controllably decouples 6 if and

only if
(i) o’cJoT-io,o[t, viII 0 for j - i,

and
(ii) the closed loop system 5[-] is output controllable.
The next theorem follows immediately from Theorem 5.1 and the subsequent

remarks.
THEOREM 9.2. There exists a control law of the type (9.7) which output con-

trollably decouples 5 if and only if
(9.8) rank P/= mi, 1,..., p.

Dynamic decoupling can always be achieved with a strictly stable closed loop
system if (9.8) is satisfied and 5e is (state) controllable. To see this, first note that
there is no loss of generality in assuming that A is strictly stable since if 5 is
controllable a preliminary feedback law ofthe type u Fx + w can be used to give
A + BF any desired set of eigenvalues [19]. Also, it follows from Corollary 5.1
that the set of inputs can be generated by a system

(,, d, b)
with i having any desired set of eigenvalues. Consequently, the combined system
(],/, d,/3) can have any desired set of eigenvalues since

For completeness note that

A B B2 Bp

0. 0

o o 3

It is of interest to observe that if the original A matrix is stable, no state
feedback is required to achieve stable decoupling when condition (9.8) holds. In
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many applications the state of 6e cannot be measured directly so that this type of
decoupling law is quite important. These ideas can be extended by incorporating
an observer [23], [24] into the dynamic decoupling law. It is well known that if
6e is controllable and observable, an observer of the type. Az + By(9.9)

with

(9.10) u Fz + w

can be found so that the closed loop system has any desired set of eigenvalues.
It is clear, therefore, that if we can show that rank P is invariant under this type
of feedback a necessary and sufficient condition for stable dynamic decoupling
which utilizes only output measurements will result. To show that this is indeed
the case, a generalization of Lemma 3.1 will be given.

Observe first that under feedback of the type (9.9)-(9.10), the closed loop
system 6 is represented by the equations

(9.12) y= [C" D/]/x/ + Dw.
LzA

If P is any operator associated with and Q is the corresponding operator
of 6, we shall say that

p ,,, O.

LEMMA 9.1. The operators N and the matrices D of the structure algorithm
are invariant under dynamic output feedback of the type (9.9)-(9.10) and

(9.13)

(9.14) (A’B’F) " [i 0].

The proof of this result follows in a manner essentially the same as that used
to establish Lemma 3.1 and is therefore omitted.

Remark. Lemma 9.1 establishes the invariants of the structure algorithm
applied to the whole output of S. It is clear that similar results hold for the
algorithm applied to a subset of the output. In particular, A, is invariant so that

K is also invariant and

(9.15)

and

(9.16) , (’’), [, "’0].

LEMMA 9.2. rank P is invariant under dynamic output feedback of the type
(9.9)-(9.10).
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(9.17)

and

Proof Using (9.11), (9.12) and (9.15), (9.16) we can see that

B(I A,A,)/

(9.18) C D A,y, (A,B,F) [C i-t- Di(I

Since the columns of I *fi,, span the null space of A,, there exists a matrix
Mi such that

(9.19) I ,,, KiM.
Let Pi(O, Ki) be defined by

(9.20) P(0, K,) (A.,,F) P,(O, K,)

and for convenience reorder the columns of P(0, Ki) so that

(9.21)

with Q(0, K) given by (7.3). Using (9.17), (9.18) and (9.19) one can then see that
P(0, K) has the form

p,(o, K,) p,(0,

where ri rank K (Jxl MllFBD, etc.). Since the matrix postmultiplying
P(0, K) is nonsingular, the desired result follows.

It is now clear by Lemma 9.2 and Theorem 9.2 that if rank P m for
1, ..., p, and 5 is controllable and observable, then 5 can be output control-

lably decoupled by dynamic compensation and output feedback alone with the
resulting closed loop system having any desired eigenvalues. The procedure to
accomplish this is first to construct an observer of the type (9.9)-(9.10) to shift
the eigenvalues of A (the eigenvalues of the observer can be placed arbitrarily).
The closed loop system 5 resulting is then decoupled by the procedure given in
the remarks following Theorem 9.1. The combined compensation for decoupling
can be illustrated in block diagonal form as shown in Fig. 1, where (9 represents
the observer and the precompensator for decoupling.

The above results can be summarized by the following theorem.
THEOREM 9.3. Let 5 be controllable and observable. Then there exists a

dynamic control law of the type

where

U 1Z1 -[" 2Z2 -[- bY,

1 f]lZ1 -- lY (observer)
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and

2 22Z2 -’{- l2V (decoupler)

such that the closed loop system

Y A Bx B2 ] X

1 1C (21 +lDdl) lDd[ z1

2 0 0 22 A z2

aDD v,

B2 .J
y= [C DI Dz] x + Dbv

Z1

Z2

is output controllably decoupled and strictly stable if and only if rank P mi for
i= 1,...,p.

Theorem 9.3 completely solves the "classical" decoupling problem of de-
coupling a system which is specified by its transfer function matrix (see Morgan
[11] for references to the early literature) since a transfer function matrix is only
a faithful representation of its minimal (controllable and observable) realizations.
Note that for the case r m p the condition on rank Pi is equivalent to
invertibility-nonsingularity of the transfer function matrix.

The question of minimizing the compensating dynamical system for de-
coupling is still open. For the case where state feedback is allowed, some progress
has been made by Morse and Wonham [18].

10. Concluding remarks. Several problems of interest related to input-output
structure and decoupling are still outstanding. The most obvious is that of general-
izing the results given here to the time-variable case. An indication of how such
generalizations can be obtained is given in [8]. The problem of determining, by a



INPUT-OUTPUT STRUCTURE OF LINEAR SYSTEMS 233

finite algorithm, whether or not a given system can be decoupled is still not resolved
in general. The characterization theorems of 7 should be useful in this respect.
The related problem of decoupling with a minimal order compensator and output
feedback is also open.

Acknowledgment. The authors would like to thank E. G. Gilbert, A. S. Morse
andW. M. Wonham for several stimulating discussions on the decoupling problem.
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EQUILIBRIUM FEEDBACK CONTROL IN LINEAR
GAMES WITH QUADRATIC COSTS*

D. L. LUKES"

Abstract. Problems concerning equilibrium strategies for linear games are treated in a Hilbert

space setting. First a nonlinear equation is derived for the equilibrium solutions in the player’s allowed
operator feedback spaces. The results obtained from the study of this equation are then used to com-

pute the solution to a class of differential games and to establish the uniqueness of the solution.

1. An n-player game in Hilbert space.
1.1. Introduction. This paper studies the class of games modeled by the

linear state equation

(1.1) x- xo + u
with state variables x, Xo in a Hilbert space H; control variables uj in a Hilbert
space Hj, j 1, 2, ..., n, and j :Hj- H specified bounded linear transforma-
tions. The n players compute nonzero sum costs by means of (1.1) and prescribed
quadratic functionals (1.2’).

The existence, uniqueness and stability of equilibrium solutions in ] 0) Hj
were investigated by Russell and Lukes [1] for games defined in terms of (1.1),
(1.2’). That treatment includes the games in which (1.1) is an ordinary differential
equation (a differential game). Varaiya [2] has developed an existence theory
for the differential game with costs satisfying certain convexity conditions and
with constraints upon the u.

The feedback synthesis of the equilibrium solution obtained for the dif-
ferential game in [1] and further studied in [3] motivated the author’s search
for solutions to the game (1.1), (1.2’) in subspaces of [H, ’ 0) Hj], the Banach
space of all bounded linear transformations from H into ] 0) Hj, rather than in

0)Hj itself. The subsequent solutions presented below are probably more

realistic in terms of their game-theoretic interpretation.
A nonlinear operator equation whose solutions are the equilibriums is

derived in Theorem 1.1. Sufficient conditions for this equation to have a solution
are then presented by Theorems 1.3, 1.5. To demonstrate the applicability of
the results, the differential game is treated as an example, with operator sub-
spaces taken to be matrix operators. In the proof of the local playability of the
resulting game, Theorem 2.3, a method emerges for estimating the time interval
over which the game has a solution. With the local playability established, an
equilibrium matrix solution is thereby obtained, computed in terms of the solution
to a system of quadratic matrix differential equations. This solution agrees with
the results derived by Case [4] and others who have studied differential games
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EQUILIBRIUM FEEDBACK CONTROL 235

by means of a Hamilton-Jacobi approach. The theory of the present article
moreover establishes the uniqueness of those solutions.

The following abstract approach is intended to illuminate the underlying
structure common to a general class of games including dynamic games of the
above type.

1.2. The cost functionals. Player Pi, who commands control variable u

functional

(1.2’) cg,i [x i[ 2 2, + [ui[o,, 1, 2, ..-, n,

in which target states i H and bounded self-adjoint linear operators #/,
/gi are given. Of the associated quadratic forms we require Ix[ 2 (x, tx) > 0
for all x H and [uil, (ui, q/iui)> 0 for all nonzero ui Hi. By making the
obvious preliminary change of control variables we can take the #i to be identity
operators and hereafter taking i- 0 deal with the less cumbersome forms

(1.2) cgi- Ixl, + lull i= 1 2,... n

1.3. Equilibrium feedback control. Feedback controls are defined to be
bounded linear transformations .’H --* H, 1, 2,..., n, which give rise to
the abstract variation ofparametersformulas

(1.3) xi= Y-- jj (Xo’+’ibli)

with Xo H, ui Hi, 1, 2, ..., n, and

(1.4) x= Xo, Xo H.

Hence if player P plays uie Hi in (1.1) while the remaining players play feedback
controls uj 5ojx, then Pi incurs the cost computed from (1.2),

(1.5) (9i(5Ol, Q92, U 5on) X 2" -J(- U
2

where

(1.6) ’i

--IX0 + ,.iUil 2’i-t-luil 2,

-1

We shall restrict player Pi’s feedback controls /e L Li[H, Hi] where
L is a closed subspace of [H, Hi], the Banach space of all bounded linear trans-
formations from H into Hi, 1, 2,..., n. Afeedback system (a, 2, "’",

5O,) will refer to an element, 5 ’ i with 5oi e Li, in the space of trans-

formations Z] @ Li from Z] @ H into Z] Hi. We call a feedback system
(51, ,2, ..., 5O,) an equilibrium feedback system (or simply an equilibrium) if
it produces state and control responses defined by the equations

(1.7) Xo + )j(j),
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(1.8) fii=5i2, i= 1,2, n,

such that

(1.9)

for all u e H, 1, 2, ..., n.
THEOREM 1.1. A system offeedback controls (1, 2,"", ,) is an equili-

brium system and only it satisfies the equations

(1.10) , + - j - jj xo 0,
jei

1, 2,..., n. The corresponding control response is given by the formula
(1.11) u -( + iMi) lNixo,

where i is computed from the equilibrium system according to (1.6).
Proof Assume (x,2, "", ,) is a feedback system satisfying (1.10).

Define fl by (1.6) and consider

(.12)

i= 1,2, ..., n. Note that the inverse operator in (1.12) exists. Now let uie H,
1, 2, ..., n, be arbitrary and compute

2

(1.13) --lXo + Miuil 2

-lu al +

the last equality following from (1.12). Hence with (1.13) holding for all ue H,
1, 2, ..., n, the inequalities (1.9) are satisfied. The completion of the argument

involves showing fi, 1, 2, ..., n, is the feedback response to
We compute

( + ’n,) ,- , - Xo

(1.14)
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Substitution of (1.6) into (1.14) and application of (1.10) gives

The equation obtained upon cancellation of the nonsingular operator factor in
(1.15) shows that (1,502, "’", 50,) meets the definition of an equilibrium given
by (1.7)-(1.9).

To prove the converse let 50 (501,502, "’", 5,) satisfy (1.7)-(1.9). Since (1.9)
holds for all ui Hi it holds in particular for the unique ui which minimizes the
right-hand cost term of (1.9). Using formula (1.5) we can easily compute the
minimizing control to be the control given by formula (1.11). With (1.5) we may
rewrite (1.9) as

Then by substituting out b/i with (1.11) and , /(J ’ ’s50s)-axo which
is the solution of (1.7)-(1.8), a rather long calculation based upon the expansion
of the two differences of squares transforms the previous inequality into

XO
2

(Y +

Of course this implies that

Elimination of Di by (1.6) from this equation leads directly to (1.10). But 50 was
an arbitrary equilibrium. This completes the proof that the equilibrium points
of the game coincide with the solutions of (1.10).

Remark. We note (1.10) says that in order for (1.1) to be in an equilibrium
feedback configuration each must act upon the closed loop output to Xo
exactly as the adjoint of Pi’s transfer function composed with -//.

Thus the quest for an equilibrium leads to the problem of solving (1.10)
for 50 (501,502, "’", 50n)" The following fixed-point theorem [5, p. 216] will
be useful in deriving sufficient conditions for the existence of a solution.

THEOREM 1.2. Let F be a Banach space, V an open ball in F of center Yo and
radius ?. Let v be a mapping of V into F such that Iv(y1) v(Y2)[ < /1Yl 221
for any pair of points Yl, Yz of V, where k is a constant such that 0 <= k < 1. Then,
/flv(yo) Yol < ?(1 k), there is one and only one point z V such that z v(z).

Notation. To prevent any confusion arising from the variety of norms to
be dealt with, a word about our notation seems in order. Norms of vectors in-
duced by inner products on Rm, H and H will be denoted as [y], Ix] and luil, etc.
The norms of matrices and in general operators between Hilbert spaces will be
denoted by double bars; e.g. II[I supl,, I,iuil. However, for sums of spaces
and operators we use norms such as Izl 257 Izl and I " I11 for z

zk]’ H or ] @ i, an operator from H into ] @ Hi.
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In some applications, (1.10) can be solved by setting the first operator factor
equal to zero and solving

(1.16) / + ’ J ’jf 0,

i- 1, 2,..-, n. Static games in which all operators are matrices often fall into
this category. Other applications, e.g., differential games, will require that all
factors in (1.10) be retained.

THEOREM 1.3. A ball l’l[ < 2 in ] @ L for which( .eijj) 1,

Li, 1,2, ,n, contains a solution to (1.16) and hence to (1.10) ’
(1,17) I1111111 x/2 < (1 -I111) 1 -I11111 1/2

2

Proof Consider v(5(’) (vl, v2,

(1.18) v,()

For ,,1, ,,p2 in the ball ]lall < 2,

Vi( 1) Vi(p2)
(1.19)

.., v,)(Zf), where

ji

ji

Inequality (1.17)implies that 1[112 < 1 which in turn we use to estimate (1.19) as

(1.20)

Summing (1.20) we have

(1.21)

where we note from (1.17) that

t1111111(1.22) k-
(1 . /)2 <

1.

Thus we have shown

(1.23) ]]v(91) )(2)1 k]]of 5a2]1
for I]]] < , k 1,2. Computing v,(O) -’’//4 we find v,(0){{ I{i{ ll#Tll,
and hence

(1.24) v(o) I1 1
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Observe that (1.1 7) can be rewritten as

(1.25) [[ll II[I < 2I1
Combining (1.22), (1.24) and (1.25) shows

(1.26) v(o) o 2( k).

With (1.23) and (1.26) established, the proof can now be completed by direct
application of Theorem 1.2.

Remark.. We add that Theorem 1.2 further implies that the solution satisfy-
ing the conditions of Theorem 1.3 is unique. However, in general, the solutions
to (1.10) and (1.16) are not unique. For example, the scalar system 1 ##1 1,
M2 2 gives rise to equations (1.16),

1 4
11 + =0, 12 - 0

1 212 1 11
having two solutions

11 4 + ]-, 12 -3/2 __+ -/2.
Looking at (1.16) we would expect to find a solution near 5 0 if I111 or IIll
is small. This is indeed verified by Theorem 1.3 since (1.17) will then have a solu-
tion 2 > 0. Theorem 1.5 likewise represents an application of Theorem 1.2 with

Yo 0. If we have prior knowledge about the location of a solution near a point
other than the origin, then more appropriate results would be obtained using
Yo#0.

LEMMA 1.4. The operator function v(M, 50) (v 1, v2, v,)(M, 50) defined
on the region [l[I 5011 < 1 by

v(, ) -[+?
-1

satisfies the estimate

for I11/L 15011 2, 11211 < 2, where , 2 are any positive numbers such
that 2 < 1 and is the constant

32 + 211111/3
(1 fl)3

Proof As a notational convenience let k (- Mj50.)-1 and i,k
( Ej’#i j50) for an operator 50k t L, 1, 2, ..., n. The estimate

-1_
(1 I11
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implies that v is defined as an operator function on the region [[ I111 < 1,
and in view of our assumptions that 3] =< fl, ]]511 <_ 2, ]15211 =< 2, f12 <
leads to the bounds

(1.28) I],, < (1 f12)-1, ]],]1 =< (1 fl2)-1

fork= 1,2;i= 1,2,...,n.
Recalling the definitions of v i, gi.k, k we add and subtract to get

"i,1

Rewriting the differences, we have

(1.30) 2 2 Nj(&t’j2 5))1,

in (1.29), and using (1.28) gives the upper estimate of Ilvg(, x)- vz(, 2)

(1.32) (1)+[11 111111 + I12111111112 Xll] i -/32

1) 3

H 1111112-111111,

But//2 < 1 and hence 1/(1 -/32) > 1. Consequently (1.32)produces the summed
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upper estimate of Ilv(, 1) v(, =2)1

(1 )3 IIll II
(1.33)

(l fl)3 I111

which completes the proof.
With each vector Z E7 z in 7 H (m any positive integer)we associate

a linear transformation (. )’L ET= Er= n, given by

(1.34) () @() with ()= @ z.
k=l

In the next theorem we again consider the operator function

(.35) v(, ) v(, ),

where

ji

THEOREM 1.5. Suppose (. is a homeomorphism whose range (L) contains
the vectors v(M, )Z for all in the ball l < 2. If 1 < fl where both

(.36) # <

and

(1.37) lZI ] xll{(1 f12)3 + 2[32 + 2 Ifl]} < 2(1 f12)3,

then there exists a solution in L to (1.10) with < , holdingfor all Xo span
(,,... ,m"

Proof By adding and subtracting the term i and simplifying, we can re-
write (1.10) in the equivalent form

(1.38) iXo vi(, )Xo

Since we are assuming that Xo span {zx, z2, ..., Zm}, XO CkZk for scalars

Ck. Therefore it certainly is sucient to solve

(1.39) @ zk= @ Vi(M,)Zk, i= 1,2, n.
k=l k=l

Written in terms of Yz(" defined by (1.34) this system is the same as the equation

(.40 ( 2 (, (,
i=1 k=l i=1

v(, z.
From (1.34) we observe that the linear transformation (.) is automatically



bounded with [[z[[ _-< [Z[. Since z(’) is assumed to be a homeomorphism,
-1 is likewise a bounded linear transformation on its domain z(L). Hence
to prove the theorem we may deal with the equation

(1.41) - v(N’, &a)Z de__f (N, ).

With Lemma 1.4 we estimate

with k II- 1}11zlB[(32 + 211’11/)/(1 -/)33 holding for I111 </3, I1111 < ,
11211 < , and f12 < 1. Inequalities (1.36)-(1.37) imply that k < 1. Using (1.41)
and (1.35) we have

I1(, o) Oll - 1/)(,, O)Zll

(1.43) < I1- Xll IZl I1(, 0)11 I1- Xll IZl IIWII

_-< Y- IZl I111/ _-< 2(1 k),

where the last inequality follows from (1.36) and division of (1.37) by (1 f12)3.
The remainder of the proof is a consequence of Theorem 1.2, which, in view of
(1.42)-(1.43), can be applied to .

Remark. Note that both (1.36) and (1.37) could be satisfied if fl could inde-
dependently be made small. This fact will be exploited in establishing the "local
playability" of dynamic games.

2. Application to dynamic games. We are now interested in applying the
results of the previous section to more concrete problems. As an example we
choose a particular differential game. In the one player case it reduces to the
optimal regulator problem which has been studied extensively in control theory
[6], [7], [8] and has had useful applications in control engineering.

2.1. A linear-quadratic differential game. The data of the problem is given
in the form of real matrix-valued functions A(t), Bi(t), W(t) >= O, IY/i >= O, Ui(t) > O,
and real, finite-dimensional, vector-valued functions yi(t), pi, 1, 2, ..., n, all
defined and continuous on a finite interval to <- =<

The dynamics of the game are given by the linear differential equation in
R X [to,tx],

(2.1)
dy
dt

A(t)y + Bj(t)uj,

where u is the mi-dimensional control variable under the command of the ith
player P. P is allowed to play any real, Borel measurable control command
u ui(t) satisfying

(2.2) lui(t)l 2 dt <
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With the initial state of the game y(to) Yo fixed, any such n-tuple of control
commands u(t)--(ul,u2, "", u,)(t) is called an open loop strategy. An open
loop strategy together with the unique absolutely continuous solution of (2.1)
that it generates will be called a play of the game.

Player Pi is also allowed to generate control commands by means of feed-
back controls. In the particular game that we are considering we allow ui (t)y,
where (t) is any real, continuous mix m matrix function. Hence Pi automatically
generates control commands u(t)= 2’(t)y(t) in response to the action of the
other players via y(t), the solution to

(2.3)
dy
dt [A(t)+ B,(t)(t)]y + Bj(t)ug(t).

j:i

In a similar manner any number of players can choose to play feedback control
simultaneously.

P determines his cost incurred in a play of the game by a functional of the
form

(2.4) (gi [ly(t) 2Yi(t)lw,(o / lui(t)l,(o] dt -+-ly(tl)- ,l z

which he would like to minimize.

2.2. The differential game as a game in Hilbert space. In order to cast this
game into the framework of 1 we consider the Hilbert spaces

(2.5) Lj f(.)’[to,t]Rj, If(t)] 2dt<

and rewrite (2.1) using the variations of parameters formula

(2.6) y(t) dPo(t, to)yo + dPo(t, z)Bj(z)uj(z) dr,

where the fundamental matrix bo(t, ) is defined as the solution to

(2.7)
Obo(t, z)

c3t
A(t)dpo(t, z), dpo(Z, "c) I

We select

(2.8) H LZm Rm, H L2 1 2,... n,mi

and define vectors x, Xo, ff, u by

(2.9)

X
y(t)] dPo(.t, to)yo

lYi(t)’i
]i " H, ui ui(t) Hi,
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and operators 9dHi--, H by

(2.10) (u)(t)

’HHby

dpo(t, )Bi(T)Ui(’ dT t
qbo( x, ,’c)Bi(’c)ui(’c)

(2.11) (/fx) (t)

and finally lli’H -- H by

Wi(t)y(t)

liy(

(2.12) (dllu)(t) U,(t)u,(t), 1, 2,..., n.

To complete the identification of the differential game with the abstract model
of 1 we must single out the Li, the Banach spaces of operator feedbacks. Since
the game allows feedback controls of the type ui ’(t)y it is clear we must select
the linear space of matrix operators corresponding to multiplication by m 2m
matrices of the type [Pi(t) 0] with (t) of size mg m and continuous and 0
a zero matrix. For efficiency in notation we simply write &ag(t) and for later
reference

(2.13) L {q](t)lm x m, continuous},

1, 2, ..., n. For the purpose of turning L into a complete normed linear space
we consider the norms

--sup Ixl--sup{ftt’

Ixl Ix[ 1
Ii(t)x(t)l 2 dt) 1/2

called the uniform operator norm and

sup II’(t)&a/(t)ll 1/2

[to,t]

called the uniform norm.
LEMMA 2.1. The uniform norm and uniform operator norm agree on the space

of matrix operators (2.13) and make L into a Banach space.
Proof It will be sufficient to compute the norms of the operators in Li.

Let 0 / L, x L2m, and being careful not to confuse the various vector
and matrix norms involved we compute

ftt[/X[ 2 [i(t)x(t)[ 2 dt <- ’(t)(t)]l Ix(t)l 2 dt

tt

(2.14) __< sup ’(t)(t)ll ]x(t)l 2 dt
[to,tl] O

sup l(t)ci(t)]] Ix] 2
[to,t]

which shows that I111 <_- suptto,t,llY’.*,(t)Y’i(t)[[ /2.
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Since II’’(t)/(t)ll is a continuous function of on [to,t,] there exists a

t, [to, a] at which it takes on its maximum. Since ’(t,)(t,) is a positive
semidefinite symmetric matrix, there exists an eigenvector x, R with Ix,I 1
such that

(2.15) &a’(t,)a(t,)ll x,. q.*, (t,)’(t,)x,.
We first examine the case where t, (to, t). Consider the sequence in L2m,
(2.16) x,(t) x/Z,(t)x,, n 1,2, ...,
in which ;dt) is the characteristic function of the interval It,, t, + 1/n] f-I [to, t].
For this sequence we compute

(2.17) Ix,I 2 IXn(t)l 2 dt n Xdt)dt <= 1

for n 1, 2,.-. (with equality holding for all large n) and

f t]iXnl 2 lgi(t)Xn(t)l 2 dt n Zn(t)li(t)x,I 2 dt

(2.18)
e
| I(t)x,I 2 dt/(1/n)

for all large n. Using (2.18) and the continuity of I(t)x,I we conclude

(2.19) lim IXnl 2

From (2.17), (2.19) and (2.15) we get

(2.20) llll2 sup Ixl2 lim Ix,12 II?(t,)(t,)ll
Ixl-< n

which shows

(2.21) I111 >= sup 5’(t)(t)l ,/2

[to,t1]

and hence that

(2.22) I1,11 sup Ic.*,(t)L/(t)ll 1/2

[to,t]

A similar argument leads to (2.22) in the cases t, to and t, t,. But (2.22)
shows that the norm generating the uniform operator topology on Li agrees
with the norm generating the uniform metric topology on Li. The completeness
of the latter space is well known. This concludes the proof.

With definitions (2.5)-(2.13) we may write (2.4) as

(2.23) W- Ix ,l,-+-]ul 2

and have shown that the differential game given by (2.1), (2.4) and (2.13) is an
example of the abstract model (1.1), (1.2’) presented in 1. Therefore all the
results developed there apply in particular to the differential game. Our attention
is now focused upon the application of those results.
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2.3. Local playability of the game. Let [to, tl] denote any compact sub-
interval of some underlying interval [t,,tt on which A(t), Bi(t), W(t)>= 0,
Ui(t) > 0 and i(t) are defined and continuous. The differential game is called
playable on [to, t,] if there exists a system of equilibrium feedback matrices in
the corresponding L ] L for that interval. (Recall definitions (1.9) and
(2.13).) If there exists a number A > 0 such that the game is playable on every
subinterval [to, tl] of length to =< A, then we say the game is locally playable
on It,, t,]. The next lemma will play an important role in proving the differential
game is always locally playable.

LEMMA 2.2. For i aS defined by (2.10),

(2.24) 11 <

where 7 is a number giving the bound

(2.25) IIo(t )B,()II <
(t

for t <= t, r <= t,, i= 1,2,...,n.

to)l/2

t) 1/2 + 1

(2.26)

Proof Being careful not to confuse the norms involved we estimate

2 11/2dt

tt

< Y [(t t0) 1/2 + 1] lu()l d
(t# t) 1/2 + 1

tl

5 7 lu,(v)l d’c T(tl to)/Zlu,l.
o

Summing we get IMu[ <= 7(tl to)X/2lul and hence

(2.27) Iid[[ sup [u[ y(tx to) 1/2

which completes the proof.
It will be useful now to compute some of the operator functions which arose

in the general theory of 1. To accomplish this end let (1, 2, "’", 5a,)(t) be
a system of feedback matrices from L ] Li. Substituting u j(t)y
(j i) into (2.1) produces the equation

(2.28) pi [A(t) + J* Bj(t)(t)Jyi + Bi(t)tti
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whose solution can be written as

(2.29) yi(t) dpi(t,to)Yo + ;t dpi(t z)Bi(z)ui(z dr,

where the fundamental matrix bi(t, r) is defined as the solution to

with 4)i(t,t)= Im for all t, r e Its, to], 1, 2, ..., n. Equation (2.29) shows that

(2.31) [( JJ)- lBiuiJ
1, 2,..., n, and consequently

(2.32)

x(t)
y(t)
Y(tl)

for all

i(t, r)Bi(r)ui(r dr

di)i(t r)Bi(r)ui(r) dr/

B(t)dp?(r, t)y(r) dr + B.*, (t)c/).*, (t, l)y(t,)

e H LZ(to, t,) ( R.
Recall that this operator function, as well as the following one, plays an important
role in (1.10).

When all players play feedback, uj 2)(t)y, in the integral form of

(2.33) /9 A(t)y + Bj(t)uj,

(2.34) y(t) dpo(t, to)Yo + CDo(t, r)Bj(r)uj(r) dr,

we have the solution y(t)= 49(t, to)Yo in which b(t, r) is the fundamental matrix

solution to

(2.35)

with 4(t, t) I for all t, z e Its, ta]. This shows that

(2.36) M3 xo (tl,to)Yo
where

dpo(t, to)Yo
dpo(t x, to)Yo
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Recall that we made the identification ,- multiplication by [q,q(t) 0].
In terms of the concrete operator functions given by (2.32) and (2.36), equation
(1.10) for the system of equilibrium feedback matrices is

i(t)cD(t, to)yo 4- B.*, (t)qb.*, (z, t)W/0:)b(:, to)Yo d

(2.37)
+ S(t)dp.*,(t, t,) Iidp(t to)Yo O,

1, 2, ..., n. Note that (2.37) is a complicated functional equation in 5 since
q and b depend upon 5 according to their defining equation (2.30) and (2.35).
Nevertheless, as stated in the next theorem, a solution does existat least on
short time intervals.

THEOREM 2.3. The differential game with dynamics (2.1), costs (2.4) and feed-
back spaces (2.13) is locally playable on [G, t] with equilibrium feedback matrices
which are independent of the initial state of the game. Moreover, such state-inde-
pendent matrices are unique.

Proof. We assume that the appropriate preliminary change of control
variables has been made so that we can take U(t)= I, i= 1, 2,..., n, and for
simplicity treat the case in which (t)= p 0. The proof will follow from
Theorem 1.5 and Lemma 2.2.

Recall that we are dealing with the Hilbert spaces

H L2(to, tl) Rm Hi 2Lm,(to, t)

and feedback operators identified as matrices [i(t)’O6Li. The "abstract
initial state" is given as

{dpo(t,to)Yo dpo(t_o, to) 0 Yo
(2.38) Xo

dpo(t,,to)Yo Iidpo(i, to) Yo

In anticipation of applying Theorem 1.5 we consider Z--,.2m @ zk, where zk
is the kth column of the 2m x 2m matrix in (2.38). Suppose that we identify Z
with that matrix. Then define z in (1.32) according to the right matrix multipli-
cation

(2.39) -(Sa)(t) [’i(t)’O]Z(t), i= 1,2,..., n.

Since Z(t) is continuous and nonsingular it follows that z(" is a homeomorphism
and z(L)= L. In fact, -1 z-,. Furthermore, from (2.32) and (2.36) we
see that

(2.40) v(, L)Z c L -z(L).

Remembering that the subinterval [to,tl] is arbitrary in [G,t] we conclude
from continuity that [Z[ and - are bounded when regarded as functions of
to, e [G, t]. Since it can easily be shown that

(2.41) IIY/ =< sup w/(t)ll + lill,
[to,t,]

it follows that [[//#l[ is also bounded as a function of to, t e [G, t]. Hence for
any 2 > 0 the hypothesis of Theorem 1.5 can be satisfied by first selecting fl > 0
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sufficiently small so that (1.36)-(1.37) hold for all to,t1 Its, ta]. In view of Lemma
2.2 we can then maintain [111 < fl by restricting A to < fl2/,2. The state-
independence is clear since Xo span {z, z2, ..., ZZm} for all Yo R". The unique-
ness argument will rely partly upon the calculations of the next section and is
treated in the concluding comments.

Remark. By carrying out the last steps in the proof of Theorem 2.3 numeri-
cally one can compute the length of intervals A t to over which the game
with constraint IIoqll < 2 is playable. In doing this the inequalities corresponding
to (1.36)-(1.37) which must be solved can be somewhat simplified by, for example,
replacing the first occurrence of the term (1 f12)3 by 1, etc.

2.4. Calculation of the equilibrium feedback. The results up to this point
show (2.37), the concrete form of (1.10), has a solution in L which moreover is
a solution to

(t)dp(t, to) + B.*, (t)qb.*, (, t)Wi(’c)qb(, to) d

(2.42)
+ S.*,(t)qb(t,, t) Iiq(t to) O,

i--- 1,2,..., n, for A l- to sufficiently small. We rewrite this equation as

(2.43) (t) -B.*,(t)Qi(t),

where

Qi(t) b(-, t)W/(-)b(-, to)b- ’(t, to) d’

+ 4,’(t , t) 4,(t,, to)4,-’(t, to),

i= 1,2,..., n. Using elementary properties of fundamental matrices one can
easily show that the matrix product 4(r, to)b-(t, to) is independent of to, and
hence, as already anticipated in our notation, upon setting to we have

(2.44) Qi(t) (’c,t)Wi(’)(’,t)d’c + b?(tl, t)IYdiqb(t,,t),

i= 1,2,..., n. Since b and b satisfy (2.30) and (2.35), respectively, from ele-
mentary properties of fundamental matrices it follows that

(2.45)
8bi(-, t) --qb(z’t)IA(t)+

j:i
Bj(t)j(t)l

(t
-dp(z,t) A(t) + Bj(t)(t)

i= 1, 2,..., n. By differentiating (2.44) with the aid of (2.45)-(2.46) and using
(2.43) to substitute out the L(t), a long but otherwise simple calculation shows
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that the Qi(t) satisfy the system of ordinary matrix differential equations

-Oi- Wi(t) + A*(t)Qi + QiA(t) QiSi(t)S’(t)Oi

(2.47) QiIj,i Bj(t)B(t)QJl [je QfB(t)B(t)l Qi’

Qi(tl) Wi, i= 1,2,...,n.

The following uniqueness argument further shows Q(t)= Q’(t). The dif-
ferential equation obtained from (2.47) by replacing the term Q) by Qj has a unique
and hence symmetric solution. But that solution also satisfies (2.47), and hence
again by uniqueness the solutions are the same.

Now we show that the Q(t) are positive definite for < l. Let (t) be the
equilibrium solution to (2.42). Then (2.43) and (2.47) hold for all < and
near 1. Letting y(t) be the equilibrium response to 5(t); i.e., the solution to

(2.48) 3?= IA(t) +
with y(to)= Yo, using (2.43) and (2.47) one may easily verify

d
[ly(t)lw,(o + IB.*, Qiy(t)[

dt
[y(t) Q,(t)y(t)] 2 2

(2.49)
[ly(t)l 2w,,) + Ii(t)y(t)12]

Integration of (2.49) gives

(2.50) lYol 2 2 23Wi(t)

which shows that the quadratic form in Yo associated with Q(t) gives P’s cost
in the game with all players playing equilibrium feedback. Equation (2.50) also
shows that each Q(t) is positive definite for < t.

2.5. Concluding comments. We have shown that the equilibrium feedback
matrices whose existence was established by a fixed-point argument can be
computed by integrating a system of differential equations, (2.47), for the cost
matrices and then doing the matrix multiplication (2.43). One can easily show
that the matrix feedbacks computed in this manner provide an equilibrium
solution on the entire left-maximal interval of existence for (2.47).

The uniqueness of these initial-state-independent equilibrium matrices can
now be argued. Of course equilibria in general are not unique. For example, if
we choose x0 0 in (1.10), then any system of operators for which the equation
is defined constitute equilibrium solutions. Moreover, the example following
Theorem 1.3 shows that even initial-state-independent equilibria in general are
not unique. However Theorem 1.1 guarantees that any equilibrium must be a
solution to (1.10) and in particular any initial-state-independent equilibrium
solution to the differential game must be a solution to (2.42). But the technique
used in computing the solution to that equation shows that it can have but one
solution. That is, the uniqueness of the solution of (2.42) is a consequence of the
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uniqueness of solutions to the differential equations of the type (2.47). These
observations complete the proof of uniqueness stated in Theorem 2.3. We remark
that when one considers the complexity of the operator calculations (that one
in principle could do for the concrete operators arising in the differential game)
which were necessary in proving the only if part of Theorem 1.1, it is under-
standable that previous investigators in differential games were not successful
in treating the uniqueness question. Clearly the abstract approach of this paper
makes a definite contribution here.

The existence of the solution to the differential game could have been estab-
lished directly by construction of the solution from the solution of (2.47). However
the fixed-point approach provides a means for estimating the interval of playa-
bility. From (2.42) we see that L(tl)=-B’(tl) . Hence if 0, i= 1,
2, .-., n, then we can obtain an estimate using (1.37) as described in the remark
following Theorem 2.3. In general one would expect to get improved estimates
by utilizing this prior information as pointed out in the remark following Theorem
1.3. That is, the fixed-point theory should be applied about the point -B.*,(t) .

The equilibrium feedbacks computed above agree with the solution derived
in [4 using a Hamilton-Jacobi approach. In the one player game; i.e., n 1,
equation (2.47) reduces to the Kalman-Riccati equation

(2.51) -Q W(t) + A*(t)Q + QA(t)- QB(t)B*(t)Q,

Q(t) , studied in [6] in connection with the optimal regulator problem.
This equation has a solution on every interval [to,t]

_
[t,t-.

In [1] an equilibrium was found in @ Hi, the space of open loop controls,
and then synthesized by a matrix feedback system in L generated in the same
way as the equilibrium in L but with an equation lacking the last term in (2.47).
In general the two feedback systems are not the same and produce different
control responses.

When the differential game is playable on every subinterval of [t,t] we
call the game globally playable. A sufficient condition for global playability is

(2.52) W(t) 2,Wo(t), I 2,o
and

(2.53) B,(t)B’(t) -;-So(t),

1, 2,..., n, for some choice of scalars 2i > 0 and matrices Wo(t), Wo, So(t).
This result can be checked by using (2.52)-(2.53) to show Qi(t)= 2Q(t) is the
required solution of (2.47) if we take Q(t) to be the solution of (2.51) corresponding
to the selection W(t)= Wo(t), I= Io and B(t) any symmetric square root of
(2n- 1)So(t).

As a final remark we point out that the results of this paper can be applied
to the study of equilibrium solutions in other feedback spaces and bear upon
games with dynamics described by other types of equations; e.g., integral equa-
tions.
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CONTROLLABILITY OF LINEAR OSCILLATORY SYSTEMS
USING POSITIVE CONTROLS*

STEPHEN H. SAPERSTONE" AND JAMES A. YORKE

Abstract. A linear autonomous control process is considered where the null control is an extreme
point of the restraint set ft. In the event that ) [0, 1] (hence, scalar control) necessary and sufficient
conditions are given so that the reachable set from the origin (in phase space) contains the origin as an
interior point. For vector-valued controls with each component in [0, 1], sufficient conditions are given
so that the reachable set from the origin of a nonlinear autonomous control process contains the origin
as an interior point.

1. Introduction and example. The results in this paper are best motivated by
the following example of controllability. Can the motion of a simple pendulum be
brought to rest in a finite time by the application of a unit force acting only in one
direction ? In terms ofa differential equation, the problem can be stated as follows"
Let u’[0,) {0, 1} be measurable. The linearized equation of motion of the
pendulum is 0 + kO u, where k is a positive constant of the motion and 0 is the
angular displacement of the pendulum from the vertical. Is there an open neighbor-
hood V of the origin (in 0, 0 space) such that if (0(0), 0(0)) V, then there exist a
controller u(. and some T > 0 such that (0(T), 0(T)) (0, 0).9 The answer is yes.
In fact all values of 0(0) and 0(0) can be steered to the origin in finite time.

Similar questions of controllability may be asked of more complicated
oscillatory (i.e., without real eigenvalues) systems having many degrees of freedom.
In 7 we shall analyze a double pendulum. Related questions for nonlinear systems
are discussed in Corollary 6.3. A more general approach will be given in [5].

2. Definitions and statement of main result. Consider the system of linear
differential equations in real Euclidean d-space Rd,

(2.1) Ax + bu,

where A is a real constant d d matrix and x, b are real column d-vectors. Let R +

denote the nonnegative real numbers, and t, the restraint set, be a nonempty
interval in R. Let Un be the set of all bounded measurable functions u(. ), where
u’R + - . For each u 6 Us let x(t)= x(t; u(. )) be the unique absolutely con-
tinuous function satisfying (2.1) such that x(0; u(. )) 0. Define the reachable set
(attainable set) at time >= 0 by

{x t; )).u
and the reachable set by

K[a Ka(t).
t>_o
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K(t) is convex and connected, and compact provided f is compact (see [4, p. 69]).
We note that x(t;u(. )) is given by

x(t u( )) ea"-bu(s) ds.

Let x’ denote the transpose of the column vector x Re. The controllability matrix
of (2.1) is the d x d matrix whose columns are b, Ab, AZb, Ad- b. We say that
the origin can be steered (or controlled) to the point x0 R provided Xo K(to)
for some to < oe. The system (2.1) is called locally controllable at the origin if there
exists < oe such that K(t 1) contains a neighborhood of the origin.

Let f [0, 1]. The main result we will prove is the following theorem.
THEOREM 2.1. The system (2.1) with controls u(. belonging to Uto,1 is locally

controllable at the origin if and only if
(i) all eigenvalues ofA have nonzero imaginary parts, and
(ii) the controllability matrix for (2.1) has rank d.
Remark 2.2. Observe in Theorem 2.1 that if d is odd, then the system (2.1) is

not controllable since a matrix A of odd order must have at least one real eigen-
value. Likewise A must be nonsingular. Thus we are led tO consider only systems
of an "oscillatory" nature.

Remark 2.3. We note that (2.1) is locally controllable at the origin for the class
Un if and only if there exists a neighborhood V of the origin such that every point
of Vcan be steered to x 0 in finite time. In fact, observe that 2 is an eigenvalue of
A if and only if 2 is an eigenvalue of A and the vectors { b, Ab, AZb, Ad- b}
span the same space as {-b, Ab,-A2b, (-1)aA- lb}. It follows that (2.1) is
locally controllable at the origin if and only if

(2.2) 2 Ax bu

is. But u(t) steers the origin to x0 along a solution of (2.1) on [0, to] if and only if
U(to t) steers Xo to the origin along a solution of (2.2) on [0, to]. Thus every
point of K +t0,1j(t) for any => 0 may be steered to the origin in time if and only if
conditions (i) and (ii) of Theorem 2.1 hold.

Theorem 2.1 is related to the following well-known result in controllability.
We give a new proof of this result and will make use of parts of the proofin establish-
ing Theorem 2.1. Let f [-,

TqEOREM 2.4. For the system (2.1) with controls u(.) belonging to
x 0 is interior to K(_,I if and only if the controllability matrix for (2.1) has
rank d.

Proof Let L span {b, Ab,..., Ar-lb} for r 1,2,-... Since dimension
U __< d, we may choose e (where 0 __< e =< d) to be the smallest integer such that
ASb LL For any y e L there exist ao, al, "", as- such that y aob + alAb
+ + as-lAS-lb. It follows that Ay aoAb + alA2b + + as-lASb is in
L. Since Ay L, we have AZy Ls, etc. In particular, Arb L for all r and so
L L if s >= e. Also, for any scalar function u(t),

(2.3) Ay + bu(t) e L if y e L.
From (2.3) we have that for any function u(t), equation (2.1) (which is a differential
equation on Ra) may also be considered as a differential equation on the subspace



CONTROLLABILITY OF LINEAR OSCILLATORY SYSTEMS 255

L in that A’L L and bu L. Since (2.1) is a differential equation on L,
x(t, u(. )) L for all t. When (2.1) is considered as a differential equation on Ra, we
must still have x(t, u(. )) L. Hence K(t)

_
L" for all _> 0.

Denote by x(t) the solution of (2.1) with controller u(t)= e and satisfying
x(0) 0. Choose T > 0. Let L be the linear subspace of Ra generated by x(t) for
all [0, T] that is,

L span {x(t)’t [0, T]}.
Then for and + r in 0, T], we have- [x(t + ) x(t)] L.

It follows that :t(t) L for all [0, T]. Similarly z- 112(t + ) 2(0] L. Arguing
inductively we see that all derivatives of x(. are in L. Setting 0, (2.1) implies

:t(0) A0 + be be.

Taking higher derivatives of both sides of (2.1) and evaluating at 0 we get, by
induction,

X(2)(0)-- A2(0)= Abe,

xtr)(0) Axtr- a)(0 A 1be.

Therefore b, Ab, ..., A’b L for all r > 0, so L"
_

L.
For [0, T], let u(t)= e for [T- , T] and u,(t)= 0 elsewhere. Then

x(T, u,(. )) x(z) hence x(t) K(T) for 0 =< < T. We have thus far shown that
{x(t)’0 <= <= T}

_
Ka(T) L

_
L. Taking spans we get L

_
L"

_
L, and

hence, L L.
Choose 0 < < t2 < < ta < T such that B% {x(ti)}= is a linearly

independent set. Such a set exists because L L has dimension a and by definition
of L, {x(t)"0 __< T} spans L. Since B is a basis for L, there exists for each y L
a unique set {cl,c2, .", ca} such that y ClX(tl)+ + cx(t). Now define
Ily 1Cll + + Icl, Y[ is a norm on L because it is the sum of the absolute
values of the coordinates ci using the basis B.) Since f [-e, e] is convex, it is
easy to verify that K(T) is convex. Furthermore if y K(T), then -y K(T)
since x(T, u(. )) -x(T, -u(.)). Now x(ti) x(T, u,(. )) K(T). Therefore
+x(t;)K(T). So, {y’llyl =< 1} K(T). Hence K(T)contains a neighbor-
hood of x 0 in the topology of L. Therefore K(T) L contains a neighbor-
hood of x 0 in the topology of Ra if and only if the rank of {b, Ab,..., Aa-lb}
is d.

Remark 2.5. Since x(T, u(. )) is linear in u, the point

y= cix(ti)= cix(T, ut,(.))=x
i=1 i=1

T,
i=1

CiUti(" ))
(hence any point in L") can be reached by a controller u(. ’= ciu,(. which is
piecewise constant and has only switching times l,t2,..., t,. (Of course,
lul _-< does not necessarily hold.) These switching times do not depend upon the
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point y. If the controllability matrix has rank d, then L Rd and the number of
switches a is d.

Though both Theorems 2.1 and 2.4 characterize controllability in terms of the
range of the control functions allowed, the theorems differ significantly with respect
to the time required to reach any desired point in K. In particular for any

+arbitrary small time tl > 0, K_,l(tl) contains a neighborhood of x 0 (see
[4, p. 83]). Such a claim is false for the case in Theorem 2.1 when [0, 6] for any
6 > 0. We can see from the simple pendulum in 1 that 0 int K+o,l(tl) only if
> nk-1/2. Physical considerations require that the time to bring the pendulum

to rest from each initial position in a neighborhood of the origin be as much as
half a period. This can be easily verified by using the Pontryagin maximum
principle. That this is also true for fl [0, 6], 6 > 0, follows from the "bang-bang"
principle [3] which we now state. Let Eft be the set of extreme points of

THEOREM 2.6. Suppose the range of the control function is compact. Then for
any >__ O, K(t)= Kn(t) for the system (2.1). Furthermore, if to is the minimal
time required to steer the origin to xo for u Un, then to is also minimalfor u UEa.

Thus the reachable set at any time for the motion of the simple pendulum is
unaffected if f [0, 1] is replaced by {0, 1 }. By virtue of Theorem 2.6 the
oscillatory systems we describe can now be controlled by "off-on" controls.

In the example of the simple pendulum, the eigenvalues are +_ ik 1/2. Further-
more we can show that K,I R2. That the controllability matrix had rank 2
just depended on the fact that b - 0. The crucial aspect of generalizing the example
to Theorem 2.1 lies in the oscillatory nature of the flow. But we even have
controllability when the free system (with u 0) is completely unstable. That is,
the eigenvalues of A can have positive real parts. The following result is an
immediate corollary.

COROLLARY 2.7. Consider (2.1) for a 2-dimensional system with fl- {0, 1}.
Suppose b :/: O. Then the system is locally controllable at the origin ifand only if no
eigenvalue ofA is real.

3. Preliminaries and lemmas.
LEMMA 3.1. If the matrix A of the system (2.1) has a real eigenvalue 2 (possibly

zero), then x 0 belongs to Ko,11.
Proof. Let 2 be a real eigenvalue of A. Then 2 is also an eigenvalue of A’

(transpose of A), and there is some v Rd (v -76 0) such that A’v 2v. We may
assume v. b _>_ 0 (replacing v by -v if necessary). Let x(t) be a solution of (2.1) for

>= 0, with x(0) 0 for some u Uo,l. Write p(t) v. x(t). Then
d
dt

P(t) v. (t) v. Ax(t) + v. bu(t)

2p(t) + (v. b)u(t).

Since u(t)>= 0 for all t, and p(0)- 0, it follows that p(t)>= O. Furthermore, if
v-b 0, then p(t)=_ O. That is, for all y6K+

tO, l, Y is in the half-space
{z Rd’v. z >= 0} when v. b > 0 (and y is in the hyperplane v. z 0 if v. b 0).
Considering the control function u(t) =_ O, we see that 0 Kt,l. Hence 0

From Lemma 3.1 for local controllability with fl [0, 1], we see that A
must be nonsingular and of even dimension since matrices of odd dimension have
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at least one real eigenvalue. Thus we are led to consider systems of even order
d 2n, such that the eigenvalues of A have nonzero imaginary parts. In particular
let the distinct eigenvalues of A be

2k k + iflk, 2 k iflk, k, flk R1 flk :/: 0 for k 1 2,... s

with multiplicities m l, m2, ’’’, m. (* denotes complex conjugate.) Let r/be any
nonzero row vector in R2n. We find a convenient representation and important
property for the product rlearb, z R +. (We assume the controllability matrix has
rank 2n.)

LEMMA 3.2. rleArb is not identically zero on R+ and can be written

for constants m, t, 6k, hk (where not all hk are zero) and where g(z)
and the summation is not identically zero.

Proof. On the contrary, assume qeab is identically zero. Then eArb lies in some
proper subspace V of R2n for all r _> 0. Now earb is the unique solution to the
differential equation 2 Ax, x(O) b. We saw in the proof of Theorem 2.4 that
2(0), x(2)(0), ..., x(2"- 1)(0) lie in V; hence b, Ab, ..., A2n- lb belong to V. Since the
controllability matrix has rank 2n, it follows that V R2n and therefore rlearb O.

There exists an invertible matrix P such that J PAP-1 has Jordan normal
form (cf. [2, p. 76]). Then rleab can be written

riP- ePb"

Consider the complex vector eJPb. It is the solution to the complex system
; Jy, y(O) Pb and is of the form

ZeZ Pz,j(r)v,j,

where the first sum is taken over all eigenvalues 2 of A, Pz,(r) is a polynomial in z
which depends on 2. and has order rn 1 (where mz is the multiplicity of the
eigenvalue 2), and vx,j is a (complex) vector depending on 2. Replacing ex by
e(cos flz + sin fir), we observe that since rleab is real, it has the form

(3.2) ek*[Rk(r) cos flkZ + Sk() sin flkZ],
k=l

where Rk(r), Sk(r) for k 1, 2, ..., s are real polynomials in r and are not all zero.
If a max { 1, a2, "’", a}, we can factor e out of (3.2) along with an appropriate
power of r, say Zm, and obtain

rleArb zme {(’c) -+- k=lhkSin(flkZq-tk)}
where not all the {hk},= are zero and #(z) -, 0 as z c.

4. Almost periodic functions. Let C denote the field of complex numbers.
Recall a continuous function f" R C is almost periodic (a.p.) iffor any e > 0 there
exists a number L(e) > 0 with the property that any interval of length L(e) of R
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contains at least one point such that ]f(t + ) f(t)l < e for all R. The number
is called an e-translation number off. We note the following properties about a.p.

functions [1]. If f and g are a.p. functions, then alf + aEg (al, aE C) and f*
(the complex conjugate of f) are a.p. Furthermore f is bounded and uniformly
continuous on R. Also, the integral

M{f} def= lim _1 ffT-+ T f(t) dt

exists and is called the mean value off (see 1, p. 12]).
LEMMA 4.1. Suppose f is an a.p. function such that M{f 0 and

(4.1) f(t) I#(t)l for all R +,

where Iz(t)l 0 as --} . Thenf O.
Proof. First we show that f(t) <= 0 for R. Suppose the contrary, that there

exists to such that f(to) m > 0. Then there exists 6 > 0 such that f(t) > 2m/3
for all (to 6, to + 6). There exists a number L(m/3) such that any interval of
length L(m/3) contains at least one number of the form to + , where If(t + )

f(t)l < m/3. Choose L L(m/3) > 26. Any interval of length L contains at least
one of the intervals (to + 6, to + ) or (to + , to + + 6). In each of these
intervals, which are the intervals (to 6, to), (to, to + 6) translated by , we have
f(t) > m/3. But this contradicts the assumption (4.1). Hence we must have
f(t) < 0 for all R /, which reduces our lemma to a result in [1, p. 36]. This
completes the proof.

Functions of the form f(t) = akeiwkt, where ak C, Wk R, k 1, 2, ..., N,
are a.p. In particular Im (f) is a.p.

5. Proof of Theorem 2.1. We have already proved that a necessary condition
for x 0 to be interior to Kt,l is that no eigenvalue of A is real (Lemma 3.1).
That the controllability matrix have rank d 2n is also necessary for x 0 to be
interior to Kt,l follows directly from Theorem 2.4. It only remains to prove the
sufficiency of the conditions (i) and (ii).

So assume the controllability matrix has rank 2n and no eigenvalue of A is
real. We claim that for large enough t, x 0 is interior to K /tO,1](t). Suppose not;
i.e., for all > 0, x 0 belongs to 3K[0,x](t). Since K +[o,l(t) is convex for any > 0,

+we can find supporting hyperplanes to Kto,l(t at x 0. Let N(t) denote the set
of all unit outer normals of such supporting hyperplanes to K +to,(t) at x 0.
Then for each > 0, N(t) :/: , since we have assumed 0 K +[0,1](t). N(t) clearly is
bounded. Moreover, it is closed. In fact, let {r/i be a sequence in N(t) converging to
r/ RE" Then for any x(t) K +[o,1](t),rli’x(t) <= O. Passing to the limit we have
rl. x(t) <= 0 and I111 1. Thus q N(t), and N(t) is a nonempty compact subset of
R2". Furthermore, if tl < t2, then N(t2)= N(tl) since Ko,q(t) increases with
increasing t. Consequently, for any finite set of times 0 =< tl < tE < < tk < ,

k_l N(ti) N(tk) 4: . Hence fit_>_ 0 N(t) : from the finite intersection
property ofcompact sets. Then there exists a unit outer normal vector r/o, and hence
a supporting hyperplane to K /[0,1](t) good for all >_ 0. In particular, for any
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controller u(. ) Uto,1 and corresponding solution x(t;u(. )), we have

rio" x(t u( )) rloea(t-bu(z) dr, <= 0

for all >= O. It follows by continuity and special choice of u(. that for all z >= O,

q(r)
af rloeAb <= O.

According to Lemma 3.2, qg(r) is not identically zero and

qg(’C) --"cme* {
where I()l --, 0 as --, o, and the summation is not identically zero. Denote this
sum by v(z). Observe that v(z) is an a.p. function with mean M{v} 0. We now
claim that there exists a z* e R+ such that v(z*) > I(*)1. If, on the contrary, no
such z* exists, v(t) Ig(z)l for all e R +. From Lemma 4.1 we see that v(z) 0.
But we know this to be false. Therefore we conclude there exists r* R / such that
v(*) > I(*)1. Thus qg(z*)> 0, a contradiction. So we conclude that x 0 is

+interior to Kto, l(t) for some <

6. Extensions and generalizations. Theorem 2.1 has a generalization in the
event that the vector b is replaced by a matrix B of order d q. Let Do denote the
unit cube in Rq, fo {(ul,u2,...,uq)eRq’O<=ui<= 1, i= 1,2,...,q} and
define

Uno {u" R + ---, fo, u measurable}.
Consider

(6.1) 2 Ax + Bu,

u e Uno. Then Ko(t is defined accordingly. Denote by C the controllability
matrix of (6.1), where C is now the matrix of order d x dq whose columns are the
columns of B, AB, A2B, Aa- lB. We note that for any nonsingular matrix T
of order d x d, rank(TC)= rank(C). We can now give sufficient conditions for
controllability of (6.1) at the origin.

THEOREM 6.1. Suppose all the eigenvalues of A have nonzero imaginary parts
and that the controllability matrix for (6.1) has rank d. Then x 0 is interior to

Ko(tl)for some tl < c.

Proof. We proceed as in the proof of Theorem 2.1 to establish a unit normal
vector, r/o. Denote rloea*B by q(v). If the columns ofB are denoted by b 1, b2, "’, bq,
then the matrix q9 satisfies

qg(’C) [rloeab rloeab2 rloeabq]

We claim that not all of the terms tloeA*b for j 1, 2, ..., q are identically zero.
In fact, suppose they were all zero. Then for all >__ 0 and every j 1, 2, ..., q,

ea*b lies in some proper subspace of Ra. Denote this subspace by V. Now each

eA*b is the unique solution to the differential equation

2 Ax, x(O) b.
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As in the proof of Theorem 2.1 we show b, Abe,..., Ad- bj lie in V for each
j 1, 2,.-., q. It follows that r/oB qoAB r/oA- 1B 0, thus contra-
dicting the fact that the controllability matrix C has rank d. As in the case of
Theorem 2.1 we can show that if x 0 is not interior to Ko(t for any _>_ 0, then
each nonzero component qg(z) de=f loea,b of qg(z) is never positive on R /. But each
qg(z) has the form (3.1), and eventually is positive. From this contradiction we
conclude that x 0 is interior to Ko(t for some tl < , thus completing the
proof.

It is clear from the above proof that the conditions for local controllability at
the origin with positive controls are too strong. In fact, the following simple example
illustrates how we can have x -0 interior to K in the event (6.1) is a scalar
equation.

Example 6.2. Consider the scalar equation

2X if- blU + baUa

with 0 _<_ Ul,U2 1. It may be seen that 0int Koif and only if bb2 < O.
Theorem 6.1 can be extended to nonlinear systems which admit a linearization

of the form (6.1).
COROLLARY 6.3. Consider the following system"

(6.2) . f(x, u),

where f" Rd Rq - Rd, f is C’ in Ra R and u Uuo. Define

f B= f.4
o,o o,o

Suppose:
(i) f(0, 0) 0,

(ii) all eigenvalues of A have nonzero imaginary parts,
(iii) rank [B AB A2B Aa-B] d.

Then x 0 is interior to Ko.
Proof. The proof is exactly the same as used by Markus and Lee in [4, p. 366].

In fact, nowhere in their proof do they require controllers which assume both
positive and negative values. They only require that the solution to the linearized
form of (6.2) be controllable to any point in some neighborhood of x 0 (starting
from x 0). But conditions (ii) and (iii) guarantee this.

7. The double pendulum. As an example of controllability with positive
controls, we consider the linearized equations of motion of a double pendulum
(Fig. 7.1). Each mass mk is fixed at the end of a rigid weightless rod of length Lk,
k 1, 2. Both masses are nonzero. The system swings without friction about the
pivot points Po and P1, where Po is fixed to a rigid structure. A time-varying force,
u(t), 0 <_ u(t) 1, R +, is applied simultaneously at masses m and m2 as
indicated in Fig. 7.1.

The linearized equations of motion of the system are given by (with gravita-
tional constant g 1)

mLl01 + (ml + m2)01 m202 u,

m2L202 -+- (ml + m2)02 (m + m2)01 (m/m2 1)u.



CONTROLLABILITY OF LINEAR OSCILLATORY SYSTEMS 261

llllllllllllllllllllllllllllllllz  1111111111111111111111111111111111

2

FIG. 7.1

Set xl 01, X2 01, X 3 02, X4 02. In vector form we get 2 Ax + bu,
where

0 1 0 0 0

-k/L1 0 (k-1)/L1 0 (miLl)-1
A=

0
b=

0 0 1 0

[_ k/L2 0 -k/L2 0 L 1(m1 m-(1

and k 1 + m2/ml > 1.
The eigenvalues of A are pure imaginary. Denote them by _+icol,-k-ico2.

We have (letting +_ be + for co and for co2)

co, co2 (2L1L2)- 1{(L1 + L2)k ++_ [(L1 + L2)2k2 4L1L2k31/2}.

We take o91, O)2 > 0. It is easy to show that co :P co2. Define the matrix Q, whose
jth row is given by

[(_ 1)j+ 1co 1, (- 1)J+ 1(1 Llco2)/(Llco), (1 Llco)/(L1 ),

where co o91 for j 1, 2 and co co2 for j 3, 4. Under the coordinate trans-
formation defined by Q, A becomes

0 0) 0 0

-ix o o
0 -co
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and b becomes [bl, b l, b2, b2], where

b (mlL,) + (1 LlOg})(m-’ m- ’)/(LiL2og}), j= 1,2.

An easy computation shows that the determinant A of the controllability matrix is
4bb01092(o92 0)2. In general, A - 0 except for certain critical values of the
parameters L 1, L2 and k. Under the assumption that A - 0 we conclude that the
reachable set for the double pendulum contains a neighborhood of the origin.
To put it another way, for sufficiently small initial values of(01(0), 01(0), 02(0), 0z(0)),
there exists an appropriate controller and a finite time T => 0 such that (01(T),
01(T), 02(T), 02(T)) (0, 0, 0, 0). Furthermore, one can show that if T >
min (co, 092), then Kt.1(T contains the origin as an interior point.
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ON THE CONVERGENCE OF APPROXIMATING SOLUTIONS
FOR LINEAR DISTRIBUTED PARAMETER OPTIMAL

CONTROL PROBLEMS*

HITOSHI SASAUf AND ETSUJRO SHIMEMURA:

Abstract. Optimal control problems for distributed parameter systems, particularly systems
described by partial differential equations, are often treated using mathematical function space
techniques. As a result, the equations which define the optimal control are frequently obtained in
abstract terms. Numerical solutions are obtained by approximating the abstract operations in a
computationally feasible manner. In obtaining approximating solutions, the finite difference method
is widely used.

After an approximate optimal control has been found, the question arises whether a sequence
of these approximating optimal controls converges to an optimal control of the original system.

A condition of convergence of a sequence of approximating solutions of initial value problems
by the finite difference method was given by H. F. Trotter. This theorem is concerned with a homo-
geneous system and does not give the condition of convergence of approximating optimal controls
for a distributed parameter system.

In this paper the condition of convergence of a sequence of approximating solutions is given for
the time-optimal control problem and the final value control problem for a class of linear systems with
distributed parameters.

1. Introduction. Optimal control problems for distributed parameter systems,
particularly systems described by partial differential equations, are often treated
using mathematical function space techniques. As a result, the equations which
define the optimal control are frequently obtained in abstract terms. Numerical
solutions are obtained by approximating the abstract operations in a computa-
tionally feasible manner. In obtaining approximating solutions, the method of
expanding in eigenfunctions [1] and the finite difference method are widely used.

After having found an approximate optimal control, the question arises
whether a sequence of these approximating optimal controls converges to an
optimal control of the original system. A condition of convergence of a sequence
of approximating solutions of initial value problems by the finite difference
method in which a differential operator is replaced by a difference operator was
given by H. F. Trotter [2], [3]. This theorem is concerned with a homogeneous
system and does not give the condition of convergence of approximating optimal
controls for a distributed parameter system, but its result becomes very useful
for our discussion as shown below.

In this paper the condition of convergence of a sequence of approximating
solutions is given for the time-optimal control problem and the final value control
problem for a class of linear systems with distributed parameters.

To discuss the convergence of approximating solutions, it is important to
define a concept of metric. In the following, the space is considered to be a Hilbert
space. Practically it would be convenient to consider the space to be L2(S), S
being a region of Euclidean space with Lebesgue measure.
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2. Definitions and basic theorem. For convenience, the following notations,
definitions and basic theorem are introduced. Let X be a Hilbert space and let X,
be a subspace of X. We consider a linear mapping P,’X X, which satisfies
the following conditions"

p2.=p., IP. =1,

lim P.f-f =0 for everyfX.

DEFINITION. The limit ofa sequence ofoperators {A.} where A. is an operator
on X., is the operator on X whose domain consists off X, for which {A.P.f}
converges, and whose value is lira A.P.f

Let {S.(t)} be a sequence of strongly continuous semigroups of operators on

X. into X., and {A.} be the sequence of associated infinitesimal generators. Then
we have the following theorem, which is due to H. F. Trotter.

THEOREM (Trotter [2]). If the range of 21 A, denoted by R(2I A), is dense
in X for some/t > K and the following conditions are satisfied, where M and K are
positive constants"

(C) A lim A, and D(A) is dense in X,

(S) S,(t)l < Met,
then a closed extension ofA is the infinitesimal generator of S(t), where S(t) lim S,(t)
is a strongly continuous semigroup ofoperators on X.

In this theorem it is demonstrated that if conditions (C) and (S) are satisfied,
approximating solutions of approximating equations starting from given approxi-
mating initial states converge in the sense of norm to a solution of the original
homogeneous partial differential equation, which satisfies a given initial condition.

3. Statement of the problem. Let us consider the following distributed
parameter system"
(1) dx(t, s)/c3t Ax(t, s) + u(t, s),
where for each t, 0 =< < or, x(t, s) is an element of X, which is an arbitrary Hilbert
space X(f), s f, consisting of functions on a bounded domain f; A is an un-
bounded linear operator from X to X, for instance, A being a partial differential
operator on;and u(t, s) is an element ofX for each and is bounded measurable in t.
We denote x(t, s) and u(t, s) as x(t) and u(t), respectively. Here A is assumed to be an
infinitesimal generator of the strongly continuous semigroup S(t). Then (1) becomes

(1’) k(t) Ax(t)+ u(t).

Along with the system (1’), the following equation is considered"

(2) k.(t) A.x.(t) + u.(t),

where x.(t) is an element of X. for each t, 0 __< < o, u.(t) is an element of X. for
each and is bounded measurable in t, and A. is the operator from X. into X. which
is an infinitesimal generator of a strongly continuous semigroup S.(t).

In the case of A. being the difference operator on X. into X., (1’) is the original
system which we consider and (2) is the approximating system given by the finite
difference method. In what follows A. is assumed to be a bounded linear operator.
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As an example of the mapping P. consider the following"

X L2(0 ,1), x(s) eX, se[O,1],
n--1

P,x(s) akCk(S),
0

where
k/n + 1/n

ak n x(s) ds,
ak/n

1, kin <=S <=k/n + l/n,
Ck(S)

O, k/n >= S or S >= k/n + 1In.
In this case x, is a space of finitely-valued functions.

The solution of (1’) is formally written as

(3) x(t) S(t)x(O) + S(t- a)u(a) da.

Since u(t) is bounded and measurable, the integral on the right-hand side of (3)
exists in the sense of Bochner. Sufficient conditions under which (3) represents the
strong solution to (l’) (differentiable in the strong sense) have been given by Bala-
krishnan [4]. But since the right-hand side of (3) exists in the sense of Bochner, we
define (3) as the solution of (1’) for any bounded measurable function u(t) and a
given initial condition x(0); i.e., we deal with the mild solution [5] in this paper.

For simplicity’s sake, one can assume without loss of generality that x(0) 0
in the sequel. Throughout the following discussion, we assume that the conditions
(C) and (S) are satisfied.

Now the mappings L(T) and L,(T) are defined as follows:

(4) L(T)u S(T a)u(a) da, u(t) X for each t,

and

(5) L.(T)u. S.(T- a)u.(a)da, u.(t)e X. for each t.

Under the hypothesis of Trotter’s theorem, it is shown that lim S(t)x S.(t)P.xll
0 for any x X, and again by the condition (S), the following equation is ob-

tained for any u X"

lim L(T)u L,( T)P,ul[ O

The constraints C, C, and the sets U, U, of admissible controls are defined re-
spectively as follows"

C-- {xeX’lxll <= 1},

Cn- {x. e X.’llx.II <- 1},
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U {bounded measurable function u(t):u(t) C for almost all t},
U, {bounded measurable function u,(t) u,(t) C, for almost all t}.

From the property of P, it can be shown that P,C C,.
In this article we discuss the convergence of approximating solutions of the

following Problems A and B, which are commonly seen in optimal control prob-
lems.

PROBLEM A. Final value problem.
(A1) The original final value problem in system (1’) is to find the admissible

control minimizing Ilx(T)- Yl[ IIL(T)u + S(T)x(O)- Y[I for given y X at a
fixed time T, starting from a given initial state x(0).

(A2) The approximating final value problem in system (2) is to find the
admissible control minimizing Ilx,(T)- P,yII IIL,(T)u, + S,(T)x,(O)- P,YI[
for given P,y X, at a fixed time T, starting from a given approximating initial
state P,x(O), with n .

Then our problem is reduced to, "Does a sequence of approximating optimal
controls of the problem (A2) converge to an optimal control of the problem (A1)?"

PROBIEM B. Time-optimal problem.
(B 1) The original time-optimal problem in system (1’) is to find the admissible

control which transfers a system from a given initial state x(0) to a given target
state x X in minimum time.

(B2) The approximating time-optimal problem is to find the admissible
control which transfers a system from a given initial state P.x(O) to a given approxi-
mating target state P.x X, in minimum time.

Then our problem is, "Does a sequence of these approximating time-optimal
controls of the problem (B2) converge to a time-optimal control of the problem
(B1)?"

4. Condition of convergence.
PROBLEM A. Final value problem. Let u(t) be the optimal control of the

original final value problem and u.(t) be the optimal control of the approximating
final value problem at the nth degree of approximation.

Now we make the assumption that the approximating optimal solutions
u,(t) exist and the conditions (C), (S) and

(C*) lim S*, (t)P,f S*(t)f O, fx,

are satisfied, where S* and S,* are the adjoint operators of S and S, considered on
the space X and X, respectively.

Moreover, let Bz[X T] be the space of strongly measurable functions x(t) with
range in X such that J’o [[x(t)[[ 2 dt < or. B2[C T] is the set of all u(t) such that
ess sup Ilu(t)ll =< 1 and B:[C,, T] is the set of all u,(t) such that ess sup Ilu,(t)ll _-< 1.
B2[C T] is the admissible control set for the exact problem, and Bz[Cn, T] is the
admissible control set for the approximate problem.

LEMMA A1. Let the conditions (C), (S) and (C*) be satisfied. Then there exists a
weakly convergent subsequence {u,j(t)} of {u,(t)} in Bz[X, T], and its weak limit u(t)
belongs to B2[C T]. Moreover u(t) is an optimal control of the original final value
problem.
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Proof. The first part of the lemma is easily shown from the fact that u(t)
e B2[C,, T]

_
B2[C, T], B2[X, T] is a reflexive Banach space, and the set B2[C, T]

is bounded, closed and convex in B2[X, T].
Next we shall show that L.(T)u converges weakly to L(T)u. In the following

we write u(t) for u,j(t).
Since {X X,} A_ X. and P, is a projection operator, for f e X, we have

[L.(T)u., f]x [L(T)u., P,f]x [L.(T)u.,Pf]x,

[u., S*.(a)P,f]x, [u, S*(a)P,f]x,

where [., Ix and [., Ix. denote inner product on X and X,. Hence, we have

[L.(T)u. L(T)u, fix [L.(T)u., fix- [L(T)u., fix + [L(T)u. L(T)u,f]x

[L.(t)u., P.f]x. [L(T)u., fix + [L(T)u. L(T)u, fix
T

j [S.(T- a)u.(a), P.f]x. da
o

[S(T a)u.(a), fix da

+ [S(T- a)(u.(a)- u(a)), f]x da

j [u.(a),S*.(T- a)P.f]x, da
0

fi [u.(a) S*(T a)f]x da

+ [u.(a) u(a), S*(T a)f]x da
0

[u.(a), S*.(T a)Pf S*(T a)f]x da

+ [u.(a) u(a), S*(T a)f]x da.

The first term of the right-hand side goes to zero as n- by conditions
(C*), (S), and the second term goes to zero as n since the integrand is bounded
and converges to zero for almost all (a.a.)a.

Next we shall show that u(t) is optimal. It is clear that the following inequality
is satisfied for any v(t) U:

L.(T)u. PY]I <= L.(T)P.v
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By the resonance theorem [6] we have

L(T)u y <= lim inf I1L,(T)u,
_< lim inf IIL,(T)P,v P,Yl

L(T)v-yl.
Hence u(t) is optimal.

THEOREM A1. Let the conditions (C), (S) and (C*) be satisfied. Suppose that
P,y L,(T)u,, y L(T)u, where u, U,, u U and u(t) is the unique optimal
control of the original final value problem. Uniqueness has been assumed in this
theorem. Then, u,(t) converges to u(t) strongly for a.a. t.

Proof. By Lemma A1, there exists a subsequence {u,j(t)} of {u,(t)} which
converges weakly to an optimal control u(t) in BE[X, T]. u(t) being unique, it
follows that u(t)= u(t) for a.a.t. Since P,y L,(T)u,, y L(T)u and u(t), u,(t)
are optimal, we see that [5]

Ilu(t)ll for a.a.t, Ilu.(t)ll 1 for a.a.t.

Ifwe define the norm IIIx of the space B2[X T] by IIIxlll 2 j’oT x(t)ll 2 dt, it follows
that Ilu.jIII- Illulll,

Therefore it can be shown that {u,j(t)} converges strongly to u(t) in BE[X, T],
0because B2[X, T] is a Hilbert space, lim,j_. IlluojII- Illulll-- Z and {u,(t)}

converges weakly to u(t). Any subsequence of {u,(t)} has its subsequence converg-
ing weakly to u(t), and therefore it has the subsequence converging strongly to
u(t). Consequently {u,(t)} converges strongly to u(t) in B2[X, T]. By the definition
of the norm of BE[X, T], it can be concluded that u,(t) converges to u(t) for a.a.t.

PROBLEM B. Time-optimal problem.
LEMMA B1. Let the conditions (C), (S) and (C*) be satisfied. Further, if the

following conditions (L1) and (L2) are satisfied"
(L 1) there exist somefinite time T, and a control u, U, such that L,(

for each n,
(L2) T, converges to T;

then there exists u(t) U such that L(T)u x.

Proof. We consider the space BEX, To] and the set B2C, To], where TO is
a sufficiently large value. For __> T,, we put u,(t) 0. Clearly u,(t) BElCh, To]_

BE[C, To]. Since BE[X, To] is a reflexive space and B2[C, To] is closed, convex
and bounded in B2[X, To], we can find a subsequence {u,j(t)} which converges
weakly to u(t) B2C, To] (i.e., u(t) U).

Next it will be shown that L(T)u x. We prove that [P,jx, fix converges to
Ix, fix and [L,j(T,j)u,j, fix converges to [L(T)u, fix, where f X"

[L,,J T.)u,,j L(T)u, fix

fo
T

[S(T a)u.j(a), fix da + [S(T a)(u.j(a) u(a)), fix da
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The first term from the last equality sign goes to zero as n ---, by condition
(S) and the third term goes to zero since the integrand is bounded and converges
to zero for a.a.a. The second term goes to zero by condition (S), condition (C*)
and the continuity of S*(t) in t. Hence L(T)u x.

Remark. In order to obtain the condition (C*), we again make use of
Trotter’s theorem. Since condition (S) is always satisfied for S*,(t), it is sufficient to
check the validity of condition (C) for A,*.

LEMMA B2. Let S(t) be a strongly continuous group of operators. Ifx is attainable
at time T with u(t) U, then for sufficiently large n, there exist u,(t) U,, such that
Ln(T + e(n))u, P,x, where e(n) 0 as n .

Proof. By L(T)u x, the following inequality is obtained:

L,(T)P,u P,x L,(T)P,u P,L(T)u + P,L(T)u P,x =< e2(n).

Thus we can set

where Z.II 1.
Since S(t) is a group,

P,x L.(T)Pnu + eZ(n)Z,,

; f(n)P,x S,(T- a)P.u(a) da + e(n) S.(T + e(n)- a)S,(a- e(n)- T)Z, da

T + e(n)

fi(,,)S,(T + e(n) a)P,u(a e(n))da + S,(T + e(n) a)w(a)da,
(n)

where

w.(a) e(n)S,(a- (n)- T)Z,.

By condition (S), we have w,(a) U, for sufficiently large n.
Finally we may only define a new admissible control u.(t) as follows"

0 <= <= e(n),

e(n) <_ <= T + e(n).
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THEOREM B1. Let S(t) be a strongly continuous group of operators, and let the
conditions (C), (S), (C*) and thefollowing two conditions be satisfied"

o is an associated optimal control such that(T1) TO, is an optimal time and u,
o oL,(T,,)u,,

(T2) There exists w(t) U such that L(T)w x at some finite time T.

Then T converges to an optimal time To as n

Proof. By condition (T2) and Lemma B2, there exists a subsequence (T
which converges to T’. Hence we see that an optimal time exists, by condition (C*)
and Lemma B 1 i.e., there exists an admissible control u U such that L(T’)u x.

If we denote the optimal time by To the following inequality can be obtained
by Lemma B2 and the optimality of T

T.;-< TO + (n).

Since T converges to T’, we have T’ =< To and hence T’ To by the optimality of
To"

The above proof is true for any convergent subsequence and hence T con-
verges to To

LEMMA B3. Let S(t) be a holomorphic semigroup of operators, and let conditions
(C) and (S) be satisfied. Suppose that u(t) is continuously differentiable in [0, T] and
]IA.P.xl < 1. If x is attainable at time T with u(t)e U, where x D(A), then for
sufficiently large n, there exists u.(t)e U. such that L.(T + 7(n))u. P.x, where
7(n) 0 as n

Proof. Let us define y. L.( T)P.u.
Since the function

x.(t)
K
K y.+-P.x, O<=t<=K,

satisfies (2) in which we put

1
v.(t) (P.x

K-t
K

(A.y.- A.P.x)- A.P.x,

the control v.(t) transfers y. to P.x in time K. By the assumption x L(T)u, we
have

P.x y. P.L(T)u L.(T)P.u e2(n),

where e(n) 0 as n .
Next it will be shown that

IlZ.y. Z.P.xll t/2(n),

where r/(n) - 0 as n --, oo.
Since A. is a bounded operator and u(t) is continuously differentiable in

[0, T], we have AnS.(T r)Pnu(r) LI(O, T) and S.(T r)P.?u(r)/cgr LI(O, T).
From the above facts and the boundedness of A. it follows that Sn(T :)P.u(r)

is strongly differentiable and c?(S.(T-r)P.u(r))/c3reLl(O, T). Hence by the
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continuity of (Sn(T- z)Pnu(z))/cz and again by the boundedness of An, we have

Any A Sn(T- Z)PnU(Z dr, AnSn(T- z)Pnu(’c dz

-z(Sn(T "C)PnU(’C)) dr + Sn(T "c)P u(’c) dr

Pu(rl + s(rlPu(0t + s,(r rtP u( d.

Now we define Z as follows:

Z S()x S(T + 5- z)u(z) d.

Since S(t)isa holomorphic semigroup, i.e., IlAS(t)ll < C/t, where C is some constant,
we see that AS(T + r)u(z)e L(O, T) and S(T + )cu()/cz e L(O, T).
From these and the holomorphic property of S(t), it can be easily shown that
S(T + z)u(r) is strongly differentiable and c(S(r + ( r.)u(r))/cr e L(O, T).
Hence the next equality can be obtained by noticing that A is a closed operator:

AZ, A S(T + - "c)u(’c) dr

AS(T + - z)u(O dr.

S(b)u(T) + S(T + b)u(0) + S(T + :)-- u(z) dr.

It is clear that the following inequality is satisfied:

lim IlAnYn Axll < lim lim IIAy Azll + lim IIAZ
n-*oo --*0 t-O

Now by conditions (C) and (S), we have

lim lim IJAny AZolI lim lim Pnu(T) + Sn(T)Pnu(O)
60 tO

+ Sn(T z)P u(z) dr + S(b)u(T) S(T + b)u(0)

S(T + r)u() dr

lim u(r)+ s(r)u(O)+ S(T- ) u(Odr
0

+ S()u(r) s(r + )u(0) s(r + )u() drll 0.

On the other hand, by the fact that x e D(A) and strong continuity of S(t), we
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have that

lim I[AZa AXI[ lim S(b)AX AXII O.
6- 0

Consequently we have lim IIA,y,- A,P,xII r/2(n), since lim ]IA,y,- Axll
0, and by the triangular inequality,

A,y, A,Pnx A,y, Ax + Ax A,P,x

Since IIA,Pxl < 1, ifwechoose K 7(n) max (e(n), q(n)), we have v,(t) U,
for sufficiently large n.

Finally we define a new admissible control u,(t) as follows"

P.u(t), 0 <__ (= T,
Un(t)

v.(t T), T <= <= T + y(n).

Then we have the conclusion of Lemma B3, i.e., P,x L,(T + 7(n))u..
Now we can easily get the following theorem from Lemma B3.
THZORM B2. Let S(t) be a holomorphic semigroup of operators, and let the con-

ditions (C), (S), (C*) and the following conditions be satisfied:
0(T1) TO, is an optimal time control and u. is an associated optimal control

such that L,( o oT,)u, P,x.
(T2) There exists u(t) e U such that L(r)u x at some time T, where x e D(A).
(T3) u(t) is continuously differentiable in [0, T].
(T4) IIA.P.xll < 1.

Then T, converges to an optimal time TO as n .
Remark. One should note that in the problem of getting to the origin,

IIA,P,xl[ < 1 is automatically satisfied, since x 0 D(A).
Remark. In the case of the space being a Hilbert space, it is clear that an optimal

control sequence {u,(t)} converges to an optimal control for a.a. t, since the optimal
control associated with the target x is unique [4], [5.

5. Conclusion. In this paper we have treated the convergence of approx-
imating solutions for both the final value and time optimal control problems for
linear distributed parameter systems. For the final value problem we have shown,
under stated conditions, that where the sequence of approximating solutions
exists, a subsequence converges weakly to the true optimal control (Lemma A1).
In addition, if the desired system state is not in the range of certain system opera-
tions, and if the true optimal control is unique, then the preceding sequence
converges strongly to the optimal control (Theorem A1).

For the time optimal control problem we have shown, under stated conditions,
that the sequence of optimal times for the approximate problems exists and
converges to the optimal time for the exact problem (Theorems B1, B2).

Theorem A1 is true even if S(t) is not a group but a strongly continuous
semigroup of operators. But, Lemma B2 and hence Theorem B1, Lemma B3
and hence Theorem B2 are valid only if S(t) is a group of operators and a holo-
morphic semigroup of operators respectively.



THE CONVERGENCE OF APPROXIMATING SOLUTIONS 273

In case S(t) is a semigroup of operators, our theorems are also likely to be
true, ifwe can choose more refined projection operators P. and difference operators
A
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SOME EFFECTS OF MEASUREMENT UNCERTAINTY IN LINEAR
MULTISTAGE GAMES*

W. W. WILLMAN"

Abstract. A class of linear multistage games is examined in which the players have noisy measure-
ments of the state. If a linear solution exists for such a game, it is shown to be related to one of the
solutions of the corresponding deterministic game by the certainty-equivalence principle. This solution
is generally not the one ordinarily associated with this deterministic game. Results are obtained by
constructing state variables from the players’ measurement sequences and applying known control
theoretic results to pairs of optimal control problems associated with linear game solutions.

1. Introduction. A certainty-equivalence principle holds for a class of
multistage games in which the players have noisy measurements of the state.
As in the control theory context, the games in this class have linear dynamics,
quadratic payoffs, and measurements perturbed by sequences of independent
additive Gaussian random variables. The measurement noise sequences affecting
the players are statistically independent. Sufficient conditions for this certainty-
equivalence result, and the corresponding control laws, can be expressed in terms
of a set of implicit difference equations.

Unlike its counterpart in optimal control theory, however, this result does
not apply to the state feedback control laws usually computed as a solution to
the corresponding deterministic game, but to a more complicated pair of optimal
control laws. One implication of this certainty-equivalence result is that the
mean sample path generated by the optimal control laws in the stochastic game
coincides with the optimal trajectory in the deterministic game.

The type of game examined here is an extension of a deterministic game
solved earlier by Ho, Bryson and Baron 4]. Several other stochastic extensions
of this game have already been investigated: by Behn and Ho 1] for the case
in which one of the players has perfect measurements, by Rhodes and Luen-
berger [9 for the case in which one player has no measurements, and by Rhodes
and Luenberger [10] for a case in which both players have noisy measurements
and constrained state estimators. The mean optimal sample paths of these other
extensions were shown by their investigators to possess the property described
above. The solution to the game considered here, however, is not obtained as
explicitly as in these other cases. The formal extension of the following results
to the continuous time case is discussed in Willman [12].

2. Notation. All matrices and vectors in the following have real components.
Capital letters are used to denote matrices, lower-case letters to denote vectors.
It is also convenient to introduce the notation

(A)i,j
* Received by the editors April 16, 1970, and in revised form August 6, 1970.
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for the (i,j)th partition of a partitioned matrix A. Only one subscript is used for
a partitioned vector, or a vertically or horizontally partitioned matrix. AT is
used to denote the transpose of a matrix A. Ir is used to denote the r-dimensional
identity matrix when the dimension is not clear from the context.

3. A particular class of games. For greater clarity, the main results are
derived for a restricted class of zero-sum games. In accordance with the original
motivation, the two players are called the pursuer and evader. The extent to which
the results generalize will be discussed later.

The generic game of interest here has dynamics defined by the following
linear vector difference equation, where is an integer index (to be called time)
varying from 0 to N- 1 for some fixed integer N:

()

where

x(O)"

x(i + 1)= x(i) + Gp(i)u(i) Ge(i)v(i + n(i), i=0,1,...,N- 1,

state of dynamic system,
pursuer’s control,
evader’s control,
random variable to model uncertainty in the dynamics (process noise),
Gaussian (if, Po) random variable.

The players receive the following noisy measurements of the state"

(2) Zp(i) Hp(i)x(i) + Wp(i) (pursuer),

(3) Ze(i He(i)x(i + We(i (evader).

The vectors of the sequence
n(i)

%(i

v(i

are independent zero-mean Gaussian random variables, statistically independent
of x(0), and have covariance matrices

i) 0 0

Rp(i) 0

0 IRe(i

The criterion associated with this game, which the pursuer should be regarded
as trying to minimize and the evader as trying to maximize, is the quadratic form

(4) j A o xr(N)Srx(N) + [ur(i)B(i)u(i)_ vr(i)C(i)v(i)]
i=0
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where # denotes prior expected value. The matrices B(i), Rp(i), Re(i) and C(i) are
symmetric and positive definite; SN is symmetric and positive semidefinite.

The control values in equations (1) and (4) should be regarded as being
generated from the available measurements by a pair of pursuit and evasion
strategies.

DEFINITION. In the context of this game, a pursuit strategy is a function
assigning a control sequence {u(i)} to each measurement sequence {zp(i)}. Evasion
strategies are similarly defined.

DEFINITION. A pursuit strategy is admissible if and only if for i= 0,...,
N-l"

(i) the value of u(i) is determined by the measurement subsequence {zp(0),
.., z(i)}, a "nonanticipatory" requirement; and

(ii) u(i) is Borel measureable as a function of the measurements, a technical
requirement for the expectation operator in (4) to be meaningful.

This holds similarly for evasion strategies.
Strategies will be denoted by capital letters to distinguish them from the

control values they determine. ""’ and "" will be used to denote the sets of
admissible pursuit and evasion strategies, respectively.

The value of the criterion J depends only on the pair of strategies employed
by the two players. As usual, a solution to this game is defined to be a particular
pair of admissible pursuit and evasion strategies (U*, V*) such that

() J(U*, v) <= J(U*, v*) <= J(U, v*)

for all admissible U and V.
Strategy pairs which satisfy this saddle point condition are called minimax,

and have the property that each strategy of the pair optimizes against the other.
Minimax strategy pairs are generally agreed to be the only reasonable kind of
"optimum" solution for zero-sum games, although other distinct solution con-
cepts become important in nonzero-sum games, as discussed in Starr and Ho 11].
A strategy is called minimax if it is a component of a minimax strategy pair.

Following Luce and Raiffa [8], it can be shown by two applications of the
saddle-point condition that, if strategy pairs (U 1, V 1) and (U2, V2) are both
minimax, then

j(u, v) <__ j(u, v) <= j(u, v) <__ j(u, v) <= j(u, v).

Therefore, all four of these strategy pairs are minimax, and each pair gives the
same value of J.

4. The corresponding deterministic game. The main objective of this
paper is to establish relationships between solutions to the above stochastic
game and those of the corresponding deterministic game, in which no randomness
is present. More precisely, the deterministic game corresponding to the preceding
stochastic game is defined by the equations

(6)
x(i + 1)= x(i) + G(i)u(i)- Ge(i)v(i),

x(0)-- . (dynamics),

i=0,.-.,N- 1,
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and

N-1

(7) Ja - xT(N)SIx(N) + [ur(i)B(i)u(i) vr(i)C(i)v(i)] (criterion),
i=0

where the players have perfect measurements of the state. It is a simple extension
of the results of Ho, Bryson and Baron [4] that the states and controls generated
by any solution of this game are related by the equations

(8) u(i) -F,(i)x(i), 0,...

and

(9) v(i) Fe(i)x(i), 0,’."

where the matrix sequences {F,(i)} and {Fe(i)} are determined explicitly from the
parameters defining the game by a matrix difference equation which is too intri-
cate to be profitably displayed here.

Since (6), (8) and (9) determine a unique trajectory (the state and control
variable sequences) for this game, there exists at most one minimax trajectory
associated with such a game.

If this game has a solution, (8) and (9) can be used to define a pair of linear
feedback strategies by interpreting x as a state measurement instead of a time
function. This particular pair of strategies has two desirable properties. Each
component strategy satisfies the principle of optimality in the sense that its re-
striction to any terminal segment (k,..., N- 1) of the time sequence is also
minimax in the subgame that "starts" at time k with any value of the state x(k)
which can be generated by an opponent’s (possibly nonoptimal) strategy. Also,
it is an easy modification of a result due to Berkovitz [2] to show that if any
solution of this deterministic game exists, this strategy pair is also a solution.
Because of these properties, this particular solution, referred to here as the feed-
back solution, is often the only one considered for this game.

However, the feedback solution is usually not the only one for the corre-
sponding deterministic game, if it exists. For example, it is often true under these
circumstances that mixtures of the feedback strategies and the corresponding
"open loop" strategies, defined by (6), (8) and (9), are also minimax. In the
stochastic game this indeterminacy of the solution often disappears in an interest-
ing way.

It is appropriate to comment here that the above deterministic game is often
called a closed loop game, since the players can base their control decisions on
the current value of the state x. This is in distinction to the corresponding open
loop game in which the players know the initial state exactly, and also the para-
meters defining the game, but have available no information on the current value
of the state as the game progresses. Thus their control decisions must be a function
of time only. The stochastic game under investigation here can be regarded as
one in which the quality of information available to the players is intermediate
between the open and closed loop extremes, although it will be seen later that
it is perhaps more closely related to the closed loop type of game.
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5. A useful construction. The basic approach used here is to obtain results
about solutions to the stochastic game by examining pairs of associated stochastic
optimal control problems. As it happens, it is useful to express these control
problems in terms of new state variable sequences, each term of which is a vector
with N partitions of equal dimension. These "enlarged state variables" are con-
structed, following Wonham [14], as

f zp(j),
(10) {p(i))j

0,

f Ze(j),
(11) (e(i))j

0,

j<i,

j>=i,

j<i,

j>=i,

for 0,..., N and j 0,..., N 1. In terms of the information they contain,
these enlarged state variables are essentially the sequences of initial segments
of the players’ measurement sequences.

6. Some preliminary results. In veiw of the particular nature of the stochastic
game under consideration, it is not surprising that it is worthwhile to confine
the search for minimax strategies to those which specify the players’ controls
as linear functions of their available measurements. It is convenient to begin this
search by establishing some preliminary results concerning such linear strategies
in this game.

LEMMa 1. If the controls of the evader are determined by the strategy

(12) V’:v(i) Ae(i) + Le(i,j)ze(j), i= 0,..., N- 1,
j=O

where {Ae(i)} and {Le(i,j) are arbitrary sequences of real matrices, then any ad-
missible pursuit strategy U* which minimizes J against V’ (over ll) satisfies the
conditions

(13) u(i) Kp(i)2 + Mp(i)#p(i), i= 0,..., N- 1,

where #p(i) is generated from the pursuer’s measurements by

(14) #p(i)=Np(i)+Tp(i)#p(i-1)+Ep(i)zp(i), #p(-- 1) I--1
for i= 0, ..., N- 1 and almost all measurement sequences {zp(i)}, where the
matrices {Kp(i)}, {Mp(i)}, {Np(i)), {Ep(i)} and {Tp(i)} are determined explictly
from {A(i)} and {L(i,j)} by an effective procedure (to be described in more detail
in the proof).

Proof sketch. Define fox" i,j 0,.-., N- 1 the sequence of horizontally
partitioned matrices {A(i)} such that

(15)
Le(i,j), j < i,

(A(i))j--
0, j >= i,
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and the sequence of vertically partitioned matrices {Oe(i)} such that

I,, j=i,
(16) ((R)(i))i

O, j :/= i,

where r is the dimension of ze.
It is tedious but straightforward to verify by substitution that, if the evader

uses the strategy V’, the dynamics of (1) are equivalent to

F-x{--O)l iswhere

Normal

a priori, the criterion can be expressed as

LL( J

+ i

(18) .C(i)([Le(i i)He(i) Ae(i)][x(i)
T" Tw (OL (, i)C(i) Le(i, i)We(i)

and the pursuer’s measurements are

+2 Vx(i)l}Ae(i) +[Le(i, i)He(i) Ae(i)]L(j

(19) Fx(i)1zp(i) [H,(i) o]DQj + wp(i).

Since we(i) is statistically independent of x(i), (e(i), and # for any admissible
strategy, the second term in (18) is independent of the control law. Therefore,
the problem of minimizing J(U, V’) over U in //is equivalent to the stochastic
control problem defined by (17), (19) and the first term of (18), where J is to be
minimized.

As reformulated in terms of the enlarged state variables, this minimization
problem has been converted into a stochastic optimal control problem with linear
dynamics, quadratic cost, and additive independent Gaussian process and
measurement noise sequences. This means that the well-known necessary condi-
tions developed for this type of control problem developed by Joseph and Tou [5]
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and Gunckel and Franklin [3] apply here. As applied to the particular example
at hand, these necessary conditions are precisely (13) and (14), where the un-
specified matrix sequences are determined from the matrices {Ae(i)} and {Le(i,j)}
and the parameters defining the game by a certain set of matrix difference equa-
tions with specified boundary conditions. Since the solution to this type of optimal
control problem is well known, the details of these equations are not presented
here. This completes the proof.

The random sequence {#p(i)} in equation system (14) is to be interpreted

as the sequence of estimates of the composite vector ap(i)a "]-x(i) |
3i-_] produced

by the appropriate Kalman-Bucy filter for the dynamics and measurements of
(17) and (19). This means, from well-known results due to Kalman [6, that
#(i) is the conditional expected value of a(i), given the sequence of measurements
{zp(O),...,zp(i)} for i= 0,...,N- 1. For this reason, (13) and (14) will be
referred to as the certainty-equivalent form of U*.

COROLLARY. Since the preceding necessary conditions are satisfied by only
one strategy, there is at most one admissible pursuit strategy (up to a set ofmeasure-
ment sequences of measure zero) which minimizes J against V’ over

LEMMa 2. In the context of Lemma 1, the strategy U* can be expressed as

(20) U* :u(i)= A,(i)ff / Lp(i,j)z,(j), i= 0,..., N- 1,
j=0

where the matrices {A,(i)} and {L,(i,j)} are explicitly determinedfrom the matrices

{Ae(i)} and {Le(i,j)} by an effective procedure.
Proof sketch. This proof merely consists of showing by induction that (20)

is equivalent to (13) and (14) (i.e., gives the same control sequence for every
measurement sequence) when {Ap(i)} and {Lp(i,j)} are computed from the matrices
{Kp(i)}, {M(i)}, {Np(i)}, {Tp(i)} and {Ep(i)} according to a certain set of matrix
difference equations developed according to Kalman and Bucy [7]. Again, the
details are not given here.

For future reference, the functional dependence of the matrices {Ap(i)} and
{Lp(i,j)} in (20)on {Ae(i)} and {ge(i,j)} will be expressed as

(21)
Ap(i) fp,i({Ae(i)}, {Le(i,j)}),

L,(i,j) gp,i,j({Ae(i)}, {Le(i,j)} ).
Equation (20) will be called the canonical form of the pursuit strategy U*.

Finally, it is useful to establish sufficient conditions for the pursuit strategy
U* to minimize the criterion against the evasion strategy V’. This is done by
using the well-known sufficient conditions for "linear-quadratic-Gaussian"
optimal control problems. As applied to the control problem specified by (17),
(19), and the first term of (18), these sufficient conditions lead to the following
result.

LEMMA 3. In the context of the preceding lemmas, if the pursuit strategy U*
is determined from the evasion strategy V’ according to (20) and (21), and if the
matrices

B(i) + Gr(i)S,(i + 1)Gp(i)
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are positive definite for i= 0,..., N- 1, then

J(U*, V’) <= J(U, V’) for all U

The matrix Sp(i + 1) is the partition of the coefficient matrix for the quadratic
form in x in the cost function for this optimal control problem at time i. This
sequence of matrices is determined by the usual Riccati-like difference equation
associated with this control problem. The details of this equation are straight-
forward and are not presented here.

It is possible to prove similarly a set of lemmas analogous to Lemmas 1, 2
and 3 with the roles of the pursuer and evader interchanged. These lemmas will
henceforth be designated respectively as Lemmas 4, 5 and 6. In particular, let

(22) U’ :u(i)= Ap(i) + L,(i,j)zp(j), i= 0,..., N- 1,
j=0

(23) v(i) Ke(i)X + Me(i)p(i),

(24)
e(i) Ne(i)" + Te(i)e(i- 1)+ Ee(i)ze(i),

(ee(-- 1))

(25) g*’v(i)-- Ae(i). + ge(i,j)ze(j)
j=O

and

(26)
Ae(i f,,({Ap(i)}, {L,(i,j)} ),

Le(i,j) ge,i,j({Ap(i)}, {Lt,(i,j)})

be the respective analogues of (12), (13), (14), (20) and (21).

i-0,...,N- 1,

7. Stochastic game solution. By combining the results of Lemmas 2 and 5,
it follows that any solution to this stochastic game of the form

U* :u(i)- Ap(i) + L,(i,j)z,(j) (pursuer),
j=O

V*’v(i) Ae(i), + Le(i,j)ze(j) (evader),
j=O

(27)

i= 0,..-,N- 1, must have coefficients {Ap(i)}, {Ae(i)}, {Lv(i,j)} and {Le(i,j)}
which satisfy both (21) and (26). Furthermore, by Lemmas 3 and 6, any strategy
pair (U*, V*) of the form of (27) which satisfies these equations and also has the
property that

(28)

and

(29)

B(i) + GT(i)S(i + 1)G(i)

C(i) + GTe(i)Se(i + 1)Ge(i
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are positive definite for i-- 0, ..., N 1, where the matrices {Sp(i)} and {Se(i)}
are determined by the equations described earlier, is a game solution.

Equations (21) and (26) together can be regarded as a set of implicit difference
equations to be solved for a set of matrix parameters defining a strategy pair
(U*, V*) via (27). Not much is known at present about the existence or computa-
tion of solutions to this set of implicit equations. Numerical evidence indicates
that linear minimax strategies of the form considered here do indeed exist for a
variety of two-stage scalar games of this type, and that the implicit equations can
be solved by iterative substitution in these cases. Also, it is shown in the next
section that no such linear minimax strategy exists if there is no solution to the
corresponding deterministic game.

The foregoing approach to finding minimax strategies, of course, is limited
in that it eliminates from consideration all possibilities except strategy pairs of
the form of (27). However, if a minimax strategy pair (U*, V*) of this form does
exist, then it follows from the remark at the end of 3 that any other minimax
strategy pair results in the same value of the criterion J.

In this particular class of games, moreover, it is also true that if such a linear
solution (U*, V*) exists, then any solution (U’, V’) is in fact the same strategy
pair (except perhaps for a set of measurements of measure zero). This follows
from the fact that (U’, V*) and (U*, V’) must also be minimax, which in turn
implies that U’ and V’ satisfy the necessary conditions of Lemmas 1 and 4, respec-
tively. Since U* and V* also satisfy these conditions, and since these conditions
are satisfied by only one pair of strategies, U’= U* and V’-- V*.

This uniqueness argument, unfortunately, depends on the equivalence and
interchangeability of all solutions, and hence does not generalize to the case of
nonzero-sum games. This point will be discussed further in 9.

8. Relation to the corresponding deterministic game. Although there is
only one minimax trajectory in the corresponding deterministic game, assuming
that solutions exist, there is usually a continuum of minimax strategies for each
player. Two such minimax strategies always generate the minimax trajectory
when the opponent uses a minimax strategy, but do not in general generate the
same trajectory otherwise. It is shown in this section that if a linear solution
exists for the stochastic game, minimax strategy pairs also exist for the corre-
sponding deterministic game, one of which is related to the stochastic game solu-
tion by the certainty-equivalence principle.

It is assumed throughout the rest of this section that a stochastic game
solution of the form of (27) has been found, and hence also a solution to (21)
and (26).

DEFINITION. The noiseless sample path of the stochastic game for strategy
pair (U, V) is defined as the trajectory generated by this strategy pair according
to (1)-(3) when all the quantities defined as random variables assume their mean
values; that is, when x(0)= if, n(i)=_ O, wv(i O, and we(i)=-O.

Since all of the above equations and (27) are linear in these random variables,
the noiseless sample path for the strategy pair (U*, V*) is the mean trajectory
generated by this strategy pair, and hence describes the "average behavior"
of the optimally controlled stochastic game. This particular sample trajectory
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is useful in relating the solutions of the stochastic and corresponding deterministic
game.

TIaZOREM. lfa linear solution (U*, V*) oftheform of(27) existsfor the stochastic
game, then:

(i) A minimax strategy pair exists for the corresponding deterministic game
which is related to (U*, V*) by the certainty-equivalence principle.

(ii) The noiseless sample path of the stochastic game for (U*, V*) coincides
with the minimax trajectory of the corresponding deterministic game.

Proof sketch. Construct the following two pursuit strategies for the corre-
sponding deterministic game:

U*--in which the pursuer’s controls are generated by the canonical form of
U* (equation (20)) with the substitution of Hp(i)x(i) for Zp(i).

U*ce--in which the controls are generated by the certainty-equivalent form
of U* with the substitution of ap(i) for #(i) in (13). Equation (14) is superfluous

in this strategy, ap(i)is defined as [_] in this deterministic context, where

(e(i) is defined by (11) and (3) with we(i) O. Note that ap(i) is directly observable
to the pursuer in this context.

By Lemma 2, the strategy U* can also be defined by (13) and (14) with the
substitution of Hp(i)x(i) for Zp(i) in (14).

Similarly define evasion strategies Vc* and Vc*e for the corresponding deter-
ministic game.

The argument is now arranged into four intermediate results.
Result 1. The trajectory generated by U*c, V*) in the corresponding deter-

ministic game is the same as the noiseless sample path of the optimally con-
trolled stochastic game.

This result is verified by showing that (6) and U*c, V*) define the same tra-
jectory as do (1), (2), (3), (20) and (25) when x(O) , n O, Wp 0 and W 0.

Result 2. In the optimally controlled stochastic game, # o-p and #e O’e
on the noiseless sample path.

If ep(i) is defined as ap(i) #(i), it obeys a linear difference equation whose
inhomogeneous term is zero if n 0, wp 0 and We O. The initial value of
ep is proportional to x(0) ft. Similarly this holds for the evader. The result follows
by a simple induction argument on i.

Result 3. In the corresponding deterministic game, Uc*e minimizes the cri-
terion against Vc*, and Vc*e maximizes it against Uc*.

This result is established by showing that the minimization of Je(U, V*)
over U is equivalent to solving the optimal control problem of Lemma 1 with
all random variables replaced by their mean values. Since this control problem
is of the classical "linear-quadratic-Gaussian" type, the certainty-equivalence
principle applies to it. Therefore, by the definition of U*ce,

Jd(U*e, V’c) <= Jd(U, V’c)
for all admissible U. An analogous argument shows that V*e maximizes against
Uc*.

Result 4. The strategy pair (Uc*, Vc*) is minimax in the corresponding deter-
ministic game.
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By Results 1 and 2, the substitution of Hp(i)x(i) for Zp(i) in (14) generates
#p ap in the corresponding deterministic game when the strategy pair (U*, V*)
is played. It follows from the second definition of U* that the same trajectory
is produced in this game by using the (observable) value of a, in (13) instead of
generating #p by this modification of (14). But this is equivalent to replacing the
strategy U* by Uc*. Therefore,

J.(u*, v* J.(U*e, V*
since the value of Jd is determined by the trajectory. Similarly,

J.(u*, v*)= J.(u*, v*.).

These equalities and Result 3 imply that (U*, V*) satisfies the saddle-point condi-
tion.

Since the strategy pair (U*, V*) is minimax in the corresponding deter-
ministic game, the trajectory it generates must be the (unique) minimax trajectory
defined by (6), (8) and (9). Since (U*, V*) also generates the noiseless sample
path, these two trajectories are identical.

By the argument for Result 4, both U* and V* can be replaced by Uc* and
V* without changing the trajectory produced in the corresponding deterministic
game. Therefore the strategy pair (U*, V*) is also minimax there. The strategies
of this pair are related to U* and V* by the certainty-equivalence principle in
the sense that one can be obtained from the other by replacing cr (or ae) by the
estimate # (or #e). This completes the proof.

Although a certainty-equivalence principle holds for this class of games,
it does not have the same significance as the one for optimal control problems.
For one thing, it does not relate the stochastic game solution to the feedback
solution of the corresponding deterministic game, but to a much more compli-
cated solution. It has been verified by numerical counterexample [13] that this
other solution is not the same as the feedback solution in general. A knowledge
of the feedback solution for the corresponding deterministic game is therefore
of little use in computing a solution of the stochastic game.

This certainty-equivalence result is also predicated on the existence of a
linear solution to the stochastic game. It can be inferred from the results estab-
lished here that such a solution cannot exist unless the feedback solution of the
corresponding deterministic game exists, which is easy to determine. It is not
known, however, whether or not the converse is true. It is also not known whether
or not a solution of some nonlinear form ever exists for the stochastic game.

The fact that the noiseless sample path of a linear stochastic game solution
coincides with the minimax trajectory of the corresponding deterministic game,
referred to here as the certainty-coincidence property, is of computational signi-
ficance. It implies that if the stochastic game has such a solution, its average
minimax behavior can be determined by finding the minimax trajectory of the
corresponding deterministic game, which is relatively easy. If the noise magni-
tudes are small, moreover, its minimax behavior can be expected to approximate
closely this average trajectory most of the time. Thus, this property indicates
that there is no discontinuity of behavior as the noise magnitudes go from small
values to zero, although conditions for which this is true have not been established.
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It should be emphasized that the certainty-coincidence property is not a
statement about the behavior of the optimally controlled stochastic game as the
noise variances approach zero, but rather about its behavior when the noise
values are zero and the variances are not zero. Intuitively, it states that the presence
of the noise does not make an optimal player more or less cautious on the average,
provided that a linear solution exists in its presence.

9. Extensions. A careful examination of the arguments in the preceding
sections reveals that most of the results obtained there extend to the many-player
nonzero-sum case as well. Specifically, all of these results except those depending
on the equivalence of different solutions hold for the general many-person non-
zero-sum game with linear dynamics, quadratic criteria (in general not related)
for the players to minimize, linear measurements for each player, and additive
independent Gaussian perturbations in the dynamics and measurements. The
appropriate solution concept here is the Nash equilibrium solution, which is an
M-tuple of admissible strategies (U, ..., Ut) for the M players such that the
inequalities

hold for all admissible strategy M-tuples (U1, "., UM), where Jk is the criterion
of the kth player.

If they exist, Nash solutions linear in the measurements can be found in this
more general context by solving a system of M implicit equation schemes, and
verifying the positive definiteness of some matrices. Furthermore, the noiseless
sample path generated by any such solution coincides with the unique Nash
trajectory in the corresponding closed loop deterministic game (which is guaran-
teed to have a Nash solution if such a solution exists for the stochastic game).
This last point is interesting because Starr and Ho [11] have shown that the Nash
trajectories are in general distinct for the various combinations of open and
closed loop assumptions about the several players in nonzero-sum games of this
sort. The fact that the certainty-coincidence property takes the form that it does
in this nonzero-sum context indicates that noisy measurements, no matter how
poor, are more closely related to perfect measurements than to no measurements,
at least as far as the Nash behavior of such games is concerned. If this pheno-
menon seems counterintuitive, it should be recalled that, in the general nonzero-
sum game, Nash solutions do not have all the properties that one would intuitively
expect of a completely satisfactory solution. Nash solutions are not in general
minimax or noninferior, as they are in zero-sum games (see Starr and Ho [11]).

As mentioned earlier, the general nonequivalence and noninterchangeability
of Nash solutions prevents the proof of uniqueness at the end of 7 from being
extended to nonzero-sum games. The lack of such a result is a more serious short-
coming here, however, precisely because of this nonequivalence. Nash strategies
lose much of their significance in nonzero-sum games if they are not unique,
because the rationale for playing any particular one of them becomes ambiguous.

Acknowledgment. The author is indebted to Professor Y. C. Ho of Harvard
University for suggesting this area of research and for his help and encouragement
during its development.
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CLOSURE, LOWER CLOSURE, AND SEMICONTINUITY THEOREMS
IN OPTIMAL CONTROL*

LAMBERTO CESARIf

Abstract. First we discuss in detail the concept of lower closure for Lagrange problems, and we
extend in various ways previous closure and lower closure theorems. In particular, we show that the
present lower closure theorems and related concepts are extensions to Lagrange problems of optimal
control of well-known semicontinuity theorems for free problems of the calculus of variations and
the related concept of seminormality. Finally, we prove by a new approach that the convexity condition
usually requested in lower closure theorems is, in a suitable sense, both a necessary and sufficient
condition for lower closure.

In previous papers [1, abcdefgh] we have given existence theorems for one-
and multidimensional Lagrange and Mayer problems of optimal control based
on closure and lower closure properties of the functional under consideration.
In the present paper we discuss in detail some of the relevant concepts, in particular
the concept of lower closure for Lagrange problems. Also, we extend in various
ways previous closure and lower closure theorems. In particular, we show that
the present lower closure theorems and related concepts are extensions to Lagrange
problems of optimal control of well-known lower semicontinuity theorems for
free problems and the concept of seminormality of Tonelli [7] and McShane [3].
Finally, we prove by a new approach that the convexity condition usually requested
in lower closure theorems is--in a suitable sense--both a necessary and sufficient
condition for lower closure.

We limit ourselves in this paper to one-dimensional problems. We deal,
therefore, with the (Lagrange) problem of the minimum of an integral

I[x, u] fo(t, x(t), u(t)) dr,

in classes of pairs of functions x(t) (xl, x"), u(t) (u ,um) < < 2

satisfying a system of ordinary differential equations of the form

dx/dt f(t, x(t), u(t)) a.e. in It1, t2]

and constraints of the form

(t, x(t)) A, u(t) U(t, x(t)) a.e. in It1, t2].

1. A closure theorem. We shall denote by a scalar variable (time), and by
x =(x x") the state variables. Let A be a given subset of the tx-space E,/
and for any (t, x) e A let Q(t, x) be a given subset of the z-space E, z (z 1, ..., z").
A vector function Z(t) (xl, x), =< __< t2, is said to be a solution of the
orientor field

(1.1) dx/dt e Q(t, x),
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provided"
(a) x is absolutely continuous in It1, t2];
(b) (t, x(t)) A for all 6 It1, t2];
(c) dx/dt Q(t, x(t)) a.e. in It1, t2].
For any (,) A and c5 > 0 we shall denote by Nil, ), or f-neighborhood

of (, if) in A, the set of all (t, x) e A at a distance =< 6 from (t, ). We say that the
sets Q(t, x) satisfy property (Q) at the point (,) A provided

Q(f, ) f-I 6 cl co [_J Q(t, x),

where U is taken for all (t, x) e Nil, ). We say that the sets Q(t, x) satisfy property
(Q) in A if they satisfy this property at every (, if)e A. The weaker property (U)
can be defined analogously by replacing the operation cl co above by the opera-
tion cl.

If x(t), a <= <_ b, y(t), c <= <__ d, are any two continuous vector functions
with values in E,, we denote as their p-distance the number p(x, y)= la- cl
+ Ib dl + max Ix(t)- y(t)l, where the maximum is taken in (-v, + oe), and
x(t), y(t) are thought of as extended in (-oe, + oe) by continuity and constancy
outside their intervals of definition.

Note that if x(t), <= <= t2, is any continuous vector function, and Xk(t),
lk <= <= tZk k 1, 2, is any sequence of continuous vector functions with
P(Xk, X) -- 0 as k - , then (tlk, Xk(tlk)) "-- (tl, X(tl) and (tZk Xk(t2k)) --+ (t2, x(t2)
as k . Also, if A is a closed subset of the tx-space E,+ 1, and (t, Xk(t)) A for
all [tlk, t2k] and all k, then we also have (t, x(t)) A for all It1, t2]. Finally,
if B is a closed subset of EEn+2 and (tlk, Xk(tlk), t2k, Xk(t2k)) B for all k, then
(tl, X(tl) t2, X(t2) B.

In [la] we proved the following closure theorem.
THEOREM 1.1. If A is closed, if the sets Q(t, x) are closed, convex, and satisfy

property (Q) at eery point of A (with exception perhaps of a set of points whose
t-coordinate lies in a set of measure zero on the t-axis), if x(t), l <= <= t2,
k 1, 2, is a sequence of solutions of the orientor field (1.1), if x(t), tl <= <_ t2,
is an absolutely continuous ector function, and p(x, x) - 0 as k , then x(t),

<= <= t, is a solution of the orientor field (1.1).

2. A closure theorem involving singular components. Let a be any integer,
0 __< a __< n, and if x (x 1, x"), let y denote the a-vector y (xl, x") and
z the (n a)-vector z (x+ 1, ..., x"), so that we can write x (y, z). Let Ao
be a subset of the ty-space E+I, let A Ao x E,_, and for any (t,y)Ao
let Q(t, y) be a given subset of the x-space E,. We shall consider the orientor field

(2.1) dx/dt Q(t, y).

We proved in [la] the following closure theorem.
THEOREM 2.1. If Ao is closed, if the sets Q(t, y) are closed, convex, and satisfy

property (Q) at every point of Ao (with exception perhaps of a set of points whose
t-coordinate lies in a set ofmeasure zero on the t-axis), if xk(t (Yk, Zk), lk <= <--_ tZk
k 1, 2,... is a sequence of solutions of the orientor field (2.1) and x(t) (y, z),
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< t2, is any vector function with y(t) absolutely continuous in It1, t2]
z(t) Z(t) + S(t), tl <=t <= t2, Z(t) absolutely continuous in [tl,t2], and S(t)
singular, if P(Yk, Y) 0 as k , and Zk(t) z(t) as k pointwise in (t l, t2);
then X(t) (y(t), Z(t)), t <= <= t2, is a solution of the orientor field (2.1).

3. Lower closure of functionals in integral form. As usual we denote by the
independent variable, by x (x 1, ..., x") the state variables, and by u (u 1, ..., um)
the control variables.

As usual, let A be a closed subset of the tx-space E x E,; for every (t, x) A
let U(t, x) be a given subset of the u-space E let M be the set of all (t, x, u) with

(t, x) A, u U(t, x); and let f(t, x, u) (fo, f, f,) (fo, f) be a given
continuous vector function on M. Let B be a closed subset of the tlxt2x2-space

E2,+2. We consider now the functional

(3.1)
t2

I[x, u] fo(t, x(t), u(t)) dt.

We shall say that a pair x(t), u(t), <_- __< t2, is admissible provided x(t)
is absolutely continuous in It1, t2], u(t) is measurable in It1, tz], (t, x(t)) A for

It1, t2], u(t) U(t, x(t)) a.e. in It1, t2], dx/dt f(t, x(t), u(t)) a.e. in It1, t2],
fo(t, x(t), u(t)) is L-integrable in It1, t2], and (t l, x(tl), t2, x(t2)) B. Whenever we
wish to disregard boundary conditions, we have only to take B E2n+2. We
shall say that a vector function x(t), <= <= t2, is an admissible trajectory if
there is at least one vector function u(t), <= <= t2, such that the pair x, u is
admissible. Analogously, we shall say that a vector function u(t), <= t2,
is an admissible strategy if there is at least one vector function x(t), <= <= t2,
such that the pair x, u is admissible.

Let x(t), tl <= <= t, be any absolutely continuous vector function (which is
the limit in the metric p of admissible trajectories). If, for any sequence Xk(t),
Uk(t), tlk =< =< t2k k 1,2,.", of admissible pairs with p(Xk, X)-*O,
lim inf I[xk, uk] < + ov as k --* o, there is some measurable function u(t), tl <
=< t2, such that x(t), u(t), ta <__ <= t2, is admissible, and

(3.2) I[x, u] <= lim inf I[x, u],

then we say that I[x, u] has the property of lower closure at the trajectory x(t),
tl

Before we prove a sufficient condition for lower closure, the following remarks
are needed. First, if x is the limit in the p-metric of admissible trajectories as
assumed, then by the remark in 1 we know that (t, x(t)) A for all Its, t2],
and (t l, x(tl), t2, X(t2)) @ B.

Furthermore, if we know that the set M is closed, and that for every (t, x) A
the sets Q(t, x) f(t, x, U(t, x)) are closed convex subsets of E, satisfying property
(Q) in A, then certainly x’(t) Q(t, x(t)) a.e. in It 1, t2] by force of the closure Theorem
1.1 and then there is some measurable u(t), tl <= <= t2, such that

(3.3) u(t) e U(t, x(t)), x’(t) f(t, x(t), u(t)) a.e. in It1, t2],



290 LAMBERTO CESARI

by force of the implicit function theorem (see, e.g., 4]). As usual, we say that any
such strategy u(t) generates x(t), tl <= <= 2. Obviously, in the concept of lower
semicontinuity we require more; namely, we need a strategy u generating x for
which (3.2) holds.

It may well occur that x is generated by some strategy a for which (3.2) does
not hold. The following example displays two strategies u and a, both generating
the same trajectory x, such that (3.2) holds for u but not for a.

Indeed, take m n 1, 0, t2 1, fo 1 + cos nu, f fl sin rcu,
uU=[-1 <_u<__ 1], x(t)=O, 0__<t__< 1, A=E2. Now take uk(t)= +__2-1
according as k-li=<t <k-li+(2k)-I or k-1 +(2k)-X <_t <(i+ 1)k-l,

0, 1,..., k 1, k 1,2,... ;and takexk(t) k-liorx(t) k-l(i + 1) t,
according as is in one or the other set of intervals above. Then x, u, k 1, 2, -..,
is a sequence of admissible pairs, 0 __< x(t)<= (2k) -1, and xk x as k
uniformly in [0, 1]. The trajectory x(t) 0, 0 _< _<_ 1, is now generated by both
u(t) 1, 0 __< =< 1, and by a(t) 0, 0 _< =< 1. On the other hand,

I[x, u] =0, I[x, f] =2, I[Xk, Uk] 1, k= 1,2,...,

and thus relation (3.2) holds for u but not for .
As we shall see in 7, the concept of lower closure introduced above contains

as a particular case the usual concept of lower semicontinuity, in particular, the
concept of lower semicontinuity for free problems.

4. Sufficient conditions for lower closure. Let A, U(t, x), M, B, fo(t, x, u) and

f(t, x, u)= (fl,’", f,) be defined as in 3. For any (t, x) A let ((t, x) be the
set of all (z, zl, z") (z, z) with z >= fo(t, x, u), z f(t, x, u) for some
u e U(t, x).

THEOREM 4.1. If the sets A, M, B are closed, and fo(, x, u), f(t,x, u)
(fl,..., f,) are continuous on M, let us assume that the sets Q(t, x) are closed,

convex, and satisfy property (Q) at every point (t, x) A with the exception perhaps of
a set of points whose t-coordinate lies on a set of measure zero on the t-axis. Let us
assume that, for some locally L-integrable scalar function O(t) >= 0 we have"

() fo(t, x, u) >= -(t) for all (t, x, u) e M,

with the exception perhaps of another set of points whose t-coordinate lies on a set of
measure zero on the t-axis. Then the integral (3.1) has the property of lower closure
at every absolutely continuous vector function x(t)= (x, x"), <= <_ t2,
which is the limit in the p-metric of admissible trajectories. In other words, for every
absolutely continuous vector x(t) (xl, x"), <= <= t2, and sequence x(t),
u,(t), l <- <= t2, k 1,2,..., of admissible pairs with p(xk, x)- 0,
lim inf I[x, u,] < + as k , there is a measurable function u(t), <= <_ t2,
such that x(t), u(t), <= t2, is admissible and I[x, u] <= lim inf I[x, u].

We proved Theorem 4.1 in [la]. If denotes the number lim inf I[xk, u]
as k , then it is not restrictive in this theorem to consider only a subsequence,
say still [k], with I[x,, u,] --. as k . In the proof in [la] of the lower closure
Theorem 4.1 the functions

x(t) fo(’C, x(), uk(’c)) dv,
lk

l -< <- t2, k 1, 2,-..
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are taken into consideration, Helly’s selection theorem is applied, and the closure
Theorem 2.1 is used. This process to prove lower closure (or lower semicon-
tinuity) (Cesari [la]) was later used by E. J. McShane [3f], T. Nishiura [5], C.
Olech [6].

By a well-known remark by C. S. Goodman, the hypothesis in Theorem 4.1
that the functions fo, f are continuous on M can be replaced by the weaker
assumption that fo, f are continuous in x, u for every and are measurable in
for every x, u. The proofs are essentially the same. Also, the following further
remark concerning Theorem 4.1 may be of interest. To formulate it we shall
denote by [, T] a fixed interval containing all intervals [t lk t2k], It1, t2], and
we shall extend Xk(t), x(t) on the whole interval [, T] by continuity and constancy
in each interval [, tlk], [t2k, T], [, tl] It2, T]. If in Theorem 4.1 we make the
further assumption that the derivatives x’(t) converge weakly in Lilt, T] toward
x’(t) as k - , then the assumption concerning the sets Q(t, x) satisfying property
(Q) in Theorem 4.1 can be replaced by the following weaker assumption: There
is a countable decomposition of It, T] into disjoint measurable sets H,
2 1, 2, ..-, such that, if A denotes the set A [(t, x)[(t, x) A, H4], then
the sets ((t, x) satisfy property (Q) in Az for almost every t, 2 1, 2,.... The
assumption concerning the weak convergence of x, to x’ in L is usually satisfied
in applications, but it is not requested in Theorem 4.1. A proof of the modification
just mentioned is essentially contained in Cesari [le, pp. 94-101, particularly p. 98].
The assumption of weak convergence of x, to x’ in L1 is essential. A counter-
example, essentially due to A. Lasota and C. Olech [2], is reported in the Appendix
at the end of this paper. On the other hand, under the hypothesis of weak conver-
gence of the derivatives, the contention in Theorem 4.1 can be proved also under
a different set of hypotheses (see C. Olech [6b]).

As we shall see in detail in 7, Theorem 4.1 contains a number of lower
semicontinuity theorems as corollaries.

Let us note here that whenever f u, n m (e.g., for free problems); hence
dx/dt u, the functional can be written simply as I[x], and the lower closure
theorem reduces to a lower semicontinuity theorem.

COROLLARY 1. Under the hypotheses of Theorem 4.1 with n m, f u;
hence dx/dt u and

Q(t, x) {(z, u)lz >_ fo(t, x, u), u e U(t, x)} Fn+

if Xk X in the p-metric, and lim inf I[Xk] < o, then I[x] <= lim inf I[Xk].
Note that in Theorem 4.1 (as well as in the closure theorems, Theorems 1.1

and 2.1) no topology has been chosen for the measurable functions u(t), tl <-_ <= t2,
under consideration, and hence the question of what happens if the functions Uk
converge toward some function Uo does not arise. Here we may well assume that
all intervals [tlk tZk], [ta, t2] are all contained in a fixed interval It, T], , T finite,
and we may extend all functions Uk to the fixed interval [, T] by defining them
to be constant and equal to a fixed a (say, a 0) outside [t lk tEk]. If we assume

is in Lp[, T]) and thatthat all functions Uk are in Lp (that is, each component Uk
the functions Uk converge weakly in Lp toward some element Uo of Lp, then we
may ask whether the pair x, Uo is admissible, and whether the relation I[x, Uo]
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__< lim inf I[Xk, blk holds. The following corollaries of Theorem 4.1 give affirmative
answers to the question being investigated under suitable assumptions.

To state Corollary 2 we shall need the sets

Q’(t, x) {(z, z, )[z >= fo(t, x, u), z f(t, x, u), u, u U(t, x)}
={(z u)lz u), z )},z, >= fo(t,x, f(t,x u) u U(t x c E,

COROLLARY 2. Under the conditions of Theorem 4.1 with the sets replaced by
the sets Q’(t, x), if the functions uk are in (Lp)m, p > 1, and Uk UO weakly in (Lp)
as k , then the pair x, uo is admissible, and I[x, Uo] __< lim inf I[xk, Uk]. The
same statement holds for p 1 provided we know in addition that the functions uk

are equiabsolutely integrable.
ProofofCorollary 2. Let us consider the auxiliary control problem with n and

m replaced by n + m and m, the same control variable u (u1, ..., u"), the state
variable x (xl, x"), y (y, ym), same functional and constraints, and
the n + m differential equations

dx/dt f(t, x, u), dy/dt u.

Here A is replaced by the closed set A’= A E,,, and the sets 0(t, x) by the
sets Q’(t, x) which are assumed to be closed, convex, and to satisfy property (Q).
Now the functions

Yk(t) Uk(Z) dz, tk <= <= t2k, k 1,2,
lk

are equiabsolutely continuous and equibounded. We first extract a subsequence
[ks] such that I[Xks, Uk] lim inf I[Xk, Uk], and we further refine it in such a
way that also Yk--* Y in the p-metric, where y is now absolutely continuous in
[t, t2]. By Theorem 4.1, there is a measurable u(t), tl <= <= t2, such that x, u
is admissible for the new problem and I[x, u] <__ i; besides, dx/dt f(t, x(t), u(t)),
dy/dt u(t) a.e. in It1, t2]. On the other hand, Uk Uo weakly in Lp,

ud) d --, Uo() d as s --- oo

for every t; hence, Yk, y(t) for every e(t, t2), or y(t)= [. Uo(Z) dz, and u(t)
dy/dt uo(t) a.e. in It1, t2]. This proves the corollary.
Note that in Corollary 2 the sequence Uk p is certainly bounded (p _>_ 1),

and for p > 1, the functions Uk are certainly equiabsolutely integrable. This is
the case even for p 1 under suitable "growth" conditions. A suitable growth
condition is the following one" (eo) For each e > 0 there is some integrable function
0(t) > 0, =< _< T, such that

]ul O,(t) + efo(t x, u)

for all (t, x, u) M. An analogous growth condition has been considered in [lb]
for a different purpose.

It is easy to see that in Corollary 2 the weak convergence of Uk in Lp for p >= 1
and the additional assumption that the Uk are equiabsolutely integrable if p 1
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can all be replaced by the single simple assumption" Yk Y in the p-metric, where

Yk(t) Uo(r) dr, lk <- =< t2k, k 1,2,
lk

and

y(t) Uo(r) dr, <= < t2.

The proofis the same with obvious simplifications, and is still based on Theorem 4.1.
For instance, for m 1, the sequence uk(t) k/2 sin kt, 0 < <= 2n, k 1, 2, ...,
converges in this sense to Uo 0, but the sequence u is not weakly convergent,
say in Lx, since [[b/kl[ 4k/2 is not bounded.

In Corollary 2 the hypothesis that the sets Q’(t,x) be convex cannot be
disregarded, as the following example shows. Take n 1, m 1, fo u, f u2,
U { + 1 hence Q’ is the fixed closed nonconvex set made up of the two half-
straight-lines (z=u= 1, z_>_ 1) and (z= 1, u= -1, z>__ -1). Also, take
txk t O, tZk 2 1, Uk(t) 1 for i/k <= <= i/k + 1/2k, O, 1,..., k 1,
u(t) -1 in the complementary invervals, x(t) x(t) t, 0 <= <= 1,
k 1,2,.... Then u Uo weakly in any Lp (p >= 1) with Uo(t) O, 0 <_ <= 1,
and now the pair x, Uo is not admissible since 0 U. On the other hand,

o, z)lzo >__ z

is convex and all conditions of Theorem 4.1 are satisfied. If we take u(t) -1,
0 =< =< 1, then the pair x, u is admissible with I[x, u] 1, while I[xk, uk] O,
k 1,2,....

An analogous example where both ( and U are convex, where X, Uo is
admissible, and yet I[x, Uo] > lim inf I[xk, u], is as follows. Take m n 1,
U=EI, fo(-u)=fo(u), f(-u)= -f(u), fo=Z-u for 0<u=<2, fo =0
foru>2, f(u)=ufor0<u< 1 f(u)=2-uforl <u<2,f(u)=0foru>2.
Then Q is the fixed closed convex set

{(z, z)lz >= [zl for- 1 < z _<_ 1} c E2,

while Q’ is a fixed closed nonconvex set in E3 If we take 0, tzg 2 1,
k- 1,2,..., and u(t)= 1 for i/k<__t<=i/k + 1/2k, i=O, 1,...,k- 1, u(t)

1 in the complementary intervals, then uk Uo weakly in any Lp, p >= 1,
with Uo(t)=O, 0=<t=< 1. If we take x(t)=t-i/k, or x(t)=(i+ 1)/k-t
according as belongs to one or the other set of intervals above, then x, a,
x x uniformly and x, x’ weakly in any Lv as k with x(t) O, 0 <__ <_ 1.
The pair x, Uo is admissible with I[x, Uo] 2, while I[xk, u] 1 for all k. On the
other hand, the conditions of Theorem 4.1 are all satisfied, and there is therefore
some measurable u such that x, u is admissible and I[x, u] <= lim inf I[x, u].
One such u is u(t) 2, 0 __< __< 1. Another example of the same type, where Q is
a fixed closed convex set, fo is convex in u, U is convex, but ’ is fixed and closed
but not convex, is as follows. Take m n 1, fo 0, f uz, U [- 1 <= u <= 1],
so that O={(z,z)lz>0,0__<z=< 1}. Take u(t)= +1 as in the previous
example, so that uk Uo weakly in any Lv with Uo(t)= 0, 0 __< __< 1. On the
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other hand, Xk(t x(t) t, 0 <__ 1, I[xk, Uk] 0, k 1, 2,..., while x, Uo is
not admissible. For u(t) 1, 0 <= <= 1, x, u is admissible and I[x, u] O.

Other examples of the same kind can be found in [li, particularly p. 13] and
[lj, particularly p. 53].

Note that the requirement in Corollary 2 that the sets O(t, x) be convex
implies that, for every (t, x) A, the sets U(t, x) are convex, f(t, x, u) is linear in u
(hence of the form f B(t, x)u + C(t, x), B an n m matrix, C an n matrix),
and fo(t, x, u) is convex in u.

The following Corollary 3 for general Lagrange problems (with f linear in u)
extends both Corollaries and 2. To state Corollary 3 we shall need the sets

Q*(t, x) {(z, )[z >__ fo(t, x, u), u, u U(t, x)}

{(z, u)lz => fo(t, x, u), u U(t, x)} = Era+
COROLLARY 3. Under the conditions of Theorem 4.1 with the sets Q*(t, x)

Em+ replacing the sets Q, if f is linear in u (or f B(t, x)u + C(t, x), (t, x) A,
u U(t, x), the matrices B and C with entries continuous in A), if the functions uk

are in (Lp)", p > 1, and uk Uo weakly in (Lp) as k - , then the pair x, Uo is
admissible, and I[x, Uo] =< lim infI[xk, uk]. The same statement holds for p 1
provided we know in addition that the junctions uk are equiabsolutely integrable.

Proof of Corollary 3. Let us consider the auxiliary control problem with
n+m control variables u=(ul, ...,urn), v=(v,...,v"), with n+m state
variables x (x x") y (yl ym) the same functional I t2 fo(t, x, u) dt,

tl
with constraints (t, x) A, u U(t, x), v V E,, and n + m differential equations

dx/dt v, dy/dt u.

Here A is replaced by the closed set A’ A E,, and the sets Q(t, x) of Theorem
4.1 are replaced by the sets Q*(t, x) E, c E,+m+ which certainly are closed
convex and satisfy property (Q). We take

Yk(t) Uk(Z)dr, tk <-- < k 1 22k,

lk

and then the functions yk(t)are equiabsolutely continuous and equibounded.
We first extract a subsequence [ks] such that Ik --- lim inf Ik, and we further
refine it in such a way that also Yk -- Y in the p-metric, where y is now absolutely
continuous in t, t2]. By Theorem 4.1 there are measurable u(t), v(t), <= <__ t2,
such that x, y, u, v, is admissible for the new problem, and I _<_ i, besides

x’(t) v(t), y’(t) u(t) U(t, x(t)) a.e.,

t2

I fo(t, x(t), u(t)) at.

On the other hand, for every k, we have (t, Xk(t)) A, and

x’(t) vk(t), x’(t) B(t, xk(t))uk(t) + C(t, xk(t)), y’(t) uk(t)

a.e. in [tk, t2k]; and hence in a fixed interval [/, T] after suitable extensions,
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tlk, t2k] C , T], k 1, 2,.... Then B(t, xk(t)) B(t, x(t)), C(t, xk(t)) - C(t, x(t))
as k - in the p-metric, as well as uniformly in [, T], while u Uo weakly in Lp.
Then x;, x’ weakly in Lp and hence

x’(t) U(t, x(t))Uo(t) + C(t, x(t)) a.e. in It1, t2].

If we denote by W-lim the usual weak limit in Lp, we have also

u(t) y’(t) W-lim ys(t) W-lim u,(t) Uo(t)

a.e. in It1, t2], or u uo a.e., and

x’(t) f(t, x(t), Uo(t)), (t, x(t)) A, Uo(t U(t, x(t))
a.e. in It1, t2J. Then

l[x, Uo] I[x, u] __< lim inf l[Xk, Ilk].

This proves Corollary 3. Note that the hypothesis of convexity of Q*(t, x) certainly
implies the convexity of U(t, x).

In Corollary 3 for p 1 the functions uk are certainly equiabsolutely integrable
under the growth condition (eo) mentioned below Corollary 2.

Note that if both f and fo are linear in u, or

f B(t, x)u + C(t, x), fo b(t, x)u + c(t, x),

where B, C, b, c are n x m, 1 x n, 1 x m, 1 x 1 matrices with entries continuous
in A, then in Corollary 3 the conditions on the sets Q* can be dropped. In other
wordswe have" Ifxk(t),u(t),t <__ <= tzk,k 1, 2, ,is asequence ofadmissible
pairs with x, x in the p-metric and uk - Uo weakly in Lp, p > 1, then x, Uo is
admissible and 1Ix, Uo] lim l[x, u]. The same holds for p 1 if the functions

u are known to be equiabsolutely integrable. The proof is the same as above
with obvious simplifications.

Remark 1. Condition () in Theorem 4.1 and in the corollaries will be

drastically reduced in Theorem 4.2 below. Simple conditions under which the
sets Q above, if convex, are closed and satisfy property (Q) as requested will be
given in 8.

Remark 2. In the sufficient condition for lower closure, Theorem 4.1, and in
the corollaries, it is enough to request that the sets ((t, x) be closed, convex,
and have property (Q) at the points (t, x(t)) A for almost all e Its, t2]. In this
form, and under suitable regularity hypotheses, the convexity assumption of the
sufficient condition, Theorem 4.1, for lower closure will be shown to be necessary
also.

Remark 3. Condition () in Theorem 4.1 and in the corollaries is satisfied if,
for instance, fo(t, x, u) >= 0 for all (t, x, u) e M, or fo(t, x, u) >= v for all (t, x, u) e M,
where v is some real constant. Nevertheless, condition () in Theorem 4.1 can
be reduced. For instance, we may replace it by the following weaker assumption"

(’) For every compact subset Ao of A there is a locally integrable function
Oo(t) (which may depend on Ao) such that fo(t, x, u) >__ Oo(t) for all (t, x)e Ao,

u U(t, x).
The proof is the same since we can include all trajectories x and x in a

unique compact subset Ao of A.
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A more drastic generalization of Theorem 4.1 will be given below (Theorem
4.2), where we shall use the following much weaker form of the condition.

(*) For every (t, ff) A there are a neighborhood N(, ) of (, if) in A,
a locally integrable function (t), and real numbers b1,’", b, (all b 1,..., b,
and ff may depend on , , N) such that

(4.1) f(t, x, u) fo(t, x, u) bjf(t, x, u) >= /(t)
j=l

for all (t, x) N(, ), u U(t, x), with the exception perhaps of a set of points (t, x)
whose t-coordinate lies on a set of measure zero on the t-axis.

Remark 4. We shall note here that, under condition (*), it is natural to
consider the sets

Q(t, x) {(z, z)[z __> fo(t, x, u), z f(t, x, u), u u(t, x)},
or the analogous sets

Q*(t, x) {(Z, Z)lZ fo(t, x, u), z f(t, x, u), u U(t, x)}.
It is easy to see that the sets Q are closed, or convex, or satisfy property (Q) if
and only if the same occurs for the sets Q*. Indeed, the sets above are transformed
into one another by the fixed affine transformation Z z bz, Z z.

THEOREM 4.2. Let A, B, U(t, x), M, f(t, x, u), fo(t, x, u) be as in Theorem 4.1,
and let us assume that condition (k*) holds. With N(, if) as in condition (*), and
for every (t, x) U(, x), let O(t, x) denote the set ofall (z, z, z").= (z, z)
with z >= fo(t, x, u), z f(t, x, u)for u U(t, x), and assume that the sets Q(t, x) are

closed, convex, and satisfy property (Q) at all points (t, x) N(, ), with the exception
perhaps ofa set ofpoints whose t-coordinate lies on a set ofmeasure zero on the t-axis.
Then the integral (3.1) has the property of lower closure at every absolutely continuous
vector function x(t), t <= <= t2, which is the limit in the p-metric of admissible
trajectories.

Theorem 4.2 holds even if the continuity of fo, f is replaced by the weaker
assumption that fo, f are continuous in x, u for every t, and measurable in for
every x, u. The same argument mentioned under Theorem 4.1 applies.

Proof. Let x(t), ta <= <= t2, be any absolutely continuous function as in the
text, and Xk(t), Uk(t), tk <= <--_ t2k, k 1, 2, ..., be a sequence of admissible pairs
with p(Xk, X) O, lim infI[Xk, Uk] < + Oe. Let Ao be a compact neighborhood
(containing the graph of x and all Xk). By hypothesis, for every (, ) Ao there
are numbers 6 > 0, b l, "’, b, real, and a locally integrable function if(t),
o < < + , such that fo(t, x, u) >= O(t) for all (t, x) e Nz0([ ) and u U(t, x).

We consider the smaller neighborhoods N0(f, if) which we think of as open (in A).
These too form a cover of the compact set Ao. Thus, finitely many of these No
cover Ao, say No,(ty, xy), 7 1,..., s. Let by > 0, bye, ..., by,, Oy be the corre-
sponding elements, so that

roy(t, x, u) fo(t, x, u) byjf(t, x, u) >-
j=l

for all (t, x) N2o,(ty, xy), u U(t, x), 7 1, s, and (J= No,(ty, xy) Ao.
Let b max [IbyjI, j 1, n, 7 1, s], 6o min [by, 7 1, s].
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Since (t, x(t))e Ao for all _-< __< t2, we can divide the arc Co" x x(t),
_-< __< t2, into finitely many subarcs, say C, a 1, ..., N, each C completely

contained in some neighborhood N,(t, x). Thus, we have for the arcs C the
representations C’x x(t), r._l <- <_ r, with to < 1 < < ru t2,
and each C, lies in a certain Nb,(tr, x) which now remains associated with C,.
Since p(xk, x) 0 as k , and hence t t, tzk t2, we see that for all k
sufficiently large we have t < r < < u_ < t. Thus, for all k sufficiently
large, the arc C" x x(t), t t, is divided into the same number N of
subarcs, say Co" x x(t), r_ , 1, ..., N, where now ro t must
be replaced by t and ru 2 must be replaced by t2. Also, for all k sufficiently
large, say for k ko, the arc C is completely contained in Nzo,(t, x) for the
same 7 we have already associated with C,. Ths, for k ko, C, lies in some

N(t, x) and C in Nz(t, x). Also, C C as k in the sense that the
p-distance approaches zero as k . We shall now consider for each a 1, ..., N,
the auxiliary functional

J fo(t, x(t), u(t)) dt

for all admissible pairs x, u with the graph of x lying in Nz6(te, x). Here by
admissible we mean that the conditions listed in 3 are satisfied with A replaced
by Nz6,(t, x), and of course fo(t, x(t), u(t)) L-integrable as usual.

For each a we may now apply Theorem 4.1 to the arc C, the sequence Ck,
k 1, 2, -.-, and the functional J. We conclude that each C, is admissible and that

(4.2) J[C] <_ lim inf J[Ck], a 1,..., N.
k--

More precisely, for each a, there is a measurable u(t), r_ =< =< r, such that
the pair x(t), u(t),

_
<= <= , is admissible for the functional J; in particular,

u(t) U(t, x(t)), dx/dt f(t, x(t), u(t)), r_ <= <= (a.e.), a 1, N, and the
expression

ifo(t, x(t), u(t)) fo(t, x(t), u(t)) bfj(t, x(t), u(t))
j=l

is L-integrable in [r_ 1, z]. Since the functions fj here are certainly L-integrable
in the same interval (as derivatives of the absolutely continuous functions x(t)
in [z_ 1, r]), we conclude that fo(t, x(t), u(t)) itself is L-integrable in each [z_ 1, z]
and hence in the whole of It1, t2]. We have proved that the pair x(t), u(t), <-
<= t2, is admissible for the original integral I.

Now, given e > 0, we deduce from (4.2) that there is some k ko such that,
for k > k, we have

(4.3) J[C] J[C] > -e/N, p(C, C) < e/(Nnb), a=l,...,N.

Now we have

I[x, u] fo(t, x(t), u(t)) dt fo(t, x(t), u(t)) dt
er-1

fo(t, x(t), u(t))dt + 2 bj[x() x( 1)]
0"=1 a-1 j=l
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2k N

fzrtrI[Xk, Uk3 fo(t, xk(t), uk(t)) dt fo(t, xk(t), uk(t)) dt
tlk

fo(t, x(t), u,(t))dt + bj[x() xJ(_ )]
a=l j=l

where we have written bj instead of bj where 7 is the index we have associated
to a, and where we have written t and u t2 instead of t and t2 in
the expression for I[x, u]. By taking the difference we now have, remembering
relations (4.3),

I[Xk, Uk] I[X, U] > N(e,/N)

+ bj{[x],(r)- xJ(r)] + [x(r_ ,)- xJ(r_
a=l j=l

where each bracket is now in absolute value less than or equal to (Nnb)-le. We
conclude that for all k > k we have

I[xk, uk] I[x, u] > e Nnb[2(Nnb)- g] 3e.

Because e is arbitrary, we have proved the lower closure of I at x.
Remark 5. As shown in [lab], lower closure theorems easily yield existence

theorems for the minimum. Indeed, for A compact, we have only to consider any
closed nonempty class f of admissible pairs x, u with I[x, u] < M, and guarantee
that the corresponding trajectories x are equiabsolutely continuous. To this
purpose, growth conditions on f and fo such as (7) or (e) below suffice, or alter-
natively, a condition such as (#) below (see [lab] for details, for the case of A not
compact, and for the simplifications occurring when the control space U is
bounded).

Remark 6. We report below for the sake of comparison a lower closure and
existence theorem proved by C. Olech [6a]. Let A, U(t,x), M, B, fo(t,x,u)

(fl, f,), Q(t, x) c E,+ 1, be defined as in 3. Let (z, z) (z, z 1, z")
be the usual variable in E,+ 1. We shall denote by (c, c)= (c, cl, c"),
[l (d,d) (d, dl, d")pointsinE,+ 1,andby.
the usual inner product in E,+ 1- For any point (t, x) A let C(t, x) denote the set

C(t, x) { E,+ 113 + 2 e ((t, x) for all 2 _>_ 0 and all 3 e ((t, x)}.
Obviously, C(t, x) is a gone with vertex the origin in E,+ 1. The setC(t, x) is said to
be the asymptotic cone of the set ((t, x). It is easy to see that if Q(t, x) is convex,
so is C(t, x); if O(t, x) is closed, so is C(t, x). Also, we shall denote by F the cone
in E,+ made up,of only the positive half-straight-line F {(c, c)[c2 _>_ 0, c 0}.
Obviously, F Q(t, x) for all (t, x)e A.

By the polar cone C(t, x) of C(t, x) is meant as usual the set

C(t, x) {[l (d, d)e E,+ al[l. <- 0 for all 8 e C(t, x)}.
Then, for C(t, x) F, we have

C(t,x) r {t=(do d)[d <0 deE,}
and hence int F is the set of all (d, d) with do < 0, d e E,.
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THEOREM 4.3 (A lower closure theorem). Let the sets M, B be closed and A
compact, let fo(t,x, u), f(t,x, u)= (fl,"" ,f,) be continuous on M, and let us
assume that the sets Q(t, x) have thefollowing properties"

(a) the sets Q(t, x) are closed and convex;
(b) the sets O(t, x) satisfy property (U) in x for every t;
(c) C(t, x) F for all (t, x) A;
(d) for every r > 0 and ?. (c, c) with co < 0 there is a locally integrable

function if(t; r, c), El, which may depend on r and c, such that . <__ if(t; r, c)
for all (t, x, u) M with Ixl <= r and all (z, z) ((t, x).

Then the integral (3.1) has the property of lower closure at every absolutely con-
tinuous vector function x(t) (xl, xn), <= <__ t2, which is the limit in the
p-metric of admissible trajectories, and the minimum of the functional exists in every
closed class f of admissible trajectories.

As for Theorem 4.1 and Theorem 4.2 the hypothesis of continuity of fo and
f can be replaced by the weaker assumption that fo and f are continuous in x, u
for every t, and measurable in for every x, u [see [6a]). Theorem 4.3 is proved by
C. Olech in [6a] (reported here in the setting of pp. 175-176, in our notations, and
for the problem in which we are interested). Condition (c) of Theorem 4.3 is not
required in our Theorems 4.1 and 4.2, and condition (d) in Theorem 4.3 is more
demanding than condition (if*) required in Theorem 4.2. Indeed, if we take

b (bl,"-, b,) (-co) -lc, (t) (-c)-1,,

then (d) can be written in the form fo + b. f __> ft. In other words, in Theorem 4.3
it is required that for every b E, and r > 0 there is some satisfying fo + b. f
__> . Condition (if*) of Theorem 4.2 only requires that for every (t, x) there is
some b E, such that fo + b. f >__ holds in a neighborhood of (, ). The
following examples illustrate these points. For instance, for fo (1 + u2) 1/2,
f u, n 1, condition (c) is not satisfied; the same occurs for fo (1 + x2u2) 1/2,
f u, n 1. For fo 1 + [u[, f [u[, n 1, condition (d) is not satisfied,
while (if*) is certainly satisfied.

It may be pointed out that condition (c) actually means that f(t, x, u) is
"of slower growth" than fo(t, x, u) in the following sense.

(,) Given e > 0 there is an N _>_ 0 such that If[ -<_ efo whenever fol >= N.
A condition of this kind has been used in existence theorems, but lower

closure Theorems 4.1 and 4.2 do not need a similar condition.
Another condition which has been used in existence theorems is the following

one.
(e) Given e > 0 there is some function O(t) => 0 which is locally integrable

and such that

If(t, x, u)l -< O(t) + fo(t, x, u).

Under this condition then (d) holds. Indeed, given b e E, take e > 0 such that
elb[ < 1 and note that

fo + b .f >__ fo -[b[ [f[ __> e-l(efo -If[) >= e-xo(t).

Again, lower closure Theorems 4.1 and 4.2 require much less than (d) or (e).
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An example offered by C. Olech [5, p. 179] concerns the existence of the mini-
mum and is similar to the one considered in [9, particularly 2 and the first
part of Example 4.1, p. 300], namely o tx’2 dr, 0 < e < 1, where our existence
theorems apply and use is made of condition (e). Nevertheless, growth conditions
(7), or (e), are not needed for existence in classes f satisfying constraints of the
following type:

(l) Ix’l dt <__ M for some constants p > 1, M > 0.

Condition () and the less demanding conditions of a lower closure theorem
such as Theorem 4.1 or 4.2 suffice.

Note that all conditions (7), (e), or (), and similar ones, only guarantee the
equiabsolute integrability of the derivatives x of the element x of a minimizing
sequence [x], so that we can extract a subsequence x whose elementsx converge
uniformly (since A is compact), and we could even request that the derivatives x
converge weakly in L or Lp. In this sense we could state in Theorem 4.1 that it is
enough in applications to know that the sets Q(t, x) satisfy property (Q) in the sub-
sets Ax ofa partition [Ax] ofA into measurable sets as mentioned above. In Theorem
4.3 the combined hypotheses (a) to (d) guarantee that the sets Q(t, x) satisfy property
(Q) in x for almost every t, as proved by C. Olech [6a, pp. 168-169].

5. A variant of the lower closure property. Theorem 4.1 holds in a slightly
stronger form. To formulate it we need, besides the sets Q(t, x)c E,/I of 4,
also the sets Q(t, x) f(t, x, U(t, x)) E,. These sets Q(t, x) are the projections
on the z-space E, of the sets Q(t, x) of the zz-space E,+ 1. Thus, if the sets Q(t, x)
are convex, so are the sets Q(t, x). On the other hand, the sets Q(t, x) may be closed,
without the sets Q(t, x) being so. This is shown by the example n 1, m 1,
U {u- oe < u < + o}, fo (1 + u2) 1/2, f tan-1 u, n/2 < f < r/2. Then,
Q and Q are the fixed sets

Q {zl-r/2 <z <r/2} cE1,

Q {(z, z)[z >= seez, -rc/2 < z < re/Z} c E2,

and Q is closed, but Q is not. This example shows also that property (Q) for the
sets Q does not imply the same property for the sets Q. In the statement below we
shall require that both the sets Q(t, x) and the sets Q(t, x) have property (Q).

THEOREM 5.1. If we assume, in addition to the hypotheses of Theorem 4.1, that
both the sets (t, x) E,+ and the sets Q(t, x) c E, are closed, convex, and satisfy
property (Q) at all points of A with the exception perhaps of a set of points whose
t-coordinate lies on a set of measure zero on the t-axis, then for every sequence
xk(t), uk(t), tl < __< t2, k 1,2,..., of admissible pairs, and any absolutely
continuous vector function x(t) (xl, x"), <= <= t2, with p(x, x) 0 as
k oe, there is a measurable function u(t), tl <= <= t2, such that u(t) U(t, x(t)),
x’(t) f(t, x(t), u(t)) a.e. in It1, t2], and

(5.1) 1Ix, u] <= lim inf l[x, uk].

If lim inf I[x,, u,] < + oe, then certainly the pair x, u is admissible, and (5.1)
holds.
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An analogous variant of Theorem 4.2 also holds.
Proof of Theorem 5.1. First note that fo(t,x(t), u(t)) is measurable in [ta, t2]

and is _>_ -(t); hence, I[x, u] is finite or + . If the second member of (5.1) is
finite, then 1Ix, u] must be finite, hence fo(t, x(t), u(t)) must be L-integrable, and
the conclusion of Theorem 5.1 reduces to the conclusion of Theorem 4.1 in the
case under consideration. If the second member of (5.1) is + , then (5.1) in itself
is trivial, but we still have to prove that a measurable u(t), <= <= t2, exists
with u(t) U(t, x(t)), x’(t)= f(t,x(t), u(t)) a.e. in [ta, t2]. This, however, is a
consequence of closure Theorem 1.1 applied to the absolutely continuous n-vector
function x, the n-vector function f, and the sets Q(t,x)c E,. Theorem 5.1 is
thereby proved.

Finally, let us show by an example that an integral I[x, u] may possess the
properties of Theorem 4.1, and thus the property of lower closure as defined at
the beginning of 3, and yet not possess the stronger property of the present 5.

Indeed, take m n 1, U {ul- < u < 4- }, f exp (u), fo exp (/,/2),
A E2, and take x(t) O, 0 <= <= 1, Xk(t) k- at, 0 _<_ =< 1, k 1, 2, Here
Xk X uniformly in [0,1 as k and I[Xk, Uk] exp (log k)2 + as k + .
Obviously, there is no measurable u(t), 0 =< =< 1, with - < u(t)< +,
such that 0 x’(t) exp (u(t)) a.e. in [0, 1]. The integral I does not have the strong
property represented by the conclusion of Theorem 5.1. Yet the integral I has
the property of lower closure as defined in 3 as a consequence of Theorem 4.1.
Indeed, here

Q {(z z)lz > exp (/,/2) Z exp (u), u Ea}
or

Q {(z,z)iz >= exp (log z)2,0 <z < +},

is a fixed closed convex subset of E2, and all conditions ofTheorem 4.1 are satisfied.
Instead, Q={zlz=exp(u),uEa} is the set Q={zl0<z< +}, a fixed
convex set, and Q is not closed.

6. Criteria for property (Q) of the sets Q(t, x). We assume here that the sets
A, U(t, x), M, Q(t, x), (t, x) are defined as usual, that the sets A and M are closed,
and that the functions fo(t, x, u), f(t, x, u)= (f, ..., f,) are continuous on m.

(a) We say that a function g(t, x, u) on M is of slower growth than fo(t, x, u)
as ]ul in a subset Ao of A if, for every e > 0, there is some number H, which
may depend on e, fo and Ao, such that (t, x) Ao, ]u] >= H, u U(t, x) implies
Ig[ <= afo.

THEOREM 6.1. If 1 and f are of slower growth than fo as Iul in a neighbor-
hood Na(, if) of (, if) in A, and (, if) is convex, then the sets Q(t, x) satisfy property
(Q) at (, if) (in particular, Q(, 2) is closed).

This statement is proved in Cesari [lb, (2.2.ii)]. Note that if and f are of
slower growth than fo as lul oe in A, then not only the sets ((t, x) ofTheorem 4.1
satisfy property (Q) in A, but also condition () of Theorem 4.1 is trivially satisfied
with q const.

(b) In Theorem 6.2 below we shall use a different set of hypotheses. At the
beginning of 5 we noticed that the sets Q(t, x) E, are the projections of the
sets Q(t, x) c E,+ on the z-space E,; hence, the convexity of any set Q(t, x) in
E,+ implies the convexity of the corresponding set Q(t, x) in E,. Nevertheless,
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as we proved by an example at the beginning of 5 the sets Q(t, x) may be closed
and even satisfy property (Q) at any given point (t, if) without this being the case
for the sets Q(t, x).

However, the following holds" If the sets Q(t, x) satisfy property (Q) at (, 4),
then

(,) (z, z) el co tO ((t, x)

implies z e Q([, 4). Indeed, (,) yields (z, z) (([, if) by property (Q) at ([, if), and
then z Q([, if).

We shall say that condition () holds at the point (, if) A provided"

() (z, z) f3 6 cl co i2 ((t, x) implies z Q(, 4).

As mentioned, this condition is necessary for property (Q) of the sets ((t, x) at
(, ). This same condition () alone is not sufficient for property (Q) as the following
example shows" Take m n 1, U E, fo exp (tu), f 0, 0 =< =< 1. Then

Q(0) {(z, z)lz _>_ , z 0}, (2(t) {(z, z)lz > 0, z 0}
if > 0, the sets do not satisfy condition (Q) at 0, but condition (a) certainly
holds at the same point. Note that condition (cz) is trivially satisfied for free problems
(m n, f u, U E,) since Q U E,, and all points zE, are in Q.

Now we shall say that condition (X) holds at the point (, if) A provided
the following holds.

(X) For every Q(, if) there is at least one point o U(, if) with f(, if, o)
and the following property" Given e > 0 there are numbers 6 > 0, and r, b (b l,.., b,) real such that

(X’) fo(t, x, u) >= r + bjfj(t, x, u)

for all (t, x) Nil, N) and u U(t, x),

(X") fo(, X, o) __< r + bjffl, if, 0) + e.

As we have shown in [lc] this is a very weak requirement. For free problems, for
instance, this condition reduces to a weak form of the well-known "seminormality
convexity condition" (see below).

THEOREM 6.2. If conditions (a) and (X) hold at a point (, ) A, then the sets
Q(t, x) are convex, closed, and satisfy property (Q) at the point (, ).

This statement was proved in [lc].
(c) A partial converse of Theorem 6.2. We have already seen that the convexity

of 0(t, x) in E,+ implies the convexity of Q(t, x) in E,. We shall denote by R
the linear manifold in E, of minimum dimension r containing Q(t, x). Thus
Q(t, x) R E,, 0 <= r <= n. As usual we denote by int Q(t, x) the set of all
z Q(t, x) which are in the interior of the convex set Q(t, x) with respect to E,.
Analogously, we denote by R-int Q(t, x) the set of all z Q(t, x) which are in the
interior of Q(t, x) with respect to R. Then

int Q(t, x) c R-int Q(t, x) Q(t, x) c R E,.

If Q(t,x) is reduced to a single point, then int Q(t,x)= , R-int Q(t,x)= ,
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r O, R Q(t, x). If Q(t, x)contains at least two points, then __< r __< n, and
R-int Q(t, x) g: .

For any point (, if) A and z e Q(, if)c E, let us denote by T(z" , X) the
number, c =< T < + m, defined by

T(z;, X) inf {zl(z, z)e ((?, :) for some z e E1}
(6.1)

inf {z]z fo(, if, u) for all u U(, if) with f(, X, u) z}.
We shall consider T(z; , if) as a function of z in Q(t, x) E,. We proved in [lc]
the following properties of the function T(z; , ).

(rl) If Q(t, x) is convex, then either T(z; , if) c for all z R-int Q(t, ),
or T(z;t, ) is a convex real-valued function on the convex set Q(, ) = E,, is
finite everywhere in Q(f, if), and continuous at every point z R-int Q(t, x).

(rr2) If Q(, ) is convex and closed, and T(z; , ) is finite on Q(, ), then min
holds instead of inf in both relations (6.1), and T(z; , ) is (continuous at each
z R-int Q(, if) and) lower semicontinuous at each z Q(t, ) R-int Q(L if).

In [1 c] we proved by examples that the first alternative in (r 1) may well occur,
and that, under the conditions of (r2), T(z" , ) may well be discontinuous at
the points z Q(, ) R-int Q(L ).

(7t3) Under the conditions of (7r2), T(z; , ) has a supporting plane at every
point R-int Q(, ); that is, there are real numbers r, b (b l, ..., bn) such
that T(; , ) >= r + b. z for all z6 Q(, ) and T(z; , ) r + b.

This last property can be reinterpreted by saying that for every
there is at least one point 0 U(, ) and real numbers r, b (b l, "", bn) such that

T(z; , ) >_ r/ b. z withz-f(,,u) for alluU(,Z),
(6.2)

T(5",) =r+b.5 with5 =f(,ff, o).
Finally, the same property (re3) can be reinterpreted in turn by saying that for
every 5 6 R-int Q(, ) there is at least one point o U(, ) and real numbers r,
b (b, ..., b,) such that

fo(, , u) > r + b. f(, X, u) for all u U(, ),
{6.3)

fo(, if, 0) r + b. f{, if, o).
In [lc] we proved by exarn_,,ples that under the conditions of (re2) the supporting
plane for the convex set Q(t, x) at points (z, 5) with 5 Q(, if) R-int Q(, if),
z T(z; , ), may well be vertical. Thus there may be no supporting plane
(of the form z r + b. z) for T(z; , ) at the points 5 Q(, if) R-int Q(, if).
At each of these points 5 we can only say that for every e > 0 there are real numbers
r, b (b l, "", b,) depending on e, , x, z such that T(z; , ) > r + b. z for all
z e Q(, if), and T(5; , if) < r + b. 5 + ,. Properties analogous to (6.2) and (6.3)
then also hold.

Finally, in [lc] w=e proved the following partial converse of=Theorem 6.2.
THEOREM 6.3. If Q(t, x) is closed and convex for all (t, x) A, if Q(t, x) satisfies

property (Q) at (, ) A, and T(z , if) is finite on Q(, ), then for every
and e > 0 there are real numbers r, b (b l, b,) and > 0 such that

T(z; t, x) >= r + b z , .for all z e Q(t, x) and (t, x)

T(5;t, ff) =r+b.5.
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Hence, there is at least one point e U(, if) such that

T(z;t,x)>=r+b.z for all(t,x) eNa(,ff) and

T(; [, if) =< r + b. + e.

Also, we have

fo(t, x, u) >_ r + b. f(t, x, u) for all u U(t, x)

fo(, X, ) __< r + b.f(, if, ) + e.

u e U(t, x)
such that z f(t, x, u),

and (t, x)e No(, if),

Thus, under the mild restriction of assuming T(z; t, x) finite, we see that condition
(Q) for the sets Q(t, x) and the set of conditions () and (X) are equivalent. Under
the mild restriction above, we have obtained a characterization of property (Q)
for the sets O(t, x).

(d) The case of f linear in u. We shall assume here that A is a given closed
subset ofthe tx-space E1 +,, that U Era, that fo(t, x, u) andf(t, x, u) (fl, ..., f,)
are continuous on M A x Era, and thatfis linear in u; that is,

fi(t, x, u) ’, bij(t x)u + ci(t x), 1,..., n,
j=l

or

f x, u) B( x)u + C( x)

where B, C are n x m and n x 1 matrices with entries continuous in A. For every
compact subset Ao of A, the functions bij, ci are continuous and bounded on Ao;
hence, there are constants Go, Fo such that If(t,x,u)[ < Golu[ + Fo for all
(t, x) e Ao and u e E,.

THEOREM 6.4. Iffo(t, X, U) is convex in u, and f is linear in u with U Era, then
the sets Q(t, x) are convex.

THEOREM 6.5. If A is closed, U E,,, M A x Era, if fo(t x, u) is continuous
on M, convex in u, and "seminormal" in u at a point A (see definition (SN) in (e)
below), if f(t, x, u)= B(t, x)u + C(t, x), where the matrices B, C have entries
continuous in A, then the sets

Q(t, x) {(z, z)lz >= fo(t, x, u), z f(t, x, u), u Era}
satisfy property (Q) at (, if).

A proof was given in [lc]. This statement for f linear in u, or f B(t, x)u
+ C(t, x), is much stronger than the analogous statement, Theorem 6.1. Indeed, we
would deduce from Theorem 6.1 an analogous statement as Theorem 6.5 under a

growth condition fo(t, x, u) >= O(lul) with 0()/ + c as + .
(e) The free problem m n,f u, U E,. Here the sets Q reduce to the

fixed, closed, and convex set Q U E,. The sets ff(t, x) reduce here to

((t,x) {(z u)lz > fo(t x u) u 6 E,}

These sets are closed whenever fo is continuous, and convex whenever fo(t, x, u) is
convex in u. As mentioned, condition () is trivially satisfied. Condition (X) at a
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point (, if) A reduces to the following simple (and well-known) requirement"
(Xf) (weak seminormality condition). We say that the real-valued function

fo(t, x, u), (t, x) A, u e E., is weakly seminormal at the point (, if) A provided, for
every E. and e > 0, there are numbers > 0, and r, b (b l, "’", b.) real such
that

(X) fo(t,x,u)>=r+b’u for all (t, x) Nil, ) and uE,,

(x}’) fo(t, x, a) =< r + b. a + e.

For this concept and a number of variants, see L. Tonelli [7a, b] and E. J.
McShane [3a, b]. Theorem 6.2 now yields the following theorem.

THEOREM 6.6. For free problems (m n, f u, U E,), if A is closed, if
fo(t, x, u) is continuous on M A x E, and convex in u, and iffo is weakly semi-
normal at a point (, ) A, then the sets O_.(t, x) satisfy pperty (Q) at (, ).

Convexity of fo alone does not imply that the sets Q(t, x) have property (Q) in
A. This is shown by the following simple example. Take n 1, fo(t, u)= tu,
0 __< =< 1, u e U E Then fo is continuous and convex in u for every t, but at
every t, 0 __< __< 1, we have

Q(t) {(z u)lz > tu u eEl}
a half-plane in E2, while [’)a cl co 0(t; 6) is the entire plane E2 Thus the sets 0 do
not satisfy property (Q) at any t, 0 N _<_ 1. Clearly, the function j; is not weakly
seminormal.

Let us consider now the seminormality condition, which is a somewhat
stronger requirement than the weak seminormality condition. The seminormality
condition too was used by Tonelli [7] and McShane [3].

(SN) (Seminormality condition). We say that the real-valued functionfo(t, x, u),
(t, x) <= A, u e E,, is seminormal at the point (t, ) e A provided, for every E,,
there are numbers 6 > 0, v > 0, and r, b (b l, "’, b,) real such that

(SN’) fo(t,x,u)>r+b’u+vlu-o[ for all (t, x) Nil, ) and uE.,

(SN") fo(, if, o) __< r + b. o + e.

The seminormality condition has a very simple elegant characterization.
THEOREM 6.7. For free problems (m n, f u, U E,), if the real-valued

function fo(t, x, u), (t, x) A, u E,, is continuous on A c E,, and convex in u at
some (t, x) A, then fo is seminormal at (t, x) if and only iffor no u, u E,, u O,
it occurs that

fo(t,x,u) 2-1[fo(t,x,u + 2ul) + fo(t,x,u 2ul)] .(or all 2 O.
A proof of this statement under smoothness hypotheses was given by L.

Tonelli [Ta, hi. A proof under the sole hypotheses of continuity and convexity
stated in Theorem 6.7 can be found in L. Turner [8] and is reported in [lc]. Note
that, ir we denote by O(t, x) the set {(z, u)lz fo(t, x, u), u E,}, then Q(t, x) is
often denoted as the "figurative" of fo (at the point (t, x)e A). Theorem 6.7 then
states that fo is seminormal at (t, if) if and only if the figurative contains no straight
line. In particular, if say fo(f, , u) + oo as lul -+ + av, and fo(, if, u) is convex in u,
then the figurative Q(t, ) cannot contain any straig=ht line, fo is seminormal at
(, ), fo is weakly seminormal, and certainly the sets Q(t, x) satisfy property (Q) at
q, ).
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7. Lower semicontinuity. The rather general concept of lower closure defined
in 3 is a natural extension of the usual concept of lower semicontinuity. Indeed,
the definition of lower closure in 3 reduces to the usual concept of lower semi-
continuity whenever the strategy u is "determined" by the (admissible) trajectory
x, and then the functional (3.1) can be thought of as depending on the (admissible)
trajectory x only"

(7.1) I[x] fo(t, x(t), u(t)) dt.

This occurs, for instance, for free problems where u(t) x’(t) (a.e.). The purpose of
the present 7 and the next one, 8, is to clarify the concepts, to deduce theorems of
lower semicontinuity from our previous theorems of lower closure in 4 and 5,
and to show that the usual theorems of lower semicontinuity for free problems are
corollaries of our theorems of lower closure. We already presented a statement of
this sort in Corollary 1 of 4.

(a) It may happen that the data A, U(t, x), B, fo(t, x, u), f(t, x, u) (fl, f,)
are so arranged that, for any admissible pair x(t), u(t), t <= <= t, the trajectory x
uniquely determines the strategy u (a.e. in Its, t2]). Then the functional (7.1) can be
thought of as being defined for every admissible trajectory x, and we may denote it
as I[x]. In this section we shall refer to these systems, for the sake of brevity, as
TDS systems, or systems in which any admissible trajectory uniquely determines
the corresponding strategy.

For all these systems the concept of lower closure ( 3) reduces to the one of
lower semicontinuity. Let x(t), < t2, be any absolutely continuous vector
function which is the limit in the p-metric of a sequence of admissible trajectories
Xk(t), tlk <= <= t2k, k 1,2,"’, with P(Xk, X) 0 and liminfI[Xk] < + o as
k oe (thus, of course tk --" t, tak --* t). The functional (7.1) is said to be lower
semicontinuous at x provided, from any such sequence we can conclude that x is
admissible, and that I[x <= lim inf I[Xk] as k --, .

(b) For general TDS systems Theorems 4.1 and 5.1 reduce to the following
ones.

THEOREM 7.1. For TDS systems, and under the same conditions of Theorem 4.1,
let x(t), t <= < t2, be any absolutely continuous function with (t, x(t))e A for all
e Its, t2], and let x be theuniform limit of admissible trajectories x(t), t <= <= t2,

k 1, 2, ..., with p(x, x) --+ O, lim inf I[x] < + oo as k oo. Then, x is admissible
and I[x] <__ lim inf I[x].

TORN 7.2. For TDS systems, and under the conditions of Theorem 5.1, let
x(t), t <__ <__ t2, be any absolutely continuous function with (t,x(t))e A for all
e Its, t2] and let x be the uniform limit of admissible trajectories x(t), t <= <_ t2,

k 1,2,..., that is, p(x,x)- 0 as k c. Then, x is admissible and
I[x] <= lim inf I[x].

In the last statement we understand that there is a measurable function u(t),
t __< __< t2, such that x(t), u(t), t <= <__ t, satisfy all conditions for admissi-
bility but perhaps the L-integrability of fo(t, x(t), u(t)) in Its, t2], and that this
condition also is satisfied whenever lim inf I[x] <= + oe.

Theorem 4.2 also has its counterpart here, but we leave its formulation to the
reader.
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8. Theorems of lower semicontinuity for free problems. Let us consider
here free problems, that is, systems with rn n, f u, U E," hence, the strategy
u(t) x’(t) (a.e.) is determined by the trajectory (a.e.). If A and B are closed sets
as usual, then M A E, is also closed, and fo(t, x, u) is a given continuous
scalar function on M. Here a function x(t)= (X 1, X"), =< =< t2, is an
admissible trajectory provided x is absolutely continuous in tl, t2], (t, x(t)) A for
all e It1, t2], (t,x(t), t2,x(t2))e B, and fo(t,x(t), x’(t)) is L-integrable in Its, t2].
Then, the cost functional is

(S.1)
t2

I[x] fo(t, x(t), x’(t)) dt.

The corresponding sets Q(t, x) and ((t, x) have already been discussed in 6, part
(d), and the concept of weak seminormality has been introduced there.

Our general statement, Theorem 4.2, in conjunction with Theorem 6.5 yields
the following theorem.

THEOREM 8.1 (A theorem of lower semicontinuity for free problems). For free
problems (m n, f u, U E,), if A is closed, !f fo(t, x, u) is continuous on m
A x E,, convex in u, and weakly seminormal with respect to u in A, then the

jhnctional (8.1) has the property of lower semicontinuity; that is, if x(t)
(x x"), t =< =< 2 is an absolutely continuous function which is the limit in

the p-metric of admissible trajectories xk(t), lk __< < t2 k 1,2, ".., with
p(x, x)- 0 and lim inf I[x] < + as k- + , then x is admissible and I[x]
< lira inf I[x].

The condition of weak seminormality is certainly satisfied if fo(t,x,u) is
continuous in (t, x, u), convex in u for every (t, x), and fo(t, x, u) - + as [u] +
for every (t, x) e A.

Theorem 8.1 is due to L. Tonelli [7a] who proved it for fo of class C’ in u.
A proof under the present sole continuity hypotheses was given by L. Turner [83.
The lower semicontinuity Theorem 8.1 is here a corollary of Theorem 4.2 for
lower closure of general Lagrange problems.

Theorem 8.1 without the hypothesis of weak seminormality is not true, as the
following simple example shows. Take n 2, A E3, fo yx’ xy’, x, y state
variables. Then f0 is certainly convex in (x’, y’), namely linear. Nevertheless,
I jt (yx’- xy’)dt is not lower semicontinuous. Indeed, if we take C’x O,
y 0, 0 __< _< 2r, and Ck’x k- cos kZt, y k- sin kZt, 0 =< =< 27t, k 1,2,
then C C, I[C] -27r, k 1, 2, ..., and IC] 0. An analogous example
for n has been given by Tonelli [7b, vol. 2, pp. 390-392]. Nevertheless,
Tonelli proved that, for n 1 and fo continuous in (t, x, x’) with continuous
first order partial derivatives.fox, and fox,x,, Theorem 8.1 holds without the weak
seminormality requirement [7a, pp. 205-206. Again, the example above shows
that this is not the case for n _> 2. (See, for analogous examples, McShane [3b].)

9. Convexity as a necessary and sufficient condition for lower closure. We
are now in a position to prove the statement we mentioned in 4, Remark 2, that
the convexity of the sets (, that is, the convexity part of property (Q), is essentially
a necessary and sufficient condition for lower closure.
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The sufficiency part is covered by Theorems 4.1, 4.2 and 5.1. For the necessity
part we shall prove that the convexity of the sets Q is essentially necessary for lower
closure.

We shall need a few more definitions. Here again, as in 1-7, A is a closed
subset of the tx-space E1 +,, U(t,x) Era, M defined as usual is a closed set of the
txu-space E1 +,+,,, fo(t, x, u), f(t, x, u) (fl, f,) are continuous on M, and I
denotes the functional for Lagrange problems

t2

(9.1) I[x, u] fo(t, x(t), u(t)) dt.

In this section we shall denote as admissible any pair x(t), u(t), <= < t2,
satisfying all requirements listed in 3 (disregarding boundary conditions, or
equivalently, taking B E2n+2). The functional I[x,u] is defined for every
admissible pair x, u.

Also, we shall assume below that f(t, x, u) is locally Lipschitzian with respect
to xinM.

Given a point ([,) A, we shall say that a convex combination of points
in E,,

n+l n+l

y ,z, y 1,

(9.2) = =
f(l,X, fl), zj f(l, X, uj), j 1, ..., n + 1,

is generic at (, if) provided"
(a) there is some 6 > 0 such that , uje U(t,x), j 1,..., n + 1, for all

(t, x) N(, X);
(b) A det (Fij, i,j 1,..., n + 1) 0, where Fij (, X, uj) for 1,..., n,

j= 1,...,n+ 1;Fj= lfor/=n+ 1,j= 1,...,n+ 1;
(c) 0 <2j< 1,j= 1,...,n+ 1.
For instance, form=n 1, f=u, U=E,2a =2 1/2,=0, u1= 1,

u2 1, we have A det (1, 1 1, 1) 2 # 0, and (a), (b), (c) are satisfied.
For free problems (m n, ui, i= 1,..., n, U E,, z u), (a) is always
trivially satisfied, and near any convex combination there are as many generic
convex combinations as we want.

The statement below, Theorem 9.1, depicts a situation where there is no
"lower semicontinuity" at suitable trajectories issued from a point (, if) e A when
the convexity requirement is not satisfied.

TnOM 9.1. Let A, U(t, x), M be defined as usual and closed, and let fo(t, x, u),
f(t, x, u) (fx, f,) be continuous onM and locally Lipschitzian with respect to x.

If (, X)is any point interior to A, and += 2jzj is a convex combination of
points of E,, with f([, if, ), zj f([, if, uj), j 1, ..., n + 1, which is generic at
(, if), and

n+l

9.3) fo, x, n) > Z fo, x, u),
j=l

then there are admissible pairs x(t), u(t), + 6, and x(t), u(t), + 6,
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k 1, 2, such that xk x as k oe uniformly in [, + 6], and I[x, u] > lim inf
I[xk, u].

Proof. By force of (a) there is a 6o > 0 such that , use U(t, x) for all (t, x)
N6(,), j 1,..., v. Take any number 6’ with 0 < 6’ < 6o(n2 + 1)-1/2, and

note that all points (t, x) with =< < + 6’, Ix ffl _-< 6’ are at a distance from
(, ) which is (6’2 + n26’2) 1/2 6’(n2 + 1) 1/2 < 8o. We can take 8’ > 0 suffi-
ciently small so that all mentioned points are in A.

Let us consider the differential equation

(9.4) dx/dt f(t, x,

with initial condition x() . Having assumed f continuous on M and locally
Lipschitzian with respect to x in M, we know that f(t, x, ct) is continuous and
uniformly Lipschitzian with respect to x in the set {(t, x)l =< =< + 6’, Ix-
< 6}. By differential equation theory we know that for some 6 sufficiently small,
0 < 6 __< 6’, there is one and only one absolutely continuous solution x(t), <=
=< +

Now let us consider the system of n + 1 linear equations in the n + un-
knowns pl(t), p,+ l(t)"

n+l

pj(t)f(t, x(t), uj) f(t, x(t), t) O,

(9.5)
n+l

j=l

Note that for these equations have the trivial solution pj([) 2j, j 1, ...,
n + 1. The functional determinant of these equations is

A(t) det (Fij(t), i,j 1,..., n + 1),

with Fir(t fi(t,x(t),uj), 1,..., n,j 1,..., n + 1, and Fi 1, n + 1,
j 1, ..., n + 1. Hence, A() - 0 by force of (b).

Thus, we can take 6 > 0 sufficiently small so that equations (9.5) have a
continuous solution p(t)= (Pl, "", P,+I) in [, + 6]. Since pj(t)= 2j, and
0 < 2j < 1, we can take 6 > 0so small that we have also 0 <_ pj(t) <= 1, <_ <= + 8,
j= 1,...,n+l.

Note that x(t), <= <= + 6, is an absolutely continuous solution of the
differential system

dx
p(t)f(t,x(t), u), =< =< + 6,(9.6)

dt =
with initial value x() if, since the second member coincides with f(t, x(t), ) in
E, + .

Note that, by hypothesis,
n+l

(9.7) fo(, X, ) > 2jfo(, X, uj).
j=l

If we denote by 2 > 0 the difference between the first and second member in
(9.7), we see that by simple continuity argument, we can take 6 > 0 sufficiently
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small so that

fo(t, x(t), ) > pj(t)fo(t, x(t), uj) + a
j=l

for all < < + 6.
Note that we have here a generalized system x(t), p(t), v(t), < < + 6,

with v(t) {uJ)(t) uj, j 1,..., n + 1}, =< =< + 6, and
+6 nlIx, p, v] pj(t)fo(t, x(t), uj) dt

j=l

< fo(t, x(t), ) dt a6 I[x, u]

where u denotes here the constant strategy u(t) , < <__ + 6.
Now we shall apply the general theorem of approximation of generalized

solutions by means of usual solutions proved in [la, 14, (i), p. 416]. To do this we
need to reduce drastically the control space since in that theorem it is assumed that
the control space has to depend on only. In the present situation, however, we can
take as auxiliary control space U* the fixed space made up of the n + 2 points a,
uj, j 1, ..., n + 1, of E these are the only points we need in the control space.
Then, by force of [la, 14, (i)] we know that there exists a sequence of admissible
pairs xk(t), uk(t), =< =< + 6, k 1, 2, .-., with x --+ x uniformly in [, + 6] as
k oo, and I[x, u] --+ 1Ix, p, v]. Thus, for k sufficiently large we certainly have
Ix(t)- x(t)l < c5’ and thus (t, xk(t)) A for all =< _<_ + 6, and I[x, u] < I[x, p, v]
+ a6/2; hence,

I[x,, u,] < I[x, u] /2
for all k sufficiently large. Theorem 9.1 is thereby proved.

The statement below, Theorem 9.2, depicts a situation where there is no "lower
semicontinuity" at a given trajectory x in A, that is, at a given admissible pair
x(t), u(t), =< =< re, where u(t) may be bounded or unbounded. The statement is
similar to Theorem 9.1. Since we shall use the same theorem [la, 14, (i)] concerning
the approximation of generalized solutions by means of usual solutions, we have to
make sure that the conditions of that theorem are satisfied. For the case in which
the strategy u(t) is bounded, the local Lipschitz condition suffices;for the case in
which u(t) is unbounded we shall need the following assumption (S) which is of the
type considered by McShane in [3f] for the same purpose of extending to un-
bounded strategies statements proved for bounded strategies.

(S) There is a number 6 > 0 and an L-integrable function S(t), <= <= t2,
such that e It1, t2] X’ x(t)[ =< 6, Ix" x(t)[ _< 6 implies

If(t, x’, u(t)) f(t, x", u(t))l, Ifo(t, x’, u(t)) fo(t, x", u(t))l __< Ix’ x"ls(t).

We are now in a position to state and prove the following theorem.
THFOrtM 9.2. Let A, U(t, x), M be defined as usual and closed, and let fo(t, x, u),

f(t, x, u) (fl, f,) be continuous on M and locally Lipschitzian with respect to
x. Let x(t), u(t), t <__ <= t2, be any admissible pair, whose trajectory x is interior to A.
Let us assume that there is a subset E of positive measure in Its, t2] such that for
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every e E there is a convex combination ofpoints ofE,"
n+l n+l

,jzj, Y , 1,

(9.8) =1 =1

=f(,ff, a), zj=f([,X,uj), X=x([), =u(),

which is generic at (, ), and such that
n+l

(9.9) fo(t, if, ) > Z 2jfo(, if, uj).
j=l

Finally, if u(t), <= <= t2, is unbounded, we assume that condition (S) holds.
Then, there is a sequence of admissible pairs Xk(t), Uk(t), <= <= t2, k 1, 2,...,
such that Xk X as k --. uniformly in It1, t2] and I[x, u] > lira inf I[Xk, Uk].

Proof. By a suitable reduction we may well assume E to be a closed, hence
compact, subset of It1, t2]. Also, since u(t) is measurable in It1, t2], and hence
continuous on compact subsets of measure as close to t2 tl as we want, we may
well assume that u(t) is continuous on E. If a point e E and hence relations (9.8),
(9.9) hold for certain points uj and numbers 2j, j 1, ..., n + 1, let us prove that
there is some closed interval I [ 6, + 6] and functions pj(t), e E I, such
that pj() 2j,j 1,..., n + 1, and

n+l

f(t, x(t), u(t)) pj(t)f(t, x(t), uj), e E I,
j=l

n+l

1 Z pj(t), teE f’l I,
j=l

n+l

(9.10) fo(t, x(t), u(t)) > pj(t)fo(t, x(t), u), e E I,
j=l

0 <pj(t) < 1, j= 1,...,n + 1, tee I,

e U(t, x(t)), ue U(t, x(t)), j= 1, n + 1, tel.

Indeed, the first two equations of(9.10), thought ofas equations in Pl, "’", P,+ 1,

are satisfied at with pj() 2j,j 1, ..., n + 1, and the functional determin-
ant A(t) is 4:0 at L To see that we are applying the usual implicit function
theorem properly, we should first choose a fixed interval Io as I above, then modify
u(t) on Io E so as to make u continuous in the whole of Io and then determine the
interval I Io by the usual implicit function theorem of calculus on the system so
modified. We then disregard the values chosen for u(t) in Io E. Finally, we can
further reduce I if necessary so as to satisfy also the third, fourth, and fifth of
relations (9.10). Note that fl 0() e U(t, x(t)) together with u(t) e U(t, x(t)) hold for
all e I.

By the process indicated we associate with each point e E a closed interval
! [ 6, + ] with the properties above. Hence, finitely many of these intervals
cover E, say I1, "’", Io. The endpoints of these intervals can be used to define a
subdivision of It, t2] into finitely many parts J1, "’", Ju. Let {J}’ be the collection
of those J which are parts of at least one interval I above, and then let us make
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a choice ofthe corresponding points ujand multipliers pj(t), Js,J 1, .-., n + 1,
for which all relations (9.10) hold. Let {J}" be the collection of the remaining
intervals Js.

Note that now relations (9.10) hold in each closed interval J {J}’ and for the
points uj and multipliers pj(t) chosen for the closed interval J. By a continuity
argument and the closedness of the intervals J we conclude that there are some
constants a > 0, ao > 0 such that

n+l

f(t, x(t), u(t)) pj(t)f(t, x(t), uj), E J,
j=l

n+l

1 p(t), tee [-) Js,
j=l

n+l

fo(t, x(t), u(t)) => pj(t)fo(t, x(t), u) + a, e E f’l J,
j=l

0 <ao <=P(t) <= 1 a0 < 1, tE VI J,
ft U(t, x(t)), ui U(t, x(t)), J,

for every J e {J}’.
Let # > 0 denote the measure of E.
Now let us define p(t), uj(t) on the whole of It1, t2]. For 6 E, hence E Js

for some s, J {J}’, let us take for pj(t), uj(t) u, the values already chosen in J;
for t U [tx, t2] E let us take pj(t) (n + 1)-, uj(t) u(t),j 1, n + 1.
It is immaterial what choice we make at the endpoints of the intervals J. If we
consider the differential system

dy ,+

Z pj(t)f(t, y, uj(t)), < <_
2,dt =

we see that x(t), t <= <= t2, is a solution since the second member coincides with
f(t,x(t),u(t)) for all t[t,t2]. In other words, x(t), p(t)= (p(t), ..., p,+(t)),
u(t) (u(t), u,+ (t)) is a generalized system.

Now we shall apply the general theorem of approximation of generalized
solutions by means of usual solutions proved in [la, 14, (i)]. We need to reduce
drastically the control space since in [la, 14, (i)] it is assumed that such a control
space has to depend on only. For every E, hence E f3 J, Js {J}’, we take as
auxiliary control space U*() the space made up of the n + 1 points uj, j 1, ...,
n + 1. These are the only points we need, since f(, if, ), ff x(), u() is
used here only as the convex combination Z.=+ pj(t)f(, if, uj). For every [t, t2]

E, we take U*() {u(t)}, made up, that is, of the sole point u(t). No other points
u are needed.

Let Ao be a compact neighborhood of the graph G of the trajectory x, so that
G c int Ao c Ao A. Let M* be the set of all (t, x, u) with (t, x) Ao, u U*(t). If
the original strategy u(t) was bounded, then M* is a closed bounded set, and fo andf
are Lipschitzian on M*. If the original strategy u(t) was unbounded, then M* is
only a closed set, and fo and f are locally Lipschitzian on M*, and property (S) is
satisfied. In either case the theorem in [la, 14, (i)] holds, and hence there is a
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sequence

x (0 ..., u (t) ..., tx<t<t2 k=l 2

of (usual) admissible pairs with Xk -- X as k uniformly in Its, t2] and such that
lim I[Xk, Uk] I[X, p, V], or

lim fo(t, Xk(t), uk(t)) dt pj(t)fo(t, x(t), uj(t)) dt.
j=l

On the other hand,

I[x u] fo( x(t) u(t)) dt 4- fo dt

>= fo(t, x(t), u(t)) dt + pj(t)fo(t, x(t), u) + a dt
VE[_

I[x, p, v] a# lim I[xk, uk] + a#.

This proves Theorem 9.2.
Remark. Theorems 9.1 and 9.2 correspond to analogous statements proved by

Tonelli concerning the necessity of the convexity hypothesis for lower semi-
continuity in free problems (Tonelli [7]) (see also L. Turner [8]). The present
treatment of the question of convexity as a necessary condition for lower closure
differs from these essentially because of the use of the theorem of approximation of
generalized solutions by means of usual solutions which simplifies an otherwise
rather difficult argument in the Lagrange problems under consideration. The
present treatment differs also from the recent one by P. Brunovsky [10] because of
the use of the same theorem and because of a completely different set ofunderlying
hypotheses.

Appendix. We give the counterexample mentioned in 4, which is essentially
due to A. Lasota and C. Olech [2]. Let n 1 and A [0, 1] x El, let C be a closed
Cantor subset of[0, 1 whose measure m(C) is positive, and let C’ [0, 1] C. Then
C’ is the countable union of disjoint subintervals of [0, 1]. Let s(t) be a continuous
function on C’, which is positive, integrable on C’, and which tends to + o when-
ever tends to an end of any interval component of C’. Let m 1 and define

{-1} ifteC,
U(t x) U(t)

{ulu >-_ s(t)} iftC’.

Let f(t,x, u)= u. Then Q(t, x)= Q(t)= U(t) and we note that the sets Q(t) so
defined satisfy property (Q)in either A C E or A 2 C’ El,a decomposi-
tion of A into disjoint measurable subsets as described in 4. Let us extend the
function s by taking s(t) 0 when e C, and consider the decomposition of [0, 1]
into k intervals of equal lengths:

Jks [tk,s- 1, tk], S= 1,...,k.

Then tks s/k. Define Uk by taking

uk(t s(t) + G(t),
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where vk(t) if C and

vk(t) m(C f) J)/m(C’ f-] J)

if e C’ Iq J. Then u is integrable in [0, 1] and uk(t) U(t) for every e [0, 1] and k.
Let xk denote the trajectory corresponding to u with x(0) 0. Thus

Xk(t Vk(Z) dr + s(t) dz x(t) + Yk(t).

It is easy to see that Yk(tk) 0 and that lYk(t)l <= 1/k. Hence Xk X uniformly in
[0, 1], where x’(t) s(t) and x(0) 0. Now x is not an admissible solution of the
orientor field under consideration. If we take fo 0, we obtain a situation where
the closure property of Theorem 4.1 is not true, with the property (Q) satisfied
only in A and A2 separately. As mentioned in 4, whenever x, x’ weakly, then
it is enough to know that property (Q) is satisfied at each set A of a decomposition
[A1, A2,...] of A into countably many disjoint measurable subsets as described
in 4. The counterexample above was suggested by the referee.
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TRACKING VIA FEEDBACK FOR SYSTEMS WITH
IRRATIONAL TRANSFER FUNCTION*

M. I. FREEDMAN," AND R. GLASSEY:

Abstract. Given stable convolution filters G and H, possibly with irrational transfer functions,
find a feedback filter C such that for all inputs (discrete stationary processes (x.) in an ensemble with
fixed covariance (Fk)_ ) the closed-loop system G(I + CG)- will eventually track the open system H
in optimal fashion. The filter C may be stable or unstable but must satisfy suitable realizability condi-
tions. Focus will be on the case where G is not of minimum phase. In this case the system must satisfy
an additional restriction, called M-stability, which will exclude the occurrence of "pole-zero" cancel-
lation in the product CG.

1. Introduction. After the fundamental work of Wiener [13, Wiener and
Masani [23 and Kolmogorov [3] on the frequency domain approach to prediction
and filtering of random processes the viewpoint of many control oriented re-
searchers, following the lead of Kalman-Bucy [4], turned to the time domain. This
viewpoint has led to great success in dealing with models described by a system
consisting of a finite number of ordinary differential equations influenced by white
noise. Application of the Wiener-Hopf technique does not require this "finiteness"
condition on the model description, i.e., the transfer function of the operators
involved may be irrational.

From one point of view Kalman and Bucy’s notion of state estimator, when
coupled with the optimal state variable feedback technique (see [5), amounts to
the use of (possibly-unstable) feedback about an open-loop operator in order
to cause the overall system to behave in accordance with an a priori prescribed
plan.

The applications the authors of this present paper are mainly interested
in arise from situations where partial differential equations are involved. As
such the transfer functions involved are generally not rational. Thus, a frequency
domain approach seems appropriate.

The main problem considered in this paper is heuristically as follows (see
Fig. 1):

Given stable convolution filters G and H, possibly with irrational transfer
functions, find a feedback filter C such that for all inputs (discrete stationary
processes (x,) in an ensemble with fixed covariance (Fk)_) the closed-loop
system G(I + CG)- will eventually track the open system H in optimal fashion.
The filter C may be stable or unstable but must satisfy suitable realizability con-
ditions. Focus will be on the case where G is not of minimum phase. In this case
the system must satisfy an additional restriction, called M-stability, which will
exclude the occurrence of "pole-zero" cancellation in the product CG. See 2 for
details.

* Received by the editors May 11, 1970, and in revised form October 28, 1970.
]" NASA Electronics Research Center, Cambridge, Massachusetts, and Department of Mathe-

matics, Boston University, Boston, Massachusetts 02215.

: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912.
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The results found are explicit and computational. They involve the spectral
density function F(0) for the processes (x,) and a Hermite interpolation pro-
cedure. Conditions are derived for the existence of an optimal C and a formula
for this C is given. Finally an expression for the "tracking error" is determined.

As a final remark we mention that discrete rather than continuous time
systems are considered. This allows the convenience of dealing with functions
analytic on the interior of the unit disc rather than in a half-plane. As such, certain
technical and notational points are simplified, particularly in 6 and 7. The
translation of the results to the continuous time situation offers no real obstacle.

2. General preliminaries. This short preliminary section begins by briefly
reviewing facts about the /p-spaces and related power series. A few definitions
specific to this paper, such as the notion of M-stability, are then presented. The
section ends with some very basic remarks about discrete time series.

2.1. Remarks about /p-spaces and related series. For < p < , lp will
denote the space of infinite sequences of complex numbers k}k=- such that= lakl p < and l- will denote the subspace of lp consisting of those sequences
{ak)=-o with ak 0 for k < 0.

lp and l are Banach spaces (with the norm II{akll (_lakl)x/p) and
their properties are both standard and well known. In this paper our dealings will
be with the cases p and p 2. l and l are Banach algebras under convolution
"," where {ak}k% * {bk} {Ck}=_ with C =-k= ak_b and with

athe identity I { k}k=-, where ao l, ak 0 for k 0. Also 12 and l are
a bnilbert spaces with the inner product ({ k}k=- k}k=- )= k=- agog.

We remark that l 12 and 1].
As a shorthand we shall alternatively denote a sequence {ak}=_ by the

acapital letter A, {bk}=- by B, etc. AB will refer to k}k=- * {bk}:- where
defined. We note that any element A induces a bounded linear map A’lp lp
(for any p, 1 p) given by A(B) AB for B lp and it is by virtue of this associa-
tion that we often call elements of l, operators.

aDEFINITION 2.2. A sequence A k}k: will be called causal if ak 0
for k < 0 and stable (alternatively bounded) if A x.

For 1 N p < , Lv(d0) will denote the Banach space of complex-valued
measurable functionsf(ei) with ]f[P summable on the unit circle, while for p ,
L(d0) will denote the space of the essentially bounded complex-valued unit circle.
Recall that since the unit circle represents a finite measure space, L(dO) L2(d0)
c L(dO).

Given A {ak}= in lx we shall denote by A(d) the continuous function on
the unit circle with kth Fourier coefficient equal to ak, i.e., A(ei) = akeik,
where this series converges absolutely. Further ifA 1 we define A(z) =o akZk
for z complex, [z[ < 1. This series converges uniformly absolutely on [z[ < 1.

If A k}k=- is in 12, the series A(ei) ZL ak e’k converges in
Lz(dO)-norms and so represents a square integrable function on the unit circle.
In this case, if A 1], then A(z)

_
o akzk converges uniformly absolutely on any

compact subset of ]z] < and represents an analytic function on ]z] < 1. The
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Hilbert subspace of L2(dO corresponding to A in 1- is often denoted by H2 (Hardy
space).

DEFINITION 2.3. For A an element of either l- or l- we shall call A(z) the
i/z-transform of A.

For this paper we require a few more facts about the/p-spaces (p 1, 2) and
their transforms:

(a) (AB)(ei) A(ei)B(ei) a.e. for A in and for B in either 11 or 2

(b) If A, B are in/2, then (A, B) (1/(2re)) A(ei)B(ei) dO (the Plancherel
theorem).

(c) Given A 11, then a necessary and sufficient condition for A to have an
inverse in l is that A(z) 0 on Izl _-< 1, and if this is so, A- l(z) 1/A(z) (Wiener’s
theorem, see [6, pp. 72]).

This completes the short summary of standard facts about lp, 1;, p 1, 2,
which will be needed.

2.4. The notion of model-stability.
DEFINITION 2.5. Given G e l-, C 11 and Y l- the 3-tuple {G, C; Y} will

be termed a feedback triplet if I + CG is invertible in 11 with Y (I + CG)-1.
DEFINITION 2.6. A feedback triplet {G, C Y} will be called model-stable (or

simply M-stable) if given any G1 e l- then for all real e sufficiently small in magni-
tude, Y ae=f (I + C(G + eG1))-I remains in l-.

This definition is of importance in the sequel. In 8, given a fixed G e l-, we
desire to minimize a certain integro-quadratic form over an appropriate class of
feedback operators cg. This class cg must be such as to assure that the "closed-loop
system" (i.e., the system defined via feedback, with impulse response G(I + CG)- 1)
corresponds to a legitimate "physical situation." What we require is that not only
must G(I + CG)-1 be causal and stable (lie in l-) but that under sufficiently small
perturbations in G the new closed-loop system must remain causal and stable.
The exact definition of the class cg must wait until 4. For now we conclude with
the following easily checked remark which motivated Definition 2.6.

Remark 2.7. In the situation G 1- and C e 11 with G(ei) and C(ei) both
representable as rational functions (of the variable ei), then M-stability is equi-
valent to the assumption that no "pole-zero" cancellation occurs (in the interior
of the unit disc) in the definition of Y as (I + CG)-1.

2.8. Remarks on discrete time series. Let f be a space having a Borel field
of subsets over which a probability measure P is defined. Let L.(f) be the set of
complex-valued P-measurable functions f on f for which nlf(w)] 2 dP(co) < oe;
then L2(f) is a Hilbert space with inner product given by

E(f g) fnf(o))g(o) dP(o).
In engineering literature the z-transform of a causal sequence {ak}=- A is usually defined

to be =o akz-k making A(z) analytic in the exterior of the unit disc. For our analysis it was decided
that the convenience of dealing with functions analytic on the interior of the disc was great enough to
justify the definition of A(z) as given below. To emphasize the relationship between A(z) here and the
usual z-transform we call our transform the "l/z-transform."
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DEFINITION 2.9. (a) An element f of L2( is called a random variable.
(b) A sequence (x,) with x, a random variable for each n is called a stochastic

process (S.P.).
(c) A stochastic process (x,) is called stationary (wide-sense) if for each integer

k with k + n >= O, E(X,+k, x,) Fk, where Fk is a complex number independent
ofn.

(d) A spectral density function F(0) for a stationary S.P. is an a.e. nonnegative
function F(0) defined and integrable on the unit circle which has Fk as its kth
Fourier coefficient., i.e.,

I-" e-ikF(O) dO for -oe < k < oe.

Not every stationary S.P. has a spectral density function, but throughout this
paper we hypothesize their existence for the stationary S.P.’s we consider. (In
general, Fk (1/(2n))" e-ikdF(O), - < k < , where F(O)is a bounded
nondecreasing right-continuous function on [0,2n] with /6(0)= 0. This F(O)is
called the spectral distribution function of the stationary stochastic process and
its existence follows from Bochner’s theorem (see [6, p. 42]).)

3. M-stability. In this section an alternative characterization of M-stability
for a feedback triplet {G, C; Y} is presented (assuming G-x lx exists). This new
description involves explicitly only the causal operators G and Y and proves
useful in later sections.

A lemma based on the variational nature of the M-stability definition is
considered first.

LEMMA 3.1. The feedback triplet {G, C; Y} is M-stable if and only if Y"+ xC"
l( .for all integers n >__ (true for n 0 by definition offeedback triplet).

Proof Let G1 be in 1 and for e a sufficiently small real number let
y a__ (I + C(G + eGx))-x be an element of 11. For e sufficiently small, Y has an
/x-convergent Taylor expansion, namely"

(3.2)
Y (1 + CG)- eCG(I + CG)-2 + 2C2G(1 + CG)-3

y_ eCYZG + ,2C2G21 y3

Now {G, C; Y} will be M-stable provided that for all sufficiently small e,
Y lies in l. Clearly this will be the case if yn+ 1cn is in l for n >_ 1. Conversely let
G be the identity I and assume that for all e sufficiently small the corresponding
Y lies in l. An easy argument shows that yn+ 1cn lies in l- for n > 1, as follows"

Consider (1/e)( Y) which is for each sufficiently small nonzero e an element
of l. From (3.2) it is clear that as e 0 this expression has an/x-norm limit equal
to YZc (as G is I here) and so YZc must therefore lie in the subspace l. The
induction scheme showing yn+ IC 1 for general n >__ 1 follows these same simple
lines.

THEOREM 3.3. Let G-x exist in x. Then a necessary and sufficient condition
for thefeedback triplet G, C; Y} to be M-stable is that G- X(y_ I) lie in l(.

The proof to be presented is of a computational nature and depends to an
extent on the following.
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Remark 3.4. Given A, B in l; with A-1 11 then a necessary and sufficient
condition for A-1B to lie in l is that B(z)/A(z) be analytic in Izl < 1; i.e., any
zero of A(z) in ]z] < 1 of multiplicity k >= is likewise a zero of B(z) of at least
multiplicity k.

Proof of Remark 3.4. For any integer k,

f’ B(ei) 11 B(z)
(3.5) eik dO zk- dz

Now A- 1B l- if and only if the integral on the left in (3.5) vanishes for each
positive k. But the right-hand integral of (3.5) shows that this is exactly the condition
that B(z)/A(z) be analytic in Izl < 1,

Proof of Theorem 3.3. Sufficiency. Suppose the feedback triplet {G, C;Y}
is M-stable. By Remark 3.4 we must show for each root a of G(z), lal < 1, of
multiplicity k > that (Y- 1)) (a) 0, j 0, ..., k 1. Assume at first that
G(a) 0 for a complex, lal < 1. We shall show that Y(a) 1.

To begin consider the expression Y(I + CG) I. It follows that y2 + y2CG
Yand hence for zl < 1,

Y2(z) + (y2CG)(z)= Y(z)
or

(3.6) (Y(z))2 + (y2C)(z)G(z)= Y(z)

since Y2C l( and as such has a "1/z-transform."
Since we are assuming G(a) 0 it follows that (Y(a))2 Y(a) and therefore

Y(a) 0 or Y(a) 1. We proceed to show that the possibility Y(a) 0 is unstable.
Assume therefore that Y(a) 0. For k _>_ 1,

yk+ 2ck+ 1G yk+ 2ck(I d- CG) yk+ 2ck

So

(3.7)

yk + 1C yk+ 2Ck.

yk+ 2ck+ 1G (yk+ ack)(I y).

Since Yk+Zck+ and yk+Xck are both elements of l it follows on taking
transforms that

(3.8) (Yk+Zck+I)(z)G(z) (Yk+ack)(z)(1 Y(z)).

Therefore since G(a) 0 and we are assuming Y(a) 0, (3.8) yields (yk+ ck)(a)
=0for k >_ 1.

Still under the assumption Y(a) 0 and proceeding by induction we assume

Y(a) Y’(a) Yt"-1)(a)= 0

and

(yk+ 1ck)(a) (yk+lck),(a) (yk+ 1ck)(n-1)(a 0

for some n > 0 and all k _> 0.
Differentiating (3.8) n-times with respect to z and using the above induction

assumptions yields (yk+ Ck),)(a) 0 for all k > 0.



322 M. I. FREEDMAN AND R. GLASSEY

Returning to (3.6) we likewise differentiate that expression n times and
evaluate at z a. Using the induction assumptions once again yields Y(")(a) 0
and completes the induction procedure.

Therefore Y("(a)= 0 for n- 0, 1, 2, Since Y(z) is analytic in the unit
disc Izl < 1, it follows that Y(z) 0 in a neighborhood of the origin and so by
continuation in the unit disc. This, of course, contradicts the fact that Y is the
/1-inverse of I + CG.

It follows, therefore, that Y(a)= is the correct conclusion to draw from
(3.6).

Assume next that G has a zero at z a of order k >= 2, i.e., G(a) G’(a)
G(k-- 1)(a) 0. We know that Y(a) 1. We additionally now show that Y’(a)
Y"(a) Y-1)(a)= 0.
To proceed, for each l, 0 < =< k 1, differentiate (3.6) times with respect

to z and evaluate at z a. Then

d
(3.9)

dz
(Y2(z)) Yil)(a)

since G has a kth order zero at z a. Now 2 Y(a)Y’(a) Y’(a) shows that Y’(a)
0 since Y(a) proceeding inductively one concludes easily that Y"(a)
Yi- )(a) 0 completing this half of the proof.
Necessity. Assuming that G-(Y- I) l- we must show that the feedback

triplet {G, C; Y} is M-stable. The characterization of M-stability given in Lemma
3.1 proves useful here, namely" {G, C Y} will be M-stable if and only if Y"+ C" l-
for all integers n >__ 1. Now, by definition, Y (I + CG)- so YCG I Y and
G- YC. Therefore YC l- and in general for any n __> 1, Y(YC)"

l-, completing the proof.
Remark 3.10. In engineering literature the term "minimum phase" is often

applied to the situation where G(z) # 0 in Izl -<_ 1. It follows from Theorem 3.3
that given G 6 l- of minimum phase, then for any C 11 and Y l- with
Y (I + CG)- the feedback triplet {G, C; Y} is automatically M-stable, as
(Y(z)- 1)/G(z) is analytic on Izl < in this case. Our interest in this paper will
focus on G l- which is not of minimum phase.

DEFINITION 3.1 I. Let C l- with G- and define

#= {C ll
Y= (I + CG)-l exists in l[ and the }.feedback triplet {G, C;Y} is M-stable

The subset ## will find use in 8 on minimization.

4. Quasi-extendability. In certain situations we shall wish to associate causal
but possibly unstable sequences with stable but possibly noncausal ones (see
Definition 2.2). The notion of quasi-extendability is pertinent in this regard.

DEFINITION 4.1. A causal sequence C {ck}:- (with ck 0, k < 0)is
called quasi-extendable if the power series C(z) :o CkZk is analytic on Izl < e, e,

sufficiently small, and C(z) has a meromorphic extension denoted CE(z) to Izl _-<
such that cE(ei) is continuous for 0 [0, 2hi and is the Fourier series of some
Ce in l. Ce will be called the quasi-extension of C.
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Then

Example 4.2. Let c satisfy Icl < 1, Define B {bk}=_oo by

_c-(k+l) k > 0
bk= O, k -1.

B(z) bkzk=
1 1 1

k=0 C C2Z C2Z2

so B(z)= (z c)-’ for Izl < Icl. Let A {ak}=-oo in l be defined by

a ={0, k_>_O,

C -(k+l) k < -1

The (z c)-a has a meromorphic extension to Iz] <_- 1 and it is clear that B A.
In 8 we shall consider a minimization problem taken over a class of operators

occurring in feedback. These operators will necessarily be causal due to physical
constraints but need not necessarily be stable (bounded). More specifically, we
shall have to deal with operators that are quasi-extendable. To help explain the
sort of feedback equations involved we proceed with the following definition and
theorem.

DEFINITION 4.3. Let G 1 with G(ei) nonzero for 0 [0, 2n. Define

cg {CIC is causal and quasi-extendable to Ce and Ce }.
Now let {x,} lie in l-. Consider the pair of feedback equations for {e,},

{f,}o in l- given, for n __> 0, by

e,, x,, c,,_ jfj,
(4.4) i=

L= g._e.
/=0

Symbolically we write (see Fig. l)

e=x-CL f=Ge,

where e {e,}_ o f= {f,} o and x {x,}2=o

C

FIG.

-/

H
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THEOREM 4.5. Assume feedback equations (4.6) relating e, f, x 1. Then if
C {c,}=-oo lies in itfollows that e and f are uniquely specified by x and, infact,
there exists D {dk}k%-_oo It such that e Dx or e, =o d,_kx (i.e., the
closed-loop system (I + CG)-1 is causal and stable). Further if G l is replaced by
G* 1- sufficiently close to G in ll-norm, then there will likewise exist D* 11 with
e* D’x, where e* satisfies the modified (4.4) (xfixed and G replaced by G*).

Proof. Let D {d}=-oo (I + CG) 1. The rest of the proof follows from
the definition of .

Remark 4.6. Theorem 4.5 suggests that is an appropriate class of causal
but possibly unstable operators for use in feedback loops. The operators in cg
produce closed-loop systems and do so in a physically acceptable way, in that the
overall system remains insensitive to slight inaccuracies in the open-loop model.

In the remainder of this section we prove a result concerning quasi-realiza-
bility.

THEOREM 4.7. Let { G, C; Y} be an M-stable feedback triplet. Then if Y(O) :/: O,
C is the quasi-extension of some causal sequence A {b,}ff=-o, i.e., C A.

Proof Y(z) being analytic on ]z] < 1, continuous and nonzero on Izl 1 can
have only a finite number of zeros within the unit disc. As such, Y(z) may be fac-
tored into a product B(z)H(z) valid for [z[ _<_ 1. Here H(z) is a nonzero analytic
function on the disc, arising from an element H l, while B(z) is given by the
finite product B(z)= zl-[7=l (z- 1) corresponding to the roots of (z) in
Izl < 1 with appropriate multiplicity. However in this case p 0, as Y(0) 4: 0, i.e.,
B(z) I--[= (z ai)’. Now let B be that element of l corresponding to B(e).
It is clear that B- exists in 11 and from Example 4.2 one sees that B- is the quasi-
extension of a causal operator (being the product of causal operators). But H is
invertible in 1- since H(z) : 0 for Iz[ -< 1. So H-1 l is its own quasi-extension.
Similarly, G-1(1 Y) 1 is its own quasi-extension. The result now follows as
C G-I(I- Y)B-1H -1.

In keeping with the above we make the following definition.
DEFINITION 4.8. Assume G e l- with G-1 e 11. Then let # be as in 3 and

define Wo {C e //IY(0)- 0}. (Note that if G(0)= 0, then Y(0)= and so
%-- .)

5. A density theorem. and 1#o have previously been defined. The following
additional definitions are also needed in this section.

DEFINrrION 5.1. Assume Gl- with G-1

IG-I(Y I)l} and TO {Y TI Y(0) - 0}.
Note that To T if G(0) 0.
ASSUMPTION 5.2. From this point on throughout this paper we shall assume,

without always explicitly stating so, that the symbol G represents an operator in

l- with G(z) nonzero on Izl 1, i.e., with G-1 lying in
Remark 5.3. To is dense in T (in the 12-induced topology).
Remark and Notation 5.4. For A {ak}k= , A l+ <= p _< , and for any r,

0 < r < 1, define Ar in l c l- by

air k > 0
Zr

0, k<0.
Then the Fourier series for A,, A(ei) equals A(rei), where A(z), Izl <_- 1, represents
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as usual the 1/z-transform of A. Now if p 2, then as r 1, Ar A in/2-norm
(as follows from Parseval’s theorem, since Ar(ei) A(ei) in Lz(dO)-norm;see [7,
p. 32]). Note also that if A e 1], then as r --, 1, A, A in/a-norm (by the Lebesgue
bounded convergence theorem).

THEOREM 5.5. (1 + tUG)-a is dense in T in the 12-induced topology.
Proof Let Y e T. Then there exists a sequence {rk} of numbers, 0 < rk < 1,

with rk 1 such that Y,k has an/a-inverse for each rk. This is so because the condi-
tion under which a given Y will fail to have such an inverse is that Y(z) has a zero
on ]z] r. Y(z), being analytic, may only have a zero on countably many such
circles.

Fixing on this sequence {rk} define Ck GI(I Yrk)Y 1. The Crk all lie
in 11. The feedback triplets {G,k, C,; Y,} are all M-stable since GI(I- Y)

(G-1(I Y))r e l- as seen from the assumption Y e T and Remark 5.4.
To complete the proof one must check that the C,k lie in for rk sufficiently

close to 1 and that as rk -* 1, (I + CrkG)- tends to Y with respect to the/z-norm.
We omit the lengthy but straightforward computations.

COROLLARY 5.6. (a) (I + oG)-l is dense in To with respect to the 1E-induced
topology.

(b) (I + tUG)-x is dense in T f’l l- with respect to the l-induced topology.
(c) (I + UoG)-x is dense in To l( (which is in turn dense in T f’) 1() with

respect to the x-induced topology.
Essentially the same computations as in Theorem 5.5 are needed.

6. Factorization of the spectral density function 0. Let F(0) be any nonnegative
function Lebesgue integrable on the unit circle. In 8 such a 1-’(0) will represent the
spectral density function of a stationary (invariate) stochastic process. We define

L(F) Y(e) and is square integrable with respect
to the measure F(0)dO

and also L-(F) the closure in L(F) of trigonometric polynomials of the form

akeikOP(e’) o
A classical theorem of prediction theory (attributable to Szeg6, Kolmogorov

and Krein in various forms; see [7]) states that for F(0) as given,

(6.1) exp log r(O)aO r(e’)eL-(r)min leY(e) 12r(O)dO

Furthermore, the theorem also states that if the right-hand side of (6.1)is zero
(perfect mean square prediction for lag 1), then (1/(2zr))y2o’logF(O)dO =-oo
and conversely, i.e., the equality (6.1) remains true in this case.

It is also known (see Doob [8, p. 577]) that (1/(2))y2o"logF(O)dO > -is a necessary and sufficient condition for F(0) to be expressible as the absolute
value square of an H2-function, nonzero for ]zl < 1, i.e., as the product of an H2-
function and its conjugate.

Our concern will be with the somewhat unorthodox minimization problem
described below.
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First let T’ Y(e’)e L(F)I[G(e’)] ’[Y(ei) 1 e L-(F)}. Here G(ei) is as
in Assumption 5.2. We shall consider the problem

min IG(d)Y(d) V(d)lF(O)dOIY(d)e r’

where V(d) lies in L(F).
This minimization problem is somewhat different from the one ofitem (6.1) and

arises from an attempt to utilize feedback in accomplishing a certain other mini-
mization procedure described in 8. The restriction Y T’ will amount to assuring
(see Theorem 3.3) that minimization takes place only over M-stable feedback
triplets.

In this present section we restrict ourselves to proving the following analogue
of the Szeg6-Kolmogorov-Krein theorem quoted above.

THEOREM 6.2. Let G 1 with G(z) 0 on Izl aM let V(ei)L(F).
If the problem

(6.3) min IG(d) (e) v(ei)lC(O) 01 (e’) r’

has a nonzero minimum, then (1/(2))y log F(O)dO > -, i.e., F(0)factors into
the product of an H2-function, nonzero for ]z] < 1, aM its conjugate.

Remark 6.4. Note that the integrability of log F(0) does not in our case imply
that (6.3) is nonzero. In fact, the latter will certainly be zero whenever G(ei)Y(d)

V(ei) has a solution Y(ei) T’ and this depends in no essential way on log F(0).
Note also that (6.3) actually does have a minimum and not simply an infimum
as G-111

The proof of Theorem 6.2 will be preceded by the following.
LEMMA 6.5. Let {Ks}so a {Lj)j be complex numbers a assume that

K(O) KscosjO + LssinjO O for allO[O,2u3.
j=o j=

Then
2

(6.6) j log K(O) dO >
o

Proof The equation K(O)= 0 has only a finite number of isolated roots in
[0, 2rc. Clearly if this number is zero, then (6.6) holds. Otherwise the only way that
(6.6) might possibly fail to hold true would be that for at least one of these roots 0o
and any arbitrary small neighborhood N of 0o, N Ilog K(0)I dO oo. That this
possibility actually fails to occur can be seen as follows:

Given 0o, a root of K(O)= 0, and any sufficiently small neighborhood N
of 00 there exists a positive integer n and a function Q(O) continuous on [0, 2rc] such
that K(O)= I0- Ool"lQ(O)l and Q(O) 0 for 0 N. Let 6 be the diameter of N
and let M be an upper bound on [log Q(O){ for 0 N. Then

fN f+5Ilog K(0)I dO < n log 10 0ol dO + 2M6
0o -5

=< 2n logd + 2M6 < oo.
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Proof of Theorem 6.2. To begin we note that the map f’T’ L-(F) given
by f(y(ei)) [G(ei)} l(y(eiO) 1) is one-to-one and onto and so the minimum of
(6.3) must be equal to

(6.7) min ]G(ei)(1 + G(ei)u(e) V(e))lF(O)clOI u(ei)e Li(V)

Now (6.7) corresponds to the problem of finding the unique element w*(e)
in the closed submanifold S {w(e) G2(ei)u(ei)lu(e) L- (F)} of L-(F)
which is closest (in L2(F)-norm) to the element v(ei) G(ei) of L-(F). Clearly
this element w*(ei) determines uniquely u*(ei) in Lf(F) with a2(ei)u*(ei)

w*(ei).
From the projection theorem for Hilbert space it follows that a necessary and

sufficient condition for u*(e) to be the element of L-(F) minimizing (5.7) is that

(6.8) [G2(ei)u*(e) (v(d) G(ei))]G2(e)rl(d)F(O) dO 0

for all rl(ei) e L (F), i.e., that G2(ei)u*(ei) (v(ei) G(ei)) is orthogonal to S.
Translating back to the minimization problem (6.3) over T’ we see that (6.3)

must have a unique minimum for some Y(e) T’ and that a necessary and suffi-
cient condition for Y*(ei) to be this minimal element is that

(6.9) [G(e) g*(ei) V(e)G:(e)rl(ei)F(O) dO 0

for all rl(ei) L] (F).
To proceed with the proof we note that since G e l- with G(z) =/: 0 on Iz]

it follows that G(z) has only a finite number p (counting multiplicity) of roots in
]z] < 1. We may factor G(z) into a product B(z)H(z)(as was done to Y(z) in the
proof of Theorem 4.7), where B(z) is a polynomial of degree p with roots and
multiplicities corresponding to those of G(z), while H(z) is continuous and nonzero
on the closed disc and analytic on the open disc. Let

rl(eiO) [G(eiO) y,(eiO) V(eiO); [H(eiO) 2B2(eio)e2pi%(eio),

where r(ei) is an arbitrary element of L-(F). Then rl(ei) is in L-(F) since the
negative Fourier coefficients of [H(ei)l -" vanish as well as the negative Fourier
coefficients of B2(ei)e2pi.

Using this rl(ei) in (6.9) gives

4 2prO tO(6.10) IG(ei)Y*(ei) V(ei)12lB(ei)l F(0)e r(e )dO 0

for r(ei) L-(F). Making the choices eik, k > 0, for r(ei) in (6.10) yields

f [G(ei) Y*(ei) V(ei)[ 2[B(ei)14F(O)e-il dO 0

for l> 2p and by conjugation the same is true for l<-2p. From these
orthogonality conditions it follows that

(6.11) IG(ei)y*(ei) V(e)lelB(e)14F(O g(o)
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for some K(O)= ;=o kjcosjO + =, LjsinjO with K(O) nonnegative (the K
and L are real). Define

(G(e)Y*(e) V(eO)) 1K(O)e-i.S(ei)
B2(eiO)

We claim that S(ei) lies in H2. First IS(ei)12= K(O)F(O) as follows from
(6.11) and therefore S(ei)e L2(dO)since F(0)e Ll(dO)(while ofcourse K(O)e L(dO)).
Now S(ei) will lie in H2 if

S(eiO)eiko dO 0 for k

To see this we conjugate (6.9) to find that for any ri(ei) in L(F),

(6.12) [G(ei) y*(ei) V(ei)]G2(ei)F(O)rl(ei) dO O.

Now for k => 1,

f; f’ G(e)Y*(e) V(e)K(O) e- )O dO(6.13) S(ei)eik dO
B2(eiO)

as seen from using (6.11). But (6.13) is zero for k >= 1 as it corresponds to (6.12)
with q(ei) [H(ei)]-2ei- 1o which is in L-(F) for each k >= 1. Thus S(ei) is a
nonzero function in H2. Now the well-known Jensen inequality of classical
complex variable theory (see [7, p. 68]) assures us that

log IS(d)l > .dO

But since IS(ei)12= K(O)F(O)it now follows that ’ log K(O) dO + o2=logF(0)
dO > -. By Lemma 6.5, log K(O) is integrable and so J’" log F(0)dO > -.
Hence also F(0) factors.

7. A frequency domain minimization problem. On the basis of the results
in 6 we shall assume in this section that the nonnegative function F(0), Lebesgue
integrable on the unit circle, also satisfies the condition f log F(O)dO > -.
Let R(ei) denote the H2-function, with R(z) nonzero for Izl < such that F(0)
--IR(ei)l 2 a.e.

We note that the integrability of log F(0) assures that R(ei) # 0 a.e. in [0, 2t].
Also the Hilbert spaces H2 and L-(F) are isometric under the linear map Y(ei)

y(eiO)[R(eiO)]- 1.
In this section we shall investigate properties of the minimization problem

(7.1) min 16(e)Y(e) V(e)lF(O)dO Y(e) e T’

where V(e) in L-(F) is fixed. (That this problem actually has a minimum was
seen in 6.)

Here G once again represents an operator in l- with G(z) nonzero on Izl 1.
As such, G(z) can have only a finite number P of roots in Izl < 1. As in 6 we may
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write G(z) B(z)H(z), where H(z) is a continuous nonvanishing function on the
closed unit disc analytic on the open disc (which is the 1/z-transform of an element
H in l-) while B(z) I-Ij=l (z aj)kj, where {aj}j= 1, aj complex, and {kj}j= 1,

k nonnegative integers, represent the roots of G(z) in ]zl < and their multi-
plicities respectively (including possible roots at z 0).

Letting k(ei) V(ei)R(ei) we have k(ei) H2. It is convenient to consider
the minimization problem (7.1) in the alternate form

(7.2) min [G(ei)s(eiO) k(ei)] 2 dO s(eiO) e H2 with s(ei)[R(ei)] T’

The advantage is that here we deal with underlying Hilbert spaces L2(dO and
H2. The minimum value attained by (7.2) is clearly the same as the minimum of
(7.1), and if s*(ei) is the point where (7.2) attains its minimum then Y*(ei)

s,(eiO)[R(eiO)] is the point in T’ where (7.1) does so.
A necessary and sufficient condition for an element s(ei) of H2 to satisfy

s(eiO) [R(eiO)]- T’ is that s(aj) R(aj), sl(a)) Rl(aj), s(kj- 1)(aj) R(kj- 1)(aj)
for j 1, n, i.e., that f(z) (s(z) R(z))/G(z) is analytic in Izl < 1.

A procedure based on Hermite interpolation will be exhibited for finding the
optimal s*(ei). In this direction we first prove the following.

THEOREM 7.3. A necessary and sufficient condition for the minimization problem
(7.2) to attain its minimum at a function s*(ei) in H2 with s*(ei)[R(ei)] in T’ is
that there exist a trigonometric polynomial of order 2P- or less, M(ei)

P-lo mkeikO’ such that

(7.4) [G(ei)s*(ei)- k(ei)]BZ(ei)eZPi= M(ei) a.e.

Proof Sufficiency. In 6, (6.9) is a necessary and sufficient condition for (7.1)
to have its minimum at Y*(ei) in T’. Translating (6.9) to the corresponding condi-
tion for (7.2) yields that a necessary and sufficient condition for (7.2) to have its
minimum at s*(ei) in H2 with s*(ei) R(ei)- in T’ is that

(7.5) [G(ei)s*(ei) k(ei)]G2(ei)rl(ei) dO 0

for all rl(ei) in H2.
Letting r/(ei) [H(ei)]-2r(ei) for r(ei) an arbitrary element of H2, we may

rewrite (7.5) as

(7.6) [G(ei)s*(eiO) k(ei)B2(ei)e2Pie2Pir(ei)dO 0

tO 2 tO 2PrOfor all r(ei) in H2. Now the term M(ei) IG(ei)s*(ei) k(e )]B (e" )e must lie
in H2, as B2(ei)e2Pi has all negative Fourier coefficients zero. From (7.6) it follows
that

(7.7) M(ei)e-ik dO 0 for all k => 2P
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as seen by making the appropriate choices for r(ei). But (7.7) together with the
fact that M(ei) is in H2 implies that M(ei) is a trigonometric polynomial of degree
=< 2P 1, as said in the statement of the theorem.

Conversely, if [G(ei)s*(ei) -k(ei)]BZ(ei)eZei= M(ei) for some trigono-
metric polynomial M(ei) of degree __< 2P- 1, then (7.7) must hold, and since
the {ei}= o span H2, (7.6) also must hold. The choice r(ei) [H(ei)]zrl(ei) then
yields (7.5), the previously established necessary and sufficient condition for
s*(ei) to be the minimizing function for (7.2).

Remark 7.8. (a) For a given s*(ei) in H2 the validity of (7.4) for some M(ei)
a trigonometric polynomial of degree 2P- combined with the conditions
s*(aj) R(aj), s*- )(aj) R- )(aj) for j 1, ..., n suffices to determine
s*(e) uniquely. This is true because (7.2) has a unique minimum. The procedure by
which these conditions determine s*(e) will be spelled out in Theorem 7.11
below.

(b) For notational convenience let Bl(ei) B(ei)eei= 7= 1( iei)ki
for 0 [0, 2hi and similarly Bl(Z 7= (1 iz)ki for Izl 1. Now B(z) so
given and likewise [B(z)] - are continuous nonvanishing functions on Izl
which are analytic on Izl < 1. The condition [G(ei)s*(ei) k(ei)]B(ei) M(ei)
a.e. implies that for Izl < 1,

(7.9) [G(z)s*(z)- k(z)]B(z)= M(z).

Definition and Remark 7.10. Let F e l with F(e) 0, 0 [0, 2]. Then F(z)
has a finite number q (counting multiplicity) of roots in Izl < 1. Let {bj}=,
{/j}= be the roots and their multiplicities respectively. For any function W(e)
in H2, (W(z)) (read W(z) mod F) will denote that unique polynomial in z of order
N q such that (W(z) (W(z))v)/F(z)is analytic in Izl < 1.

Clearly (W(z))v 0 ifF(z) has no zeros in Izl < 1. In general, (W(z))v represents
a Hermite interpolation with respect to conditions specified by the roots of F(z)
and as such (W(z))v depends only on the values W(bj), W(bj), W(l- 1)(bj),
j 1, ..., n. An explicit construction of (W(z))v is as follows"

Let v(z) = (z bi)l’ and define

(Z- Zi)k-li d(li- 1-) (Z-- zi)li_]Yik(Z) d’---)

forl NiNn, ONkNli- 1. Then

(W(z))F [W(bi)rio(z) + Wl(bi)ril(Z) + + W(li- 1)(bi)ri,li_(z)].
i=1

(This formula appears in [9] .)
TheOReM 7.11. The function s*(e) for which the variational problem (7.2)

attains is minimum is given by

s*(ei)
L(el) + B(ei)k(ei)

G(eiO)B(eiO for 0 e [0, 2n,

where L(z) is that polynomial of degree 2P- given by L(z)= ([G(z)R(z)
();B(z))..
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Proof s*(ei) as defined clearly lies in L2(dO). Actually s*(ei) also lies in H2

This can be checked by showing that [L(z)+ B(z)k(z)]/G(z)B2(z) is analytic in
Iz] < 1. But by the definition of L(z),

(7.12)
[G(z)R(z)- k(z)]B2(z)- L(z)

G(z)
is analytic in ]z] < 1.

Multiplying (7.12) by the analytic function G(z)[Bl(z)] -2 shows that

L(z) + B2(z)k(z)
R(z) G(z)B2 (z)

is analytic in ]z] < 1, and since R(z) is analytic in ]z] < 1 it follows that
(L(z) + BZ(z)k(z))/G(z)B2(z) is, i.e., s*(ei) is in H2.

Clearly then G(z)s*(z)- k(z)]B2(z)= L(z) for Izl =< 1 and substituting for
L(z) in (7.12) yields that JR(z) s*(z)]BZ(z)/G(z) is analytic in ]zl < 1. Multiplying
this last expression by the analytic function [Bl(z)] -z shows that (R(z) s*(z))/G(z)
is analytic in [z[ < 1. Hence s*(ei)[R(ei)] -1 is in T’. The hypothesis (7.4) now
holds with M(ei) L(ei) and so Theorem 7.3 assures that s*(ei) so defined is the
optimal for variational problem (7.2).

THEOREM 7.13. The minimizing element Y*(ei) in T’ for variational problem
(7.1) is given by

L(ei) + BZ (ei) V(ei)R(ei)
Y*(ei) R(e" )G(e" )B(e

0 [00 0 2 0

where L(z) is that polynomial of degree <= 2P- given by L(z)= ((G(z)
V(z))R(z)B2(z)).
Proof R(z) Y*(z) s*(z) and R(z)V(z) k(z).
Remark 7.14. (a) Suppose R(ei) derives from R l- with R -1 also in l- (i.e.,

with R(z) :/: 0 on ]z] 1). Then if V(ei) likewise comes from V l it follows that
the minimizing function Y*(ei) for problem (7.1) must also arise from some
Y* l-.

(b) Alternatively, suppose there exist positive constants K and K2 with
0 < K1 =< F(0) __< K2 a.e. Then R(ei) and R(ei)] - both lie in L(dO) ["l H2
and if V(ei) L(dO) [’) H2 it follows that Y*(ei) Lo(dO) VI H2

(c) Alternatively, if R(z) is rational in z and V(z) is rational in z, then Y*(z)
will be a rational function in z.

The minimum value of the variational problems (7.1) or (7.2) which we shall
henceforth denote by Jmin can now be computed from Y*(ei) or s*(ei), for

Jmin 2g
IG(e)Y*(ei)- V(d)lr(O)dO

27
[a(ei)s*(ei) k(ei)l 2 dO.

There is an alternative often more attractive computational method based on
contour integration and residue theory. This method does not involve preliminary
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computation of either Y*(ei) or s*(ei) (or for that matter computation of L(z)).
To begin note that from (7.4) one has

t] L(eiO) 2

Jmin-" oo B2(eiO)
dO,

where L(ei) is the trigonometric polynomial of degree < 2P- 1 defined in
Theorem 7.11. Now Bl(ei) ePiB(ei). So IB(ei)l IB(ei)l for 0 e [0,2rt]. It
follows that

f’ L(eiO) 2

Jmin 2re o B2(eio
dO.

The function L(e)B(e)]2 is a rational (trigonometric) function which has a
Laurent expansion in ei with only negative powers, i.e., all nonnegative Fourier
coefficients vanish.

Letting L(ei)[B(ei)] 2 = Sle-itO we have= (z)
s B(zdZ for k 1,2,...

and so by Parseval’s theorem, Jmi, = ISI 2.
The calculation of the s as indicated by the above contour integral seems to

involve prior computation of the polynomial L(z). It is this computation we shall
be able to avoid. In this direction consider the equation [G(z)s*(z)- k(z)]B(z)

L(z)valid for Izl 1. Multiplying through by z- I[B(z)]-2 for any k and
integrating around the unit circle gives

(7.15) 2is=. z-xs*(z)G(z)B(Z)B2(zdz z- k(z)B(Z)B2 dz
z : (z)

for k 1,2, .... Recalling that (s*(z)- R(z))/G(z)= A(z) for some analytic
function A(z) on Izl < (actually A(ei) H2) we have that

z_s*(z)G(z)B(z) R(z)G(z)B(z)
B2

dz z- dz
zl :1 (Z) z[ :1 B(z)

(7.16)

+ z- A(z)Ge(z)B(z)
B2

dz

for k 1, 2, .... Now the second integral on the right in (7.16) vanishes, as the
function A(z)G2(z)B(z)/B(z)is analytic in z < 1.

Therefore (7.15) may be rewritten as

(7.17) 2is=, z-R(z)G(z)B(Z)B2(zdz
z,

Zk k(z)B(Z)B2(z) dz.
For convenience we now let T(z) be the rational function given by

T(z) B,(z)- i=x 1

Then making a substitution in (7.17) we have proved the following theorem.
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THEOREM 7.18. The minimum value taken by the variational problems (7.1) or
(7.2) is given by

where

Here

Jmin Z Isl
k=l

z_ [R(z)G(z)- k(z)]
dz

[T(z)] 2

z_ [R(z)(G(z) V(z))]
dz.

IT(z)]_
iz

the {a,},".= , {k},".= being the roots of G(z) in ]zJ < 1 and their multiplicities respec-
tively.

Remark 7.19. The rational analytic function T(z) (on ]z] < 1) is a (finite)
Blaschke product for G(z) in the sense of [7, p. 66] i.e., T(ei)] 1 for 0 0, 2],
G(z)/T(z) is analytic in Iz] < and T(z) is a finite product of bilinear functions in z.

8. Minimization via feedback. Let (Xn) be a stationary (wide sense) stochastic
process with a given known covariance sequence (F,) Let G
Assume G(ei) =o g,el" is nonzero for 0 [0, 2r]. As in 4 define

{ (i) C is causal and quasi-extendable, }= C={c}=_ (ii) Ye=(1 +CrG) existsinl,
(iii) {G, C; Y} is an M-stable feedback triplet

Consider the feedback system defining (nonstationary) stochastic processes
(e,) and (f,) given by the equations

(8.1) e, x,,- cn_jf and fn gn-tet,
j=o =o

where C {Ck}=- is an element of cg. Here we regard (8.1) as a closed-loop
input-output system with (x.) to be viewed, as the input and (f.) as the output.
(See Fig. 1.)

Also let H {hk}=- with hk real for each h be a fixed element of l. We
define the (nonstationary) stochastic process (p.) by the equation

(8.2) p,= h,_jxj.
j=0

Here (x,) is viewed as the input and (p.) as the output of the system (open loop)
described by (8.2) (see again Fig. 1).

The problem treated in this section is that of selecting a feedback operator
C in which most nearly (in a statistical sense) causes the system of (8.1) to track
the system of (8.2), i.e., to find that C in cg, when it exists, which minimizes
lim,_ o([f, Phi2). This limit will be shown to exist.
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Let us in what follows emphasize the dependence of the f, on C by writing
L(C).

The problem just briefly described may be rephrased in a frequency domain
setting. We denote by F(0) the spectral density function (which we assume to exist)
for the S.P. (x,). As in 2, F(0) is an a.e. defined nonnegative function integrable
on the unit circle.

LEMMA 8.3. Let C cd be given. Assume the S.P.’s (C,) and (f,(C)) satisfy
(8.1) while the S.P. (p,) satisfies (8.2). Then lim,_ d([f,(C)- p,]2) exists, and
denoting this limit by g*(C), we have

G(eiO)
1 + CE(ei)G(e)

H(eiO)
2

r(O)dO,

where CE6 11 is the quasi-extension of C. (See Definition 4.1.)
Proof We begin by showing that if {k,}= is any element of 1- and (m,),

the S.P., is given by m, j=o k,_jxj, then

(8.4) lim (Em,] 2) IK(d)I2F(O) dO,

where K(ei) ,= o k,ei".
To see this note that

But

Therefore,

([mn] 2) kn-jkn-lE(Xj, Xl).
j=o t=o

oZ(xj, x) Fj_ e -itJ-t) 1-’(0)dO for any j, => 0.

12z IK"(ei)lzr(O)dO’

where k,(ei) =o kJeij" Therefore letting n --. gives the result.
Now by a simple modification of Theorem 4.5 to handle S.P.’s as inputs and

outputs it follows that e, .--o d,_x, where {dk}=- e l- with {dk}k%-
YE= (I + CG) 1. Therefore since f, Z=og,_e and p, ’=o k,_x we

have that

fn-- P.= gn-ldt-j- kn-j
j=O /=0

Xj.
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But clearly G(I + CFG) H is that element of l- given by {s,},%o with s,
.’;=og,-fl k,, for each n > 0. The conclusion of the lemma therefore follows

by employing (8.4) with (m,) (f, p,)o.
Remark 8.5. For any integer n => 0,

(8.6) infd*(C)= inf{ fCe C(ei),
C/’o

G(ei)
1 + C(ei)G(ei)

H(ei)

Proof The proof is immediate.
Remark 8.7. In the case where an actual minimum is attained by the left-hand

side of (8.6) at some A 6% then the right-hand side of (8.6) will also have a minimum
and will realize it at the quasi-extension At of A, At lying in o. Conversely, if a
minimum of the right-hand side of (8.6) is attained at some C 6 o, then the left-
hand side of (8.6) will attain a minimum and it will be at that unique C, in cg

C.with C,
In fact, C, {c’ }if= o, where

z-O,+ t)C(z)dzc’ / 1:

provided e > 0 is sufficiently small (so that Izl < e lies within the domain of
analyticity of C(z)).

Utilizing the density theorem of 4 we may now state the following theorem.
THEOREM 8.8. For any C 6c assume that S.P.’s (e.) and (f.(C)) satisfy (8.1)

while S.P. (p.) satisfies (8.2). Then thefollowing quantities are equal:

(i) inf *(C),

(ii)

(iii)

inf
C ei O), -inf fC(eiO), - G(e)

+ C(ei)G(ei)
H(ei)

2

r(O)dO,

(iv) inf
y(ei),
YeT Al-

G(e)
+ C(ei)G(ei)

H(ei)
2

IG(ei)Y(el) H(ei)12F(O)dO

(v) min
1 f"Y(ei)eT

IG(ei) y(ei) H(ei)12F(O) dO,

where, as in 6,

T’ Y(ei) e L(F)I[G(e’)] l(y(ei) 1) L(F)}.

Proof By Remark 8.5, (i) (ii). Corollary 5.8 states that (I + oG)-1 and
(I + ##G)- are both dense in T f-I l- with respect to the ll-induced topology. This
is enough to ensure that (ii) (iii) (iv). Finally { y(ei)[ Y T f’l l- is dense in T’
with respect to the Lz(F)-induced topology as seen from the definition of L2(1-").
This shows that (iv)= (v), completing the proof.
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We now easily show that if infc g*(C) is strictly positive (imperfect tracking),
the function by F(0) must necessarily be integrable on the unit circle.

THEOREM 8.9. For any C assume that S.P.’s (e,) and (fn(C)) satisfy (8.1)
while S.P. (p,) satisfies (8.2). Then if infc g*(C) > 0 (this expression is indepen-
dent of n, n >= 0) itfollows that 2o log F(0)dO > .

Proof By using Theorem 8.8 it follows under the hypothesis of this theorem
that

r(e’O)eT’ -n IG(ei) Y(ei) H(ei)12r(o) dO > O.

But this is exactly the condition needed in order to call Theorem 6.2 into play.
By that theorem, fo2 log F(0)dO > -oo.

We are mainly interested in the case infd*(C)> 0 (imperfect tracking).
Without actually making this assumption we shall still assume integrability of
log F(0).

Assumption and Remark 8.10. Following the indication of Theorem 8.9 we
assume from this point on that j’2o log F(0) dO > . Equivalently, F(0) IR(e)12
a.e., where R(e) is an H-function with R(z) nonzero on Iz] < 1. We shall however
additionally assume in the remainder of this section that R(e) is the Fourier series
for some R 1- with R(e) 0 for 0 [0, 2g]. This assumption yields the following
immediate consequences:

(i) L2(F) L2(dO), L(F) H2 and T’ Y(e)IY T}.
(ii) L2(F is isometric with L2(dO and L-(F)is isometric with H2 under the

map Y(e) Y(e)R(e).
(iii) The set

(8.11) n IG(ei)y(ei)- H(ei)12F(O)dO Y(ei) T’t
attains a minimum at some Y*(ei) corresponding to Ye l-, i.e., the inf
in (iv) of Theorem 8.8 may be changed to a min.

Note that (iii) follows directly from Remark 7.14(a) since we are assuming
that H(e) is the Fourier series for H e l.

Remark 8.12. The assumptions in (8.10) are made in order to simplify certain
details in assembling our results. The type of problem we are dealing with has one
inherent untidiness as follows:

Minimization problems involving integrated quadratic forms are almost
always taken over spaces of square integrable functions (Hilbert spaces). However,
feedback relations involving convolution operators are most readily expressible
for "/1-operator algebras" (Banach algebras). More specifically, without the
assumptions on R(e) of (8.10) the element Y,(e) in T’ minimizing (8.11) need not
be the Fourier series of any Y, in l-. However, if this Y,(e) is to arise as
(1 + C(ei)G(ei))-i for some C(e) related to C e /, then Y,(e) would have to
lie in l.

To conclude this remark we point out that another way around this difficulty
exists based on part (b) of Remark 7.14. To take this route would have involved
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modification in our definition of M-stability, quasi-realizability, etc., so as to be
able to handle Lz-filters.

We are now ready to state our main theorem.
THEOREM 8.13. Let (x,) be a stationary stochastic process with a given known

covariance sequence (F,)_(R) and such that the corresponding spectral density func-
tion F(0) satisfies the conditions of Assumption 8.10. For any C cg let (e,(C)) and
(f,(C)) denote S.P.’s satisfying feedback equations (8.1) and let (p,) be the S.P.
satisfying (8.2). Let the polynomial L(z) be given by the interpolation procedure:

L(z) ((G(z)- H(z))R(z)BZ(z))2,

where Bx(z) and (.) are as defined in 7. Denoting L(z) + R(z)H(z)B(z) by D(z)for
Izl <= 1 we find the following statements are true:

(a) lfD(ei) :/: Ofor any 0 [0, 2hi and ifD(O) :/: O, define

R(ei)G(eiO)B(ei) L(d) R(eiO)H(eiO)FZ (e’O)
(8.14) C #(ei) G(eiO)(L(eiO + R(eiO)H(eiO)BZ(eiO)

Then C#(ei) so defined is the Fourier series ofC# in o and

2-- IG(ei)[1 + C#(e)G(ei)]-I H(ei)12F(O)dO

min{ f:C(ei),
IG(ei)[1 + C(ei)G(ei)] -1 H(ei)12F(O)dO

Cef

i.e., (ii) (and hence (iii)) of Theroem 8.8 attains an actual minimum at this C #.

Further let C, ecg be given by C, {c,*}=0, where

fl -(" + 1)C(z) dzZc*,
2hi zl

provided > 0 is sufficiently small (see Remark 8.7). Then 8"(C,) minc E*(C),
i.e., (i) of Theorem 8.8 attains an actual minimum at C,

(b) Under the hypotheses of the theorem it follows that

inf oz*(C) Iskl e,
Ce’

where

zk_ [R(z)(G(z)- H(z))]
s

_zl:l [T(z)I z dz.

Here as in Theorem 7.18,

i= i iz

the {ai},".= 1, {ki},"=l being the roots of G(z) in IzI < and their multiplicities, re-
spectively. (T(z) is a finite Blaschke productfor G(z); see 7. p. 66].)
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Proof (a) Let

Y# (ei)
L(ei) + Bi(ei)H(ei)R(ei)

for 0 e [0, 2rc].
R(ei)G(e’)Bi

Then from Theorem 7.13, Y#(ei) lies in T’ and Y#(ei) minimizes (v) of Theorem 8.8.
Also by Remark 7.14(a), Y#(ei) is the Fourier series for some Y# eli and so
Y# e T A 1- and minimizes (iv) of Theorem 8.8.

Now assuming that D(e) 0 for 0 e [0, 2rc] is equivalent to stating that
Y#(ei) 0 for 0 e [0, 2hi so that y-i exists in l[. Then C#(eiO) as given in (8.14)
equals [G(ei)-I 111 Y#(ei)l[Y#(ei)-1-1 so that C# e 11. Now Y# (I + C#G)-1
and the feedback triplet {G, C#; Y#} is M-stable as Y# e T. Therefore C# e /#
and C# clearly minimizes (iii)of Theorem 8.8.

If, additionally, D(0) - 0 or equivalently Y#(0) - 0, then Theorem 4.7 assures
that C# /U0 and part (a) of this theorem follows directly.

(b) The proof of (b) is immediate from Theorem 7.18 and the fact that (i) and
(v) of Theorem 8.8 are equal.

Remark 8.15. In the cases where D(ei) 0, some 0e [0,2n] or D(0)= 0,
there is no C e cg minimizing g*(C) but minimizing sequences can be constructed.
These are mainly of theoretical interest and we omit the details.

Remark 8.16. Part (a) of Theorem 8.13 represents an explicit formula for the
solution of our minimization via feedback problem (under the conditions D(ei) : 0
for 0 [0, 2hi and D(0)4: 0) and this together with the minimum mean square
error formula (see Theorem 8.13 (b)) constitute our main results.
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GEOMETRIC THEORY OF TIME-OPTIMAL CONTROL*

OTOMAR HAJEK"

Abstract. Properties of the minimal-time function are considered for the problem of reaching
the origin within (linear autonomous finite-dimensional)control systems. The function’s continuity is
first established, leading to the construction of optimal feedback controls for normal systems. For
systems where the control matrix has maximal rank (= dimension of state space), the minimal-time
function is locally Lipschitzian, and hence differentiable almost everywhere.

1. Introduction. In this paper we will consider the control system

(S) :t Ax + Bu,

where A, B are constant n x n and n m matrices respectively, and the controls u
are restricted by lu,I _-< 1 (where u’ (ux,"., Urn); primes denote transposition).
We will be concerned with the problem of reaching 0 from x R" in minimal time,
i.e., of finding (time-)optimal solutions.

This section merely reviews terminology and notation. In 2 we prove a
fundamental theorem on continuity of the minimal-time function. Most of our
results are more or less distant outgrowths of this; among the latter belongs a new
characterization of normality, Corollary 7. In 3 the principal result is Theorem 10,
existence of optimal feedback controls for normal systems. A number of intriguing
questions connected with this result (see the remarks following Theorem 10) are
still unresolved.

The last two sections are really appendices. Section 4 emphasizes the con-
nection between control theory and dynamical system theory. In 5 we treat a
rather special class of control systems, for which quite direct methods yield much
information concerning the minimal-time function.

Geometric aspects of such problems, for the far more difficult nonlinear case,
were treated in [5]; among other things, there is an apparent relationship between
our Proposition 14 and Theorem 6.3 in [5] (or rather its proof" note e < r/, p. 321).

We will use the terminology and notation of [2] where available, and of [3]
where not. In particular, the reachable set at time >= 0 is

(t) e-ABu(s) ds’lu(s)l 1, u e [0, t]

(a not particulai’ly happy choice of term" the set of points reached from the origin
in time is actually eats(t)); and the reachable set is

? (_J {(t)’t >- 0).
It is known that (t) is compact, convex, symmetric about 0 and has (s)

c (t) whenever 0 =< s <_ [2, p. 46]. It is easily shown that (t) satisfies the

* Received by the editors August 4, 1970, and in final revised form, December 15, 1970.
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Ohio 44106. This work was supported in part by the National Science Foundation under Grant
GP-22689.

339



340 OTOMAR H,JEK

stricter monotonicity condition

(1) ?(s) Int(t) if0=< s<

if and only if is open, and also if and only if (S) is controllable [2, p. 72 ff..
Without the restriction luil <_- 1 we obtain the controllability space

c(t) e-Bu(s) ds’u e a[0, t

{(0t 0};
(t) and are linear subspaces of R", whereupon, easily, (t)= for > 0 [3,
p. Tg..

One (possibly) new concept will be useful, that of the (n + 1)-dimensional
reachability set

* {(x, t)e+ ’:x e (t)}.
Its connection with the sets (t) is obvious from

* (R x {t})= (t) x {t};
in particular, N* is closed (with compact "slabs"), symmetric about the t-axis
and contains it; usually N* is not convex.

It is immediate that x e N(t) (equivalently, x e (t)) if and only if x can be
steered to 0 in time by some admissible controls. The minimal-time function Tis
defined [3, p. 145] by

(2) T(x) inf {t 0"x e N(t)}

thus0N TN +withT(x)< +ifandonlyifxe.
If grad T(x) exists, then

max {(-grad r(x),Ax + Bu)’ueR,lui[ 1} 1,

and, if T has a total differential in an open set, then there

f(x) sgn (B’ grad T(x))

is an optimal feedback control (see [3, p. 146], modulo notational changes). It
is precisely this unwarranted ex post assumption of differentiability that we wish
to avoid in the present paper.

2. The minimal-time function.
THEOREM 1. The minimal-time function T: R1 is continuous, with open

in the linear space c Rn.
Proof Directly from (2) and the closedness of the sets (t), T is lower semi-

continuous. For controllable systems, upper semicontinuity follows from (1).
For the remaining case, use Kfilman’s decomposition [3, p. 99]: up to a linear
equivalence, (S) may be written in the form

21 AllX + A12X2 -t- Bu,

22 A22X2
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furthermore, the system

(S1) )) Aay + Bu
(corresponding to x2-=0) is controllable. Obviously (t)=l(t)x {0}, so
that

T(X1) { Tx(x) if x2 O’
x2 + oe if x2 :/: 0.

Since ($1) is controllable, T is continuous, and hence so is T; T is finite precisely
on N?a, an open subset of cg cg [2, p. 79].

COROLLARY 2. Ifx t?, the boundary relative to c, then

lim T(y) +

Thus T :cg R (j + oe } is also continuous.

Proof Assume Xp --. x, T(xp) _< t. Then Xp
from closedness.

COROLLARY 3. For all > 0 we have

{x T(x) <__ t} (t), {x T(x) t} c3(t)

(boundary relative to

Proof As concerns the first formula, obviously

(tt{xr(xt_-<t} Cl t+

thus it is sufficient to show that the last set is contained in the first. Let x be in the
intersection; thus there are admissible controls u :[0, + 1/p] R such that

fo+l/PAsBUpx e- (s)ds nt- Xp -+" yp.

Here Xp (t), and the remainder terms yp 0 since all coordinates of the Up’S
are bounded by 1. Thus Xp --, x, so that x is the closed set (t).

For the second formula note first that

{x:T(x) < t} c Int (t)

from the continuity of T; and we need only verify the converse inclusion for > 0.
If x Int (t), then x Int N?(t e) for small e > 0 [2, p. 47], and hence T(x) <

Remark 1. Consider the boundary t?* of the (n + 1)-dimensional reachable
set, relative to cg x R x. Then Theorem shows that any line in R"+ parallel to the
t-axis intersects cN* at most once. Thus the set N*, though often not convex,
nevertheless exhibits a form of convexity in the t-direction.

Remark 2. The assertion of Theorem may be invalid for time-dependent
systems, or for target sets other than the origin.

Remark 3. The assertion of Corollary 2 is false if cg is replaced by R". In point
of fact, T :R" R U + o} is continuous if and only if (S) is controllable (i.e.,
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cg R"). For if (S) is not controllable, one may take xp x with x , Xp cg ,
whereupon T(xe. + c > T(x).

Remark 4. From Corollary 3 it follows that the minimal-time function
completely determines the performance of system (S) (interpreting "performance"
as the correspondence to (t)). In particular, the sets {x’T(x) <= t} are strictly
convex if and only if (S) is normal [2, p. 65].

In the next theorem we will need the following approximation result (this is
probably well-known, easily proved by standard methods, and amenable to
generalization).

LEMMA 4. For every e > 0 and > 0 there exists 6 > 0 such that

dist (1(t), (t)) < e,

where a(t) is the reachability set of any system

(S) 2 Ax + Bu
with IA- AI < , IB- BaI < .

THEOREM 5. Given a sequence of systems

(Sp) 2 Apx d- Bpu
with Ap A, Bp--. B, then their minimum-time functions Te converge to T in the
following sense"

Tp(xp) T(x) whenever xp X, Xp U .p, x .
In particular, Tp Tuniformly on compact subsets of.

Proof Assume that, on the contrary, Tp(xp) is bounded away from T(xo) for
some subsequence of the p’s. Thus there are two cases" either

(3) Tp(xp) < to < T(xo)

for some to and subsequence, or similarly with opposite inequalities. In the first
case we have xp p(to); from Lemma 4, y (to) for some y with y x, --. 0.
But then T(yp) <= to and y Xo; since to < T(xo), this contradicts Theorem 1.

In the second case we have

(4) T(xo) < to < Te(xp).
Then Xo |nt (to), the interior relative to . From Lemma 4, there exist yp (to)
with yp - Xo. Since xp q (to) by assumption (4), on the segment xeYp (or XoYe, if
yp q (to)) there is a point ze 6 c3(to); necessarily, ze Xo. Let cp be a unit exterior
normal to a supporting hyperplane at z to (to). Then

(5) (Cp, x zp) <= 0 for all x p(to).
Choose a convergent subsequence cp c : 0. For any w?(to) there exist
we 6 ,(to) with we - w; taking limits in (5) with x wp, we conclude that

(c, w Xo) -<_ 0 for all w (to).

However, this contradicts Xo Int (to), and completes the proof.
Remark 5. In the situation of this theorem we cannot assert that

T(xp)- T(x) whenever x x.
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Actually this holds if and only if (S) is controllable. Indeed, if (S) is not controllable,
take (Sn) (S), and proceed as in Remark 2 above. On the other hand, if (S) is
controllable, then xn - x implies xn ’, ultimately.

Remark 6. Theorem 1 is, of course, a special case of Theorem 5; however,
the former was needed in the proof of the latter.

Remark 7. Theorem 5 admits this pessimistic interpretation:by changing
the system slightly one cannot improve performance too much.

PROPOSITION 6. In the situation of Theorem 5, let the Yn be optimal solutions
of (Sn), and let yn(O)--. Xo . Then some subsequence converges to an optimal
solution y of(S), uniformly on compact subsets of[O, T(xo)).

Proof We have

yn(O) xo, yp(Op) 0 for 0n Tp(yp(O)).
From Theorem 5, 0n --. 0 T(xo). Using weak sequential compactness of the
space of admissible controls, we conclude that {Yn} has a subsequence {y,) con-
verging, uniformly on compact subsets of [0, 0), to a solution y of (S) through Xo.
Since the yq were optimal,

Tq(yq(t)) T(y(0))- for 0 <= <= 0q
thus, from Theorem 5 again,

(6) T(y(t)) T(xo)- for 0 __< < 0.

In particular, y is optimal for (S), at least on [0, 0). Finally, limt_0_ y(t) 0 follows
from (6): y(t) e (0 t).

COROLLARY 7. (S) is normal if and only if it satisfies the following condition.
Whenever the (Sp) are as in Theorem 5, and the yp are optimal solutions of(Sp) through
yp(O) X0

, necessarily the sequence {Yn} converges (whereupon the limit is an

optimal solution of(S) and convergence is uniform on compact subsets of[O, T(xo))).

3. Optimal feedback controls. We will study an auxiliary concept associated
with a given system (S). For every x s let E(x) denote the set of all unit exterior
normals of supporting hyperplanes at x to (0), where 0 T(x) (so that x (0),
see Corollary 3).

LEMMA 8. E(x) is a nonvoid compact subset ofthe (n 1)-sphere S 1. Further-
more,

(7)
(-x)

limsupE(y)E(x) as y x in .
If(S) is controllable, then E(x) contains antipodal vectors onlyfor x O.

Proof The first assertion actually concerns existence of supporting hyper-
planes. For the second use symmetry of (0) about 0. The third follows easily from
the continuity of T and a compactness argument. For the last observe that (S) is
proper, so that Int 5(0) : if 0 > 0, i.e., if 0 4: x .

It follows that the set of all the exterior normals,

{tc’t > O, c 6 E(x)},
is a wedge in R", and actually a proper cone if (S) is..controllable and x - 0.
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Since E(x) is nonvoid, for each x one can choose c(x) E(x). Obviously a
continuous selection need not be possible (unless, e.g., the (t) have no corners).
However, one can at least make a measurable selection.

LEMMA 9. There exists a measurablefunction c : R" such that

c(x) E(x) for all x .
Proof This paraphrases part of the proof of Filippov’s theorem [2, p. 31].

For each xe choose c(x)E(x) with minimal first coordinate cl(x)(apply
compactness of E(x), from Lemma 8); if there is more than one such element in
E(x), choose that whose second coordinate c2(x) is also minimal; and so on.
Directly from (7), c1(. is upper semicontinuous on . By Lusin’s theorem, for
every e > 0 there exists a subset M c oM on which ca(’) is continuous, and
has meas M < e/n. Again from (7), c2(" is upper semicontinuous on M1,
so there is a subset M2 c Ma on which both ca(" ), c2(’) are continuous, and
meas M M2 e/n. Continuing in this fashion we find a set M c ’ on which
all coordinates of Ck(’) are continuous, and meas - M < e. Since e > 0 was
arbitrary, c is measurable (this is the trivial converse to Lusin’s theorem).

THEOREM 10. If (S) is normal, there exists a measurable function f :#1 R"
which is an optimalfeedback controlfor (S) in thefollowing sense: In aadition to (S),
consider the autonomous differential equation

(F) Ay + Bf(y).

Then each optimal solution of(S) is a solution of(F) in as a partial converse, each
solution of(F) is a solution (possibly not optimal) of(S).

Proof We will first constructfand then verify the assertion on the solutions.
Let c: R" be as described in Lemma 9. For each x 6 set

(8) f(x) lim sgn (B’e- A’SC(X)).
s--*0 +

Since each coordinate of B’e-A’sc(x) is analytic in s (for fixed x), sgn (B’e-A’sc(x))
is piecewise constant in s, so that the limit exists. Finally, fis measurable since c is
such. (Remark" the "obvious" choice would be f(x)- -sgn (B’c(x)); the reason
for the extra factor and limit is technical, and will become apparent in the course
of the proof.)

Now let x "[0, 0 R" be an optimal solution of (S) through x(0) Xo ,
0 T(xo); we wish to show that simultaneously it satisfies (F). Take arbitrarily s,
0 __< s < 0; there is an optimal control through x(s) at time s, which may be
taken in the form

us(t) -sgn (e’e-A’(t-S)c), S O,

for any choice ofc in E(x(s))(i.e., c E(- x(s)), see [2, p. 51]); we choose c c(x(s)).
Since (S) is normal, the response to Uo (us for s 0) is precisely x; furthermore,
on Is, 0], Uo is again an optimal control for x(s) at initial time s (see (6)). Again from
normality, optimal controls are essentially unique; thus, for each individual s
and almost all >_ s we have

Uo(t) us(t) sgn (B’e- A’(t-s)c(X(S))).
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Now take limits -, s + over these t’s and obtain (see (8))

Uo(S +) f(x(s)) for s [0, 0).

Since u0 is piecewise constant, we have Uo(S) f(x(s)) for almost all s; therefore
the response x to Uo satisfies

Yc(s) Ax(s) + Bu(s)= Ax(s) + Bf(x(s))

almost everywhere. As x is absolutely continuous, it is a solution of (F).
Finally, that solutions of (F) solve (S) is almost immediate. Indeed, any solu-

tion y of(F) is the response of(S) to v(t) f(y(t)), and obviously this is an admissible
control (see (8) for the bound, and also Lemma 9 for measurability). This completes
the proof of Theorem 10.

Remark 8. This raises further questions.
It would be desirable to know whether there is a complete converse in

Theorem 10, more precisely, whether all solutions of (F) are optimal solutions of
(S), or equivalently, whether (F) has uniqueness of solutions to the initial value
problem into positive time.

In the positive case the converse assertion may even hold without normality;
a proof might proceed via Proposition 6 and an approximation of (S) by normal
systems.

4. Semidynamical systems. Assume that (S) is normal. Then with every point
x we may associate an optimal solution y’[0, +) R" of (S) through
y(0) x, whereupon y is determined uniquely (let y(t) 0 identically for >= T(x)).
Thus there is a well-defined mapping n " [0, + c) ,

n(x,t)= y(t) fort>0.

It is obvious that

7r(x, 0) x, n(n(x, t), s) n(x, + s);

and it is easily shown that n is continuous. Therefore 1, p. 12] we have the following
theorem.

THEOREM 11. If(S) is normal, then n is a global semidynamical system on .
Note that even in the most reasonable cases, n need not have negative unique-

ness (i.e., solutions are not determined uniquely by initial data in the negative time
direction); see, e.g., the situation indicated in [3, p. 10].

An examination of the relation between (S) and n is intriguing. Thus, 0 is the
only critical point of n, and it is asymptotically stable, with as its region of
attraction. Furthermore, the minimum-time function of (S)(or rather -T)is a
Lyapunov function for n, strictly decreasing along trajectories outside 0, and with
T(x) 0 if and only if x 0, T(x) + oo as x approaches the boundary of
(Corollary 2). Finally, Theorem 10 can be reformulated in dynamical terms thus"
the semidynamical system n admits a differential representation.

We conclude this section with an application of dynamical systems to control
theory. The question treated may be indicated as follows" If x is any point on c(t)
and s >= 0, then obviously an optimal solution through x can be followed
down till it meets (s). The converse assertion, concerning backing out of (s)
to reach c(t), though plausible, does not have an obvious proof.
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PROPOSITION 12. Every optimal solution on [0, + ) can be extended to an
optimal solution defined on R 1.

Proof First consider the special case that (S) is normal, so that semidynamical
system theory may be applied. Consider any optimal solution x :I - R" which is
inextensible. According to [1, p. 32], there are three possibilities. Either I R1,
and there is nothing to prove; or

I=[a,+), a> -, x(a) is a start point(9)

or finally,

(10)
I=(z, +),> -oo, and

x(t) has no cluster points in as +.

We proceed to eliminate the latter two alternatives. Since (S) is controllable,
N is open in R", and hence is a semidynamical system on an n-manifold. According
to [1, p. 124], n has no start points; thus (9) is impossible.

Finally, consider case (10). Since the right-hand side of (S) admits a linear
estimate [AI Ixl / [B[, we cannot have x(t) as e + (this is a minor modi-
fication of a standard result, see, e.g., [4, Theorem 3, Chap. 1]). Thus there is
x(tp) y for some tp --. +, y e . But then, from (6),

T(x(tp)) T(x(O))- tp <= T(xo)- < + ,
contradicting Corollary 2. This completes the proof in the case of normal (S).

Next, consider the general case, and let x:[0, +oe) R" be an optimal
solution through x(0) Yo e -Since normal systems are generic (see [3, p. 100],
and recall that finite intersections of open dense sets are again such), there exist
normal systems

(Sp) Apx + Bpu, Ap A, Bp B.

From Lemma 4, there exist Yv Yo with Yv e v. We have just shown that (Sv)
has an optimal solution xp:R --. R" through yp. Now, some subsequence of the
xp’s converges uniformly on compact subsets of (-, 0]. Indeed, if the up are
corresponding controls, then a subsequence converges weakly on compact subsets
of (- , 0] the limit is also an admissible control, and the Bpuv converge weakly
to Bu. Denote the limit by x again. Since xp is optimal,

Tp(xp(t)) Tp(yp)-
Take limits, and apply Theorem 5"

for <_ 0.

T(x(t)) T(yo) fort __< 0;

thus x is indeed an optimal solution of (S). This concludes the proof.

5. Systems with uncoupled controls. In this section only we make the following
overall convention.

CONVENTION 13. The control matrix B has rank B n.
A system is such if and only if it is linearly equivalent to a system with control

matrix I, after possible omission of ineffective or duplicated controls; i.e., linearly
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equivalent to a system with uncoupled controls

i 2 aijxj + ui, 1 < <_ n.

Note that automatically such systems are controllable, without any assumption
on A (but not necessarily normal, e.g., if the minimal polynomial of A has degree

PROPOSITION 14. The (n + 1)-dimensional reachable set * contains a small
cone with vertex at O. More precisely, there exist 2 > 0, > 0, such that

x (lxl) whenever Ixl .
Furthermore, 2 may be taken arbitrarily close to

1/min {i lb’ic "c R", Ic]= 1},
where B (b 1,’.’, b,,).

Proof First fix any 2 > 0, and assume an x R" with x q (2lxl). Since each
(t) contains 0, some point y on the segment 0x is on the boundary of (2lxl);
and, of course, yl _-< xl > 0.

Corresponding to y, there is a control, to reach y in time 2lxl, of a special
type 2, p. 51]: for some c R" with Icl 1, if u(t) sgn (B’e-a’tc),

It follows that

zlxl
y e-ASBu(s)ds.

(c, y) I(B’e- A’sc)i ds.
i=

The assumptions on magnitudes yield (c, y) =< Ix] thus

(11) xl ->_ 1 xl. (,1 xl), x O,

where/t(. is defined by

/(t) inf I(B’e-a’Sc)l "[cl 1, 0 <= s <=
i=

Evidently/ is nonincreasing. To show that it is strictly positive, assume that

I(B’e- a’pcp)il 0 as p oe
i=1

we may take sp s, Cp c, Icl 1. The limit relation shows that c e R" is perpen-
dicular to all columns of e-AB, contradicting

ranke-AB=rankB= n, c4:0.

Now choose any e 6/2, 6 > 0. Then, for all x with Ixl =< e, we have t(21xl)
_>_/(6) > 0, and (11) yields/l <_ 1//t(6). In other words, for 2 > 1/kt(6), necessarily
no x e R" with Ixl =< e can have x
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Evidently, we may take 2 arbitrarily close to 1//(0), at the cost of decreasing e.
Remark 9. For Proposition 14 above, constancy of A, B may be weakened to:

A is summable, B is continuous at 0, rank B(0) n. However, subsequent results
will require autonomy.

Remark 10. Obvious estimates yield that N* is also contained within a cone
with vertex at 0 (locally at 0). This suggests that the numerical value of the actual
opening, of N* at 0, might be a significant qualitative measure of performance of
the system.

Remark 11. Consideration of the case A 0 suggests that our rank condition
is also necessary; but this will not be needed here. The condition cannot be replaced
by normality alone. Indeed, for the two-dimensional system

2=y, 3=u,

the three-dimensional reachable set intersects the (x, t)-plane in {(x, t)"lxl _-<
thus contains no small cone with vertex at 0, and the minimal-time function is
not locally Lipschitzian at 0 (cf. Theorem 17). (Actually, T(x, y) y + x//2y2 + 4x.)

Remark 12. It will be seen from subsequent results that good upper estimates
of 2 are of considerable interest (while e is unimportant). For the one-dimensional
system

(12) 2 x + u,

(t) is the segment -(1 e-t), (1 e-t)]; thus the largest opening is 1. In this
case also min {... } 1, so that our estimate of 2 is exact. Somewhat more
generally, it can be shown that, if B is square nonsingular, then 2 may be taken
arbitrarily close to IB-11.

Throughout this section, 2 and e will be taken as described in Proposition 14.
COROLLARY 15. For any x (t) and y with lY xl <-_ e exp lAir we have

y e (t + [y xlA exp IAlt).

Thus * contains, with every x, a small cone with vertex at x and axis parallel to
the t-axis.

Proof This follows from Proposition 14 and the following elementary observa-
tion: if x e N(t), z e l’.(s), then

X + e-atz e N(t + s).

Next we turn to the study of the minimal-time function T.
THEOREM 16. For all x, y ,

(13) IT(x) T(y)I <- Ix y12 exp (IAI max (T(x), T(y))).

Consequently T:t R is locally Lipschitzian, and the Lipschitz constant near x
may be taken arbitrarily close to 2 explAIT(x). Finally, grad T(x) exists almost
everywhere in .

Proof. We first show that, for each x e ,
T(y) T(x) <= lY xl2 exp IAIT(x) ifly xl < e exp (-IAIT(x)).
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Indeed, choose any y as indicated, and then > T(x) with
exp (-lAir). Then x e N(t), and, from Corollary 15,

T(y) <= t + lY x]2 exp IAlt;

finally, let T(x).
In proving (13) we may assume that T(y)< T(x). Since {x’T(x)<= t} is

convex, the entire segment P from y to x has

T(z) _<_ T(x) for z e P.

Now apply the previous estimate to a finite decomposition of P into segments of
length < e exp(-IAIT(x)), noting that the Lipschitz constants are all =< 2
exp [AI T(x).

Finally, according to [6, p. 311, Theorem (14.2) (ii)] a Lipschitzian function
has total differential almost everywhere.

PROPOSITION 17. contains the ball

U-- {xe Rn’Ixl < 1/(2IA])}

(with U R"/fA 0);in U,

1 1
(14) T(x) -(log 1 21A[ Ixl’

so that, within any ball of radius in U,

IT(x)- T(y)I-< Ix- Yl 1 2IAI"

Proof. We obtain estimate (14) first. From Theorem 16, the function S,

S(x) exp (-IAI T(x)) for x e N,

is Lipschitzian, with Lipschitz constant 2IAI (first locally only). Thus

IS(x)- S(0)l IAI Ixl,

and the estimate follows.
To show that T is defined throughout U it is sufficient (since U is connected

and N open) to prove that N f’l U is closed in U. Thus, let Xp x, xp , x U.
From the estimate, the T(xp) are bounded, say by t. Thus xp e N(t) and hence
x e (t) c ,.

Remark 13. For the example 2 x + u treated earlier, the estimates of both
N and T are sharp.
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ANOTHER PROOF OF THE LIAPUNOV CONVEXITY THEOREM*

JAMES A. YORKE’

Abstract. A new proof of the Liapunov convexity theorem is presented.

1. Introduction. Let x be in R" and let A(t) be a continuous n n matrix.
Let b :[0, T] R" be continuous. LaSalle’s well-known bang-bang control
theorem [5] for linear systems states that if X(t) is the fundamental matrix (with
X(0) I, the identity matrix) for x’(t) A(t)x, then the "reachable set at time T"
for

(1) y’(t) A(t)y(t) + b(t)u(t), y(O) 0

is compact and convex and the reachable set does not change if we restrict our-
selves to bang-bang controls. That is:

Write E [0, T]. Let be the set of integrable functions u :E [- 1, + 1],
and let -* be {u :[u(t)] 1 for almost all t}. If we let f(t) X(T)X- l(t)b(t),
then for u , the solution y(t) at time T satisfies y(T) fe f(t)u(t) dr. Define

(2) Ju fEf(t)u(t) dt,

and for any set 5 of functions u(.) write {Ju :u }. Then* is the
set of reachable points using bang-bang controls.

THEOREM. ’* is compact and convex and equals
Many proofs and extensions of this result have been given. The result (actually

a minor variation) was first proved by A. M. Liapunov [3] in 1940. The shortest
proof was given by Lindenstrauss [l who used the Krein-Milman theorem.
See Remark 2. Other proofs appear in [2], [4, [6. The referee has pointed out
that Olech used an induction argument in a way similar to that used here in Case 2.
See [9, p. 89] and [10, p. 42].

2. A proof of the theorem. For a convex set U R", the dimension d of U
(dim U) may be defined to be the dimension of the smallest hyperplane H that
contains U. For U c H c R", define OnU H U f .

LEMMA. Let U H be convex and let H be a hyperplane with p c3nU. Assume
the dimension of U equals the dimension of H. Then there is a linear functional
h R - R which is not constant on H and satisfies supxv h(x) h(p).

See, for example, [7], for the result that such an h: H R exists. The domain
of h can then easily be extended to R".
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Proofof Theorem. Let J be a measurable subset of E and let 4 :J {- 1, + 1}
be measurable. We will say then that (th, J) is a restriction. Let

(4, J) {u e o :u(t) th(t) for almost all e J},
o*(4, J) {u e -* :u(t) 4(t) for almost all e J}.

We actually will prove the following stronger result.
PROPOSITION. Let (d), J) be a restriction. Then (d), J) o*(t#, J).
The proposition reduces to the theorem when J is allowed to be trivial (i.e.,

have measure 0). Note that (th, J) is a convex closed bounded subset of LE(E; R")
so ff(b,J) is weakly compact and its continuous image off(b,J) is therefore
convex and compact. (J is continuous and linear so it is weakly continuous.)

Choose some restriction (b, J) and write ’(b, J)= o and -*(t#, J) .
Since ff c o, it suffices to prove that ff3 ooo. Choose p o. We now
prove p off. Let d be the dimension ofoo. Then lies in a d-dimensional
hyperplane H. If d 0, 0 contains only one point, so {p} ff and the
result is true. We now prove the proposition by induction on d.

Assumption. The proposition is true if dim ff(b, J) < d.
Case 1. Suppose pc c3no0. Letting U off0, choose h to be the linear

function in the lemma. Let Jo {t E J :h(f(t)) :/: 0} and J1 Jo (-J J. Let

j b(t) for e J,
(3) (t)

sgn h(f(t)) for e J0.

Write -(bl, J)and -’ -*(th, J). For ueo,

h(Cu) f u(t)h(f(t)) fj u(t)h(f(t))

(4) f d(t)h(f(t))+ fj u(t)h(f(t))

<__ fj c/)(t)h(f(t))+ fj }h(f(t))]= f dp,(t)h(f(t)).

It may be seen that we have equality in (4) for u o0 if and only if u(t) sgn
h(f(t)) for almost all t J0. Since h(p)= sup, h(Cu), we have h(p)>__ h(Cu)
for all u ,0. For u o, h(p) h(u) if and only if u . Since h is nonconstant
on H, the set Hp {x H :h(x)= h(p)} has dimension d- 1. Since c Hp,
dimo < d. Since p o we may use the assumption and conclude p ,
which proves the result because- = ff.

Case 2. Suppose p int/0, where H is the smallest hyperplane containing. We now show that by extending the definition of b to b which is defined
on the larger set J t_J [0, z], the set off(qS,, J) decreases continuously as z is
increased until for some a, p cnc-(th, J), reducing the problem to Case 1.
For : E let J denote J U [0, z] and define b on J by the(t) b(t) for J and
qS,(t) + 1 for e [0, z]- J. Consider the restriction (b,,J*) and write for
o(b,, J*). If z > z2, then o, c 2 C o0. is of course a convex set and we
may let a (_<_ T) be the supremum of z e E for which p e.We claim p
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If z > ’/72 and p e Jo2 and, say p
such that Ul Up except perhaps on [z2, z]; hence ul e1 and if 6 is the
distance of p from

6 5 Iu Pl 5 If(s)l lux(s)- Up(S)l ds 211 r21M,

where M supe Ifl. From this "continuity" of, p e c3n. By considering
the restriction (b,, J") instead of (b, J), we have reduced the situation to Case 1.
The proof of the theorem is complete since the induction argument for dimension
d is complete.

Remark 1. It is known that the theorem is true iff(s)ds is replaced by a non-
atomic vector measure but is false for more general measures. This proof uses the
fact thatf(s)ds is a nonatomic measure in Case 2 since otherwise (qS, J) does
not have to be a continuous set function of z (in the Hausdorff metric).

Remark 2. This proof is similar to Lindenstrauss’ proof in certain ways. It
differs primarily in Case 2 where we have avoided the Krein-Milman theorem.
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ON THE SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM*

TYRONE DUNCAN? AND PRAVIN VARAIYA:I:

Abstract. The control system considered in this paper is modeled by the stochastic differential
equation

dx(t, to) f(t, x(., o), u(t, to)) dt + dB(t, to),

where B is n-dimensional Brownian motion, and the control u is a nonanticipative functional of
x(., to) taking its values in a fixed set U. Under various conditions on f it is shown that for every
admissible control a solution is defined whose law is absolutely continuous with respect to the Wiener
measure #, and the corresponding set of densities on the space C forms a strongly closed, convex subset
of L I(C, I). Applications of this result to optimal control and two-person, zero-sum differential
games are noted. Finally, an example is given which shows that in the case where only some of the
components of x are observed, the set of attainable densities is not weakly closed in LI(C, t).

1. Introduction and contents. A stochastic control problem is defined by
the specification of the stochastic differential equation which models the system
dynamics, the information available to the controller and the corresponding set
of admissible control laws, and the cost incurred by each control law. Of theoretical
interest is the "existence" problem, which means determining in terms of the above
three defining characteristics a class of control problems for which there exist
control laws achieving minimum cost.. Published results ([1 ], [2], [3], see especially
the excellent survey article [4] of Fleming) differ from one another and are not
usually comparable because either the models are different or the set of admissible
control laws is different.

There are two basic steps involved in obtaining an existence result. The first
step involves determining conditions which guarantee that a solution of the
stochastic differential equation is defined for every admissible control law. The
next step involves the search for a topology under which the set of solutions (or
an equally good substitute) is compact, and the cost function is lower semicontinu-
ous. Thus, for instance, Fleming and Nisio [1] consider stochastic differential
equations of the form

dx(t) f(t, x(. )) u(t)dt + a(t, x(" ), B(. )) dB(t), 0_<_t<co,

where u(t) is any process taking values in the unit cube, and independent of future
increments B(t2)- B(tl), <= tl <= t2, of the Brownian motion B. Various con-
ditions on f a are imposed to guarantee a solution for every admissible control.
It is then shown that the set of laws of all the solutions of the differential equation
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corresponding to the different control laws is compact in the Prohorov metric.
Bene [3] considers stochastic differential equations of the form

(1) dx(t, o) f(t, x( o), u(t, o))dt + dB(t, o), 0 < -< 1,

where f is measurable with respect to its arguments and continuous in u. The
control law is any nonanticipative, measurable functional u(t, o)= /(t,x(., o))
which takes values in a compact set U. He assumes that fsatisfies a linear growth
condition

If(t,x(.,o),u)l 2 <= K(1 + IIx(.,o)l12),
where Ix(., o)ll sup {Ix(t, o)l 10 =< _< 1}.

The existence of a solution to (1) for every control law is guaranteed by a result
of Girsanov [5] (see Corollary 3 below). The resulting law is absolutely continuous
with respect to the Wiener measure p on the space C of all continuous functions
from [0, 1] into R". Bene shows that iff(t, x(., o), U) is convex for every e [0, 1]
and x(., o)e C, then the set of densities corresponding to all the admissible
control laws is a convex and strongly closed (hence weakly compact) subset of
Lx(C,p).

In this paper, we show that the above result holds if the linear growth con-
dition is replaced by the growth condition

(2) If(t, x(., co), u)l f0( x(., )11),

where fo’R R is increasing, and the condition

(3) exp (f(t, B, u), dS(t)) If(t, B, u)] 2 d #(dB)

for every admissible control law. An example is given to show that (2) does not
imply (3). The linear growth condition implies (3) (see Corollary 3). Condition (3)
also follows from (2), if the drift term fin (1) has a delay (see Corollary 4). Finally
we show that in the important case where the control is allowed to depend only
on some components of the state x, the set of densities is not always weakly closed
in LI(C, ).

In 2 we give some preliminary results and definitions, and in 3 we present
the main result on weak compactness of the attainable densities. In 4 we give
conditions which guarantee (3), in 5 we present applications to optimal control
and stochastic differential games, and in the final section we present the negative
example for the problem with partial observations.

2. Preliminaries. In the main, we adopt the notations and definitions of
Beneg [3. Consider the stochastic differential equation

(1’)
dx(t) f(t, x, u(t, x)) dt + dB(t),

x(O) o,
Ot=<l,

where B(t) is a standard n-dimensional Brownian motion process with continuous
sample paths, x(t) is the state of the system and u(t, x) is the control law which
takes values in a compact subset U of Rm. To state the precise conditions which f,
u must satisfy we need the following definition.
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DEFINITION 1. (a) Let C be the Banach space of all continuous functions
z’[0, 1] --. R" with norm [[zl[ max {[z(t)110 _<_ <= 1}, where lYl is the Euclidean
norm of y e R".

(b) For each [0, 1] let be the smallest a-field of subsets of C which con-
tains all sets of the form {zlz(z) A}, where z [0, t] and A is a Borel subset of R".

(c) Let =.
We shall define the solution of (1) in such a way that the sample paths of x

are continuous (and have no explosions), so that f is a map from [0, 1] x C x U
R". We impose throughout the following conditions on f
C1. f is measurable with respect to the product a-algebra (R) 5e (R) v,

where (v) is the set of Borel measurable subsets of [0, 1] (U).
C2. For fixed [0, 1), f(t, .,. is measurable with respect to the product

a-algebra (R) v.
C3. For fixed (t, z) [0, 1] C, f(t, z,. is continuous on U.
C4. There exists an increasing functionfo :R R such that f(t, z, u)] fo(llzll)

for all (t, z, u).
C5. f(t, z, U) is closed and convex for every (t, z).
DEFINITION 2. (a) An admissible control (law) is any map u’[0, 1] C U

which is measurable with respect to ’ (R) and for each fixed [0, 1], u(t, is
measurable with respect to . Let q/be the set of all admissible control laws.

(b) For each u q/, the drift corresponding to u is the function g g, "[0, 1]
C R" defined by

g(t, z) f(t, z, u(t, z)).

Let c {gdu }.
(c) For gC and N => 0, let gN’[0, 1] C R" be defined by

g(t, z) if Iz()l N for r __< t,
gN(t, Z)

0 otherwise.

Let ff {glg }.
DEFINITION 3. A function if’[0, 1] x C R" will be said to be causal if it is

(R) 6e measurable, and if for each fixed [0, 1], if(t,.) is measurable with
respect to .

From [6, Lemmas 1, 2] we can obtain the following useful characterization
of . Condition C3 is needed only for Lemma 1. The reader should be warned that
the proof of the "only if" part of Lemma 1 involves a nontrivial synthesis problem
(lemma of Fillipov).

LEMMA 1. A causal function g’[0, 1] x C R" belongs to c if and only if
g(t, z) f(t, z, U) for all (t, z).

It will prove convenient to work with sets larger than
DEFINITION 4. Let (I) be the set of all causal maps q5 "[0, 1] x C R" such

that 14(t, z)l =< f0(Izll) for all (t,z). Let {blb O,[qS(t, z)[ =< N for all (t, z)}.
Throughout the rest of this paper let f be a fixed space and let t, 0 =< =< 1,

be a fixed, increasing family of a-fields of subsets of f. Let ’ ’1. We say that
z(t) or z(t, 09), 0 _< =< 1, is a family of n-dimensional random variables on (fL
if for each t, z(t, is a map from f into R" which is measurable with respect to
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We shall need to consider various probability measures on . If z(t), 0 __< _< 1,
is a family of n-dimensional random variables on (, ) and we wish to consider
the stochastic process generated by z(t) corresponding to a particular probability
measure P on , we will say that z(t), 0 =< =< 1, is an n-dimensional stochastic
process on (fL st, P). Finally let Po be a distinguished probability measure on, and let x(t, co), 0 =< =< 1, be a fixed n-dimensional, Brownian motion process
on (fLdt,Po) with almost all sample paths x(-,co) C. We assume that the
a-fields st are complete with respect to Po.

DEFINITION 5. Let k’[0, 1] x C R" be a causal function such that

(4) I(t, z)l 2 dt < for all z C.

Then ’(), 0 =< =< 1, is the stochastic process on (fL , Po) with continuous
sample paths, defined by

(5) ’(0) <O(,x),dx()5 - IO(,x)l 2 d.

For convenience, let (qt) 1(). (In (5), the first integral is to be interpreted as
an Ito stochastic integral.)

The results ofthis section are immediate consequences ofthe work ofGirsanov
[5].

THEOREM 1 (Existence). Let :[0, 1] x C R" be a causal function such that
(4) holds.

(i) Then,

(ii) Suppose

(6)

exp [’(0)]Po(dco) =< 1.

exp [(qt)]Po(dco 1,

and define the probability measure Po on d by

P(A) fa exp [#(,)]Po(dco),

Then the stochastic process B(t) defined on (), a/,, Po) by

B(t, co) x(t, co) d/(z, x(. co))d’c, O<__t<=l,

is a Brownian motion.

(iii) If is bounded, then (6) holds.
Proof Parts (i), (ii) and (iii) are immediate consequences of Lemma 2, Theorem

1, and Lemma 1, respectively, of [5].
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Theorem 1 immediately gives us a sufficient condition for the existence of a
solution to (1). For, let u , and let g be the drift corresponding to u. If

exp E(g)]Po(do) 1,

then the stochastic process x(t) on (, , Pg) satisfies the equation

x(t) g(z, x) dr + Brownian motion.

LEMMA 2. Let . Let y(t), 0 <_ <= 1, be a stochastic process on (, , P)
with continuous sample paths, such that the stochastic process B(t) on (, ff, P)
defined by

(7) B(t) y(t)- g/(, y)d, 0 <= <= 1,

is a Brownian motion. Then, the measure v induced by y on (C, 5) is mutually ab-
solutely continuous with respect to the Wiener measure , and

dkt(8)
dv
--(y) exp (O(t, y), dB(t)) - IO(t, y)l 2 dt

0

Proof Since I(’,z)[ =</o(lizl[), it follows from Lemma 7 of [5], that the
measure/ on (C, 5e) defined by

/(S) exp {O,dB) - 1012 dt dv
0

coincides with the Wiener measure. It is easy to see that

exp {0, dB) - IPl 2 dt > O,
0

v-almost everywhere. The result follows.
COROLLARY 1. Let e , and let y(t), 0 <= <= 1, satisfy the hypothesis of

Lemma 2. Then

(9) exp
o

(k(t, z), dz(t)) - Ig,(t,z)l 2 dt lu(dz) 1.

COROLLARY 2. Let , and let y(t), 0 <= <_ 1, satisfy the hypothesis of
Lemma 2. Then the measure v on (C, 5,c,) induced by y is uniquely specified by and
is given by

(10) v(S) exp {g/(t, z), dz(t)) IO(t, z)l 2 dt IJ(dz).

Proof The corollaries follow from (8) and the identity dB dy O(t, y)dt.

3. Main results.
DEFINITION 6. For any subset Z c , let (E) be the subset of Ll(ff2, , Po)

defined by
(Z) {exp (O)lb
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that

PROPOSITION 1. (ON) is a bounded subset of L2(, , Po).
Proof If q 6 N, then by definition, [b[ _<_ N. By Lemma 1 of [5, it follows

exp 2t(dp)Po(dco) <= exp tN2.

For the rest of this paper let Eo denote expectation with respect to the proba-
bility measure Po. Also if y LI(Q, ’, Po), then Eo(71ct) denotes the conditional
expectation of 7 with respect to t.

The proofs of Lemmas 3 and 4 are simple modifications of the proofs of
Theorems 4 and 3, respectively, of [3]. They are presented here for completeness
and because we shall need to refer to parts of the proofs later.

LEMMA 3. (@) is a closed subset of L2(, ’, Po).
Proof Let b,, n 1, 2, 3, ..., be a sequence from N and let p be such that

(11) lim Eo[ p exp (b,)] 2 0

and

(12) lim exp ((b,)= p a.s. Po.

First of all p > 0 a.s. Po. Because, let A {colP(co) 0}. Then from (12),

(13) lim (4,)(co) oe for co e A.

Also,

fo(,) (dp.(s, x), dx(s)) - b,(s, x)] 2 ds

and 10.l =< N, so that from (13),

lim d/)(s, x), dx(s)) o

But

on A.

Eo (., dx(s)) Eo ]b,(s)] 2 ds <= N2

so that Po(A) 0. By Ito’s representation [7], there is a causal map

,/,-o, 3
with

for z in C, such that

[(t,z)[ 2dt <
0

p=l+j ((t,x),dx(t)) a.s. Po.
0
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Let

p(t) Eo(Pl) 1 + ((s, x), dx(s)).

Then, by Jensen’s inequality,
.1

Eolp(t) exp f(’(qS,,)l 2 dt <= ((,,)l 2 dt,EolP exp
0

which converges to zero, so that taking subsequences if necessary we can assume
that

(14) p(t) lim exp "(,) a.s. (R) Po,

where denotes Lebesgue measure on [0, 1]. Next, by Ito’s differentiation rule,

exp (b) 1 + exp (4)<4(t), dx(t)) a.s. Po
so that

Eo lexp C(b,)qS,(t) J(t)l 2 dt Eol exp ((qS,) pl 2

converges to zero, and therefore, taking subsequences if necessary, we can assume
that

t/J(t) lim exp (t(qS,),(t) a.s. l(R) Po.
Since p(t) > 0 a.s. Po, we see using (14) that

(15) O(t)/p(t) lim 05,(0 a.s. (R) Po.

It follows that there is a causal map 05 "[0, 1] C R",

qS(t, x(., 09)) lim qS,(t, x(., 09)) a.s. Po

and

p(t) 1 + p(s)(dp(s,x),dx(s)).

From to’s differential rule we see that

d(log p(t)) 44(t), dx(t)) 1/214(t)l 2 dt,

and hence,

p exp (().

Because of(15) we can assume that 14)1 _<- N, so that the lemma is proved.
LEMMA 4. @(I)N) is a convex set.

Proof Let i I)N, 2i >= 0, 1, 2, with 21 + 22 1. By Ito’s differentiation
rule,

d[exp (’(ki)] exp (’(dpi)(i(t), dx(t)).
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Define

Then

do(t) ’1 exp t(bl)(q(t), dx(t)) + )2 exp ’(gP2)(qb2(t), dx(t))

(16)

where

/1 exp "(qS,) 22 exp t(/)2)
(t) E/2= /i exp {’(qS,) 4 1(t) + y,,/2= i exp ’(qS,)

b2(t).

Evidently b e u since qS(t, z) is a convex combination of bl(t z) and b2(t z).
By Ito’s differentiation rule from (16) we obtain

(17) d(log p(t)) (dp(t), dx(t)) 1/2]b(t)l 2 dt

and p(0) from (14) so that integrating (17) yields

log p(t) <O(s), dx(s)) Ib(s)l 2 ds.

Hence p(1) exp (b)and the lemma is proved.
We now state our main result and develop the proof through a sequence of

lemmas.
THEOREM 2. (i) (ff) is a convex set.

(ii) Let

fro {gig if, Eo(exp (g)) 1}.
Then, (ffo) is a closed and convex subset ofL1(, aal, Po).

We shall develop the proof through a sequence of lemmas.
LEMMA 5. (ff)is convex.

Proof Let gi(t, z) f(t, z, ui(t, z)) with ui qgi, 1, 2, and let 2i -> 0, with
,1 q- 22 1. By Ito’s differentiation rule,

d(exp ’(g,)) exp t(g,)(g,(t), dx(t)), 1,2.

Define

p(t) 21 exp ’(gl) + 22 exp ’(g2).

Then if we repeat the proof of Lemma 4 we can conclude that (noting p(0) 1)

p(1) 21 exp (gl) + 22 exp (g2) exp (q),

where q(t, z) is a convex combination ofgl(t, z) and gz(t, z). Since gi(t, z) f(t, z, U),
and since this set is convex by condition C5, We see that

c(t, z)f(t, z, U)

and hence b 6 by Lemma 1. The lemma is proved.

p(t) 21 exp ’(bl) +/2 exp t((/)2).

which we can rewrite as
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LZMMA 6. @((9o) is convex.

Proof The set

{plpLX(f,s,Po),p > O, Eop 1}
is convex, and

(o) (f) N N,

so that the result follows from Lemma 5.
Next let g,, n 1, 2, ..., be a sequence from f#o, and let p be in LI(fL se’, Po)

such that

(18) lim exp (g,) p a.s. Po and in Ll(f, sO’, Po).

For each positive integer N, let

g,(t,z) if lz(:)[ =<N for:_< t,
Z)

0 otherwise,

and for N 1, 2, 3, ..., inductively select subsequences g’, k e KN, and
as follows"

For N 1, let g, k e K1, be a subsequence of g,, n 1, 2, 3,..., and let

051 e (1) be such that

exp (41) w. lim exp (g).
kK

(Here and in the remainder w. lim means the weak limit in L-(fL se’, Po).) From
Lemmas 4 and 5, @() is a weakly, sequentially compact subset of L2(, s#’, P)
and g u so that the above selection makes sense.

Suppose g, k e KN, and bNe (I)u are defined. Then let g+
be a sequence of g, k KN, and let bN+ e / be such that

exp (4N+ 1) w. lim exp (g/ 1).
kKN

LEMMA 7. Let C {z]z C, Iz()l <= N for <__ }. Then for >= O,

N+ l(t Z) dpN(t, Z) for 0 <= < 1, z e C.
Proof First of all from

exp (bN) w. lim exp (g),
kKN

it is immedia.te that

Eo(exp (qSU)l) w. lim Eo(exp (g)[).
keKr

Secondly since

Eo((b)) 1,

it follows that a.s. Po,

exp "(q5u) Eo(exp C(4u)l),

Eo((g) 1,

exp ’(gf)= Eo(exp C(g)l),
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and hence,

(19) exp {,(qu) w. lim exp {t(g).
kKN

Next let

c, {o1o c,, x(., oo)e c}.
By definition, for >= 0,

gff(z, x(., oo)) gff + i(-c, x(., oo))

so that from (19) for >__ 0,

exp (,(qN + i)(o0 exp (t(4N) (O0),

The result now follows if we note that

o fn lexp (dpv+i) exp (qSu)[ZPo(doo) fn lfj exp t(qv+i)(qN+i(t),dx(t))

exp t(bN)(b(t), dx(t)) Po(do)

=fn [f]exp2(4s)’4+i(t’x("o))-4(t’x("o))ldtP(do)
so that since exp (4) > 0 a.s. Po, we must have

I + (t, x(., )) (t, x(., ))1 at Po(a) o,

and the lemma is proved.
Because of Lemma 7 we can define a causal function " [0, 1] C R" such

that

(20) (t,z) u+i(t,z) for 0 1, zll N, i 0,

From the proof of Lemma 8, and from (18) it follows that

p exp () a.s. Po.
Lemma 8 completes the proof of Theorem 2.

LEMMA 8.

Proof Because of (20) and Lemma 1 it is enough to show that

dpN(t, z)ef(t, z, U) for 0 <= =< 1, zll =< N.(21)

Recall that

exp {(q5u) w. lim exp (g).
keK

From the properties of weak L2-convergence it is known that there is a convex
combination ofthe exp (g) which converges to exp (bu) in the L2-norm topology.
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More precisely, for each n, there are nonnegative numbers 2],..., 2, with

2’I +’.. + 2, such that

(22) lim Eo

Let

exp {(bN) 2’ exp ’(g)
i=1

(23)

Next

Eolexp ’(4N) exp (r/,)l 2 Eo exp ’(bu)(bu(t), dx(t))

1 2

| exp t(r/,)(r/,(t), dx(t))
d 0

Eo lexp t(qSu)bu(t) exp t(q,)r/,(t)12 dt

converges to zero by (22). Taking subsequences if necessary we see that

(24) exp t(bN)(co)qSu(t, x(., m)) lim exp ’(q,)(m)q,(t, x(., m)) a.s. @ Po,

where denotes Lebesgue measure on [0, 1].
Also a.s. Po,

exp t(4s Eo((4u)[), exp t(q,) Eo((q,)l),

so that from (22),

lim Eoexp (4u) exp (q,)2 dt= O,

and hence taking subsequences if necessary, we have

exp (4u)(m) lim exp (q,)(o) a.s. @ Po.

Since exp (4u) > 0 a.s. Po, we conclude from (24) that

u(t, x(., m)) lim q,(t, x(., m)) a.s. @ Po,

and hence from (23), and the fact that f(t, z, U) is closed, we see that

4u(t, x(., )) ef(t, x(., m), U) for IIx(’, )11 N, a.s. @ No.

h,(t) 27 exp (g).
i=1

Repeating the proof of Lemma 4, we can conclude that

h,(t) exp ’(r/,) a.s. P0,

where r/,(t, z) is a convex combination of g[(t, z),..., g,(t, z). In particular, from
the convexity off(t, z, U) and the fact that gi (t, z) gi(t, z) f(t, z, U) for z]l =< N,
it follows that for Ilzll =< N,

ri,(t, z)f(t, z, U).
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From Corollary of Lemma 2 and from Theorem 2 we obtain Theorem 3.
THEOREM 3. Supposef satisfies C1-C5 of 2.
(i) For an admissible control u , there exists a solution to (1) with continuous

sample paths (without explosions) if and only if
Eo exp ((g,,) 1.

(ii) The set of densities {exp (gu)lEo exp ((g,)= 1} is a convex set, which is
closed in the norm topology of LI(fL e’, Po).

4. Sufficient conditions for Eo exp (b) 1.
LEMMA 9. Let 4)’[0, 1] x C R" be a causal map such thatf ]b(t, Z)] 2 dt <

for all z in C. Define T4,: C C by

(25) T+(z)(t) z(t) c(z, z)dr..

Suppose thatfor each N > 0 there is M > 0 such that Te(z)l] <= N implies Ilzl] _-< M.
Then,

Eo exp (qS) 1.

Proof The proof is immediate from Lemma 7 of [5].
As a consequence of Lemma 9, we can obtain the following sufficient con-

ditions. The first result is due to Bene [3].
COROLLARY 3. Let q5 :[0, 1] x C R" be a causal map and suppose there is a

constant K such that

Then,

I(t,z)l K(1 + max Iz()l).
z<t

Eo exp (b) 1.

Proof Let T+(z)(t) y(t), and let 7(t) maxo_<_t Iz(01. Then, from (25),

T(t) __< ly(t)l + K(1 + T(r))dr

_-< (llyll / K) + KT(z)dr.

By the Bellman-Gronwall inequality,

Ilzll 7(1) _-< (exp K)7(0) + (exp K)( lYl + K)

=< (exp g)(2llyll + g),

and the result follows from Lemma 9.
The next result is useful if we have a control system with delay.
COROLLARY 4. Let 4)" [0, 1] x C R" be a causal map such thatfor some 6 > 0,

Ib(t, z)l <-fo( max
O<z<t-3
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where fo’R R is increasing. Then,

Eo exp (0) 1.

Proof Let y, 7 be defined as in the previous proof. Then,

7(6) _-< y +/o(7(0)),

7(26) =< y + fo(7(6)) =< IlY / To( lY + fo(7(0)))

fx( YII, (0)) say.

By induction,

7(i6) =< f(llY I, (0)),

where f/is increasing in each argument. Evidently if (m 1)6 < =< mr, we see
that

7(1) z =< fm(ll y z(0)l),

and the result follows from Lemma 9.
Remark. McKean [8, p. 66] has shown that if 6 > 0, then all solutions of the

one-dimensional diffusion equation

dx(t) Ixl x/ dt + dB(t), 0 < < ,
explode with probability 1. It follows that condition (6) is a nontrivial restriction.

5. Applications. Consider a control system

dx(t, 09) --f(t, x( 09), u(t, x( 09))) dt -t- dB(t, co),

where the control u takes values in a set U and f obeys the conditions C1-C5 of
2. Let us impose an additional restriction.

C6. For every admissible u /,

Eo exp (gu) 1,

or equivalently (and directly in terms of u) for

(26) p,(z) exp (f(t, z, u(t, z)), dz(t)) - If(t, z, u(t, z))l 2 dt

C6’.

p.(z)p(dz)

Instead we can limit ourself to the subset ,o consisting of those u in //which

satisfy C 6’.
Next let L:C R be a bounded function, measurable with respect to _9. L is

the cost function and assigns to every u e ,o the cost

(27) J(u) fc L(z)p,(z)(dz).
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THEOREM 4. Suppose [o is nonempty. Then, there exists u* 1 such that

J(u*) <= J(u) for all u l

Proof By Theorem 3, the set {pulu o} is a strongly closed, convex subset
of LI(C, #). Hence it is weakly compact. Since .c L(z)p,(z)kt(dz)is linear and
continuous in Pu, the result follows.

Let us note that a cost functional of the type (27) allows for a variable endpoint
problem as follows. Let - be a closed subset of 0, 1] R" which includes the set
1 } R". Let 2 [0, 1] C --. R" be a bounded, causal function, and to each u @,o

assign the cost

J(u) )(t, z) dt p,(z)#(dz),

where t(z)= min {r[z(z) -}. The term in brackets is clearly of the form L(z)
in (27).

If the cost also depends on the control u, then sometimes we can add an extra
coordinate to the state vector and get an equivalent cost depending only on the
state. See [3 for details.

As a second application consider a zero-sum stochastic differential game,
with two players and II, with controls u(t) Ux and u2(t) e U2 respectively, and
dynamics given by

dx(t) f(t, x, ua(t), u2(t)) dt + dB(t).

Suppose that f splits as

f(t,X, Ul,U2)
L(t,x,u)

f2(t,x,u)

Assume thatf satisfies C1-C5 with C5 now restated as:f(t,z, U)andfz(t,z, U2)
are closed and convex for each (t, z). As before, we define the admissible controls
for player i, as all causal maps ui’[0, 1] C Ui, 1, 2. Let o consist of those
admissible controls ui which satisfy

fc Pi,,(z)#(dz) 1,

where

(28) p., exp (fi(t, Z, Ui(t Z)), dzi(t)) - If/(t, Z, b/i(t Z))I 2 dt

Here we have split z to be compatible with f Let L’C R be a
za f

bounded function, measurable with respect to , and to each pair (u t, u)e ,o
x ,o assign to player the payoff

(29) J(Ul’ u2) ;c L(z)P(ul’uz)(z)12(dz)"
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THEOREM 5. Suppose q[ is nonempty.for i= 1, 2. Then, there exist u
1, 2, such that

J(ul, u) =< J(u, u) =< J(u’, u2) for all ui e li i=1,2.

Proof From the definition (26) of Pul,u2) and the definition (28) we see that

(30)

Next, from Theorem 3, the sets p’.,I u, e} are convex, closed subsets of L’(C,
hence weakly compact. Finally the integral in (30) is concave (in fact linear) and
continuous in p,11 for fixed p,22, and convex (in fact linear) and continuous in
for fixed p Hence from the well-known results on two-person zero-sum games1"

the existence of a saddle point (u, u) follows.

6. Partial observations: A negative example. Again consider the stochastic
differential equation

(1) dx(t) f(t, x, u) dt + dB(t).

The conditions onfare as before, but now suppose that we consider the important
case where the control u can only depend upon the past history of the last m
(m < n) components ofx. More precisely, let Qt be the sub-a-algebra of generated
by all sets of the form

{ZIZ e C, zi("c e A},
where =< t, A is a Borel subset of R and n m + < n. Let %, be the set of
all causal maps u’[0, 1] x C --, U such that u(t,. is measurable with respect to
Qt. Evidently,

First of all it should be clear from the proof of Lemma 4 that the set
{exp(gu)luelgm} may fail to be convex. For, consider the two-dimensional
system

dxa udt + dB, dx2 dB2,

where the control u is allowed to depend only on x2 and must take values in the
set U [- 1, 1]. Now let u and u2 be control laws defined as follows"

Ul(t, X2) O,

o, o=<t<1/2,
u2(t, x2)=

sgn(x2(1/2)), 1/2 t 1.

It is easy to calculate that

’(g.,) 0

so that exp ’(g,1) _= and

O,

sgn (x(1/2))(x(t) x(1/2)) (t 1/2),

o__<t<1/2,
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From the proof of Lemma 4 we know that the function uz, given by uz(t) =- 0,
0 _<_ _<_ 1/2, and

satisfies

2 exp t(g,2
u2(t 1/2 < < 1Uz(t)

2 exp "(g,2) + (1 2)

exp ’(g,) (1 2) exp ’(g,,) + 2 exp ’(g,2).
Since d exp ’(g,)= exp ’(g,)(g,(t), dx(t)), g, (and hence uz) is uniquely
defined by the previous equation. Since for 0 < 2 < 1, uz depends on xl, the
assertion is proved.

Next, from Theorem 3 we see that the set {exp (g,)lu e q/m} is weakly compact
in LI(, , P0) if and only if it is weakly closed. We give a simple example to show
that in general we do not have weak closure.

Consider the two-dimensional system x (xl,x2), with u e R depending
only on x2,

where

dx(t) f(t, x)u + dBa(t), dx2(t) dB2(t),

O, t<__1/2,

f(t,x)= 2, > 1/2,
1, t>1/2,

x,(1/2) > o,
x,(k) =< o.

The control set is U [- 1, 1]. We shall define a sequence of control laws u,(t,
such that

u.(t, x2)=
f0,
( y,(x2(1/2)), > 1/2,

where the functions y, are defined later. It follows that

f fjf2(t x )uZ,(t)dt, (g..) f(t, x,)u,(t)dXl(t -where

0)n lt2 2p

2 ifxa(1/2)>O,
x(1)- x(1/2), fl

1 if x(1/2)__< 0.

Therefore,

(31) exp , exp (czfly.)exp (_1/4f12 /.2).
We shall select . such that [?,.1 1, so that (31) simplifies to

(32) exp {. exp (eft /.)exp (-1/4f12).
We define ,. as follows"
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Let "R --. R be a measurable function such that under Po, (X2(})) is uniformly
distributed over [0, 1]. For each integer n >= 0, define r/,’[0, 1] {- 1, 1} by

.()

2m 2m + 1
if-z-=< <
2n 2n

2m + 1 2m + 2
-1 if__< <2n 2n

m=0,1,...,n- 1,

m=0,1,...,n- 1.

Finally, let

n(X2(21--))-- Y/n((X2(}))).

LEMMA 10. exp (, converges to 1/2 [exp (aft) + exp (--aft)] exp (--1/4f12) in the weak
topology of LI(, z, Po).

Proof. Let A, Aa, A be Borel subsets of R and let Ia denote the indicator
function of a set A. Let

I-I. Ia,(a(O))Ia(fl(O))Ia((O))(exp .)(o)Po(dto).

Now under P0 the random variables a, fl, are independent, so that

(33) 1-I, 1,4(a)IA(fl)Ia( exp (aflrl,()) exp

P(d )P(dfl)P(da

where P, P, P are the marginal distributions of a, fl, respectively. From the
way r/, is defined and the fact that is uniformly distributed on [0, 1] it follows that
for fixed a,/3,

lim exp (aflrl,()) exp
1 2

[exp (aft) + exp (-aft)] exp _f12 P(d)

uniformly for e (-m, m). It follows that exp (aflr/,({))exp (_1/4f12) converges to
1/2[exp (aft) + exp (-aft)] exp (_1/4f12) weakly in LI(R, Pc). Since the integrands in
(33) are uniformly integrable, it follows that

lim H, fR Ia’(a)Ia(fl)Ia()1/2[exp(afl) + exp (-aft)]

exp (-1/4fl2)p(d)P(dfl)P(da).

From this it follows easily that exp (aflr/,())exp (_f12) converges to 1/2[exp (aft)
+ exp (-aft)] exp (_1/4f12) weakly in L(R3, P (R) P (R) Pc) and the lemma is
proved.
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Next, by direct calculation we can show that the two-dimensional drift ,,
where ’(t) (00), 0 -< =< 1/2, and

,(t) exp 2(Xl(t)- x(1/2))+ 1/2 =< -< 1,

0

satisfies

(34) exp (,) 1/2[exp (aft) + exp (--afl)] exp (--1/4fi2).
If we define p(t) Eo(exp (’)1), then

dp(t) p(t)(,(t), dx(t)), 0 <= <= 1,

so that (34) characterizes , uniquely. Hence any control law a such that
exp (g,) exp (,) must satisfy g, so that must depend on x. Therefore the
set of densities exp (g,) with u depending only on x2 is not weakly closed in

Incidentally this example also shows that to guarantee weak closure, the
convexity condition C5 is necessary, for even though u,(t)e {- 1, 1, 0} for all t, it
is not the case for a(t).

Acknowledgments. It should be obvious to anyone who has read [3] our great
debt to V. E. Bene. E. Wong clarified many subtle points about Ito’s calculus and
suggested the proofs in 2. M. Davis caught many errors in earlier proofs. It is a
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ALMOST SURE BOUNDEDNESS OF RANDOMLY SAMPLED SYSTEMS*

R. G. AGNIEL]- AND E. I. JURYJ

Abstract. This paper discusses the almost sure boundedness of linear and nonlinear randomly
sampled systems. It is shown that if an autonomous linear randomly sampled system exhibits almost
sure asymptotic stability, then the system is almost surely bounded input-bounded output. Moreover,
for a bounded input, the second moment of the output remains bounded and this bound is easily
computable.

It is also found that linear or nonlinear systems which are almost surely asymptotically stable for a
null input remain almost surely bounded when the input consists of an uncorrelated noise with finite
variance.

Introduction. Recently, more and more attention has been devoted to sampled
data systems with a randomly variable sampling period. The sampling intervals
may be random for physical reasons, when they are contaminated by noise because
of cheap equipment ("jitter") or when the sampling is governed by a random
process such as a sonar or radar echo. In certain cases, a randomly variable period
is advantageous for economical reasons, for instance, when a time-shared computer
controls several plants.

Moreover, randomly sampled systems were considered by many authors such
as Kalman [3], Bergen [43, Bharucha [5] and others. In [3], Kalman repeatedly
applies the Schwarz and Minkowski inequalities to prove that for an autonomous
system which shows stability of the second moment of the output, this second
moment remains bounded when a bounded input is applied to the system.

Following Bucy’s idea [6], [7] ofusing the submartingale convergence theorem,
in this paper we will prove that not only the second moment remains bounded,
but the output is almost surely bounded as well.

Moreover, it will be proved that a large class of linear or nonlinear randomly
sampled systems, shown to be almost surely asymptotically stable with a null
input, remain almost surely bounded when the input consists of an uncorrelated
noise with finite variance.

1. Stochastic stability concepts [8]. Let to < tl < t2 < t3 < < t.
< t,+l < be a discrete sequence of strictly ordered random times, and let
X(n, Xo,no) be a discrete sequence of random vectors at time t, such that
X(no, Xo, no) Xo and satisfying the vector difference equation

X(n + 1, Xo, no) fiX(n, Xo, no), r,,

where the r,’s are a sequence of random vectors and the u,’s a sequence of input
vectors.
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Let 0 be an equilibrium solution, i.e.,

f[O,r,,O] =0 for alln.

The equilibrium solution Xe 0 is said"
(a) to be almost surely stable if given 5, 5’ > 0, there exists 6(5, 5’, no) such that

IlXo < implies

P[sup IlX(n, Xo, no)ll > ’] < ,
>=no

where P[. denotes the probability and I1" is a vector norm;
(b) to be almost surely asymptotically stable if
(i) it is almost surely stable,
(ii) there exists 6’ > 0 such that Xoll < 6’ implies

IIX(n, Xo, no)ll-0"
(c) to show stability of the p-th moment if given e > 0, there exists 6(5, no)

such that Xo < implies

sup E[llX(n, Xo, no)ll

(d) to show asymptotic stability of the p-th moment if
(i) it shows stability of the pth moment,

(ii) there exists 5’ > 0 such that IIXol < ’ implies

lim E[llX(n, Xo, no)ll p] 0;

(e) to be almost surely bounded input-bounded output if for any IXoll <
and any almost surely bounded input,

sup IlX(n, Xo, no)ll < a.s.

In what follows, any of these modes of stability will be said to hold absolutely
if true for a null input.

2. Stability of linear randomly sampled systems.
2.1. Description of the system. Consider the closed loop sampled data system

comprised of a random sampling and hold device followed by a time invariant
plant and unity feedback (Fig. 1). This system has the following properties:

Random sampling

Tn

FIG. 1. Linear randomly sampled system
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(a) Sampling process: The successive sampling intervals are stochastically
independent, identically distributed, and are denoted by To, T1, T2, ..., T, ....
The sampling times are denoted by to, l, t2,"-, tk, (Fig. 2). The different
distributions and their practical motivation are described by Agniel [8]. Since the
successive periods are identically distributed, the expectation of any function of
T is independent of k.

t To I. T, .l Tn-I l
_1" T T ,’!
o 2 t3 tn_l tn t

FIG. 2. Sampling process

(b) Equation of the system: Following Kalman and Bertram’s approach [9],
we have the system equations

X{k + 1)= [G(k) + h{k)a’-]X{k)+ h{k)r(tD,

(1) y(k) a’X(k), k 0, 1,2, 3,...,

x(0) Xo,

where X(k) is the state vector at time tk,
G(k) a__ G(TD is an n n matrix continuous in T,
b(k) =a h(TD is an n-dimensional vector continuous in T,
a is an n-dimensional constant vector,
r(&) is the input at time t.
2.2. Absolute stability of linear randomly sampled systems. Suppose the

input r(t) 0 for all < 0. Let

K X’(k)BX(k),

where B is a symmetric positive definite matrix.
Taking V as a stochastic Lyapunov function and by a trivial application of

Bucy’s results [6], [7], the linear system described in 2.1(b) is almost surely
asymptotically stable and shows asymptotic stability of the second moment if there
exist positive definite matrices B and Q such that

(2) E[{G(k) + h(k)a’}’B{G(k)+ h(k)a’}] B -Q.

It was shown by Agniel and Jury [10 (or our Appendix B) that this can be done
provided the eigenvalues of

EE{G(k) + h(k)a’} (R) {G(k)+ h(k)a’}]
lie inside the unit circle, (R) denoting the first Kr6necker product of matrices.

By using the same reasoning as in Kalman and Bertram 11], we see that
condition (2) is equivalent to

(3) EE{G(k) + h(k)a’}’B{G(k) + h(k)a’}l -B <= O,
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where r/is a scalar defined by

1
(4) minEE{E(G(k) Jr- h()a’)’B(G() -l--

where r/> 1.
In conclusion, (2) implies for a null input that

(5) EkV+I V/r/__< 0, r/> 1, k 0, 1,2,3, ...,
where Ek( denotes the conditional expectation given the a-field Nk, which is
the a-field generated by X(1), X(2), ..., X(k). (See Bucy [6], [7] or Lo6ve [12].)

2.3. Stability for a bounded input. Suppose the system is almost surely
asymptotically stable and shows asymptotic stability of the second moment for a
null input, i.e.,2

(6) sup 12i{E[(G(k) + h(k)a’)(R) (G(k) + h(k)a’)]}l < 1.

Suppose the system is now driven by a bounded deterministic input.
Consider the same Lyapunov function V X’(k)BX(k). We have

(7) EV 1
+1 --V EX’(k + 1)BX(k + 1)- X’(k)BX(k).

Since the sampling intervals are independent, and by properties of conditional
expectations (see LoOve 12, p. 350]), we get (using (1))

EV+I -V X’(k)E[(G(k) + h(k)a’)’B(G(k) + h(k)a’)]X(k)

(8) + 2E[h’(k)B(G(k) + h(k)a’)X(k)r(tk)

+ EIh’(k)Bh(k)]r2(t) 1-X’(k)BX(k),
which implies

(9)

with

(0)

1
E V+1

+/-V E[h’(k)Bh(k)]r2(t) X’(k)OX(k) + 27’X(k)r(t)

1
0 E[(G(k) + h(k)a’)’B(G(k) + h(k)a’)] B,

(ll) /’= Eh’(k)B(G(k)+ h(k)a’)].

Equation (9) can be rewritten as

/ ,’ p Lr(t)J"
In this case, k is the a-field generated by X(k) only. The derivation remains valid for sampling

periods which are not independent.
Condition (6) is necessary and sufficient for absolute stability of the second moment [5]. However,

it is only sufficient for a.s. absolute stability [5], [10].
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Using the results of Gantmacher [13, pp. 46, 306], we see that the right-hand
side of (12) is negative definite if

(i) 0 is negative definite, which is always verified by our assumption (the
system is absolutely asymptotically stable, i.e., inequality (3) is satisfied);

(ii) p > -7’0-17 > 0.
Therefore,

(13) EkV+ -1V Ck < 0 a.s. for all k

with Ck [E{h’(k)Bh(k)} + p]r2(t). >= 0, and since [r(t)[ _< M < oo, we have

1
(14) EkV+ -V C < 0 a.s. for all k

with C supk C <= [E{h’(k)Bh(k)} + p]M2 < .
It is not necessary to compute 0-1 since a close bound for p can be found by

writing

The properties of systems satisfying inequality (14) will be studied in 4 and the
following theorem will be proved.

THOe,EM. For the system described in 2.1"
1. V is almost surely boundedfor all k.
2. E( V) is bounded jbr all k and

e _<_sup Vo

3. IIX(k)ll is almost surely bounded for all k.
4. E[IIX(k)II ] is bounded for all k and

E[llX(k)ll < [min 2i(B)]-l sup [Cr/-i’X;BX1"
It will now be shown that linear or nonlinear absolutely stable systems satisfy

inequality (14) when the input is an uncorrelated noise with finite variance.

3. Randomly sampled systems with a noise as an input.
3.1. Description of the input. Randomly sampled systems where the input is

uncorrelated noise with zero mean and finite variance will now be investigated.
Such noise is different from white noise since the variance is finite, and then does
not require infinite energy.

This input noise will be denoted by r(t) and it satisfies the following conditions"
(i) r(t) has zero mean, i.e., E[r(t)] 0 for all t;
(ii) r(t) is uncorrelated, i.e., E[r(t)r(t + r)] 0 for all and all r > O;

(iii) r(t) has finite variance, i.e.,

0 <_ E[rZ(t)] <= C1 <= for all t,

C1 being a positive constant;
(iv) the input and the sampling process are independent.
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kocr

plc nt Y

FIG. 3. Nonlinear randomly sampled system

CLAIM. For linear or nonlinear randomly sampled systems shown to be almost
surely asymptotically stable for a null input, (14) is verified when the input consists

of the noise described in 3.1.
This claim will be proved for a particular configuration. Consider a closed

loop sampled data system with a random sample and hold element followed by a
time invariant nonlinearity and a plant with unity feedback (Fig. 3). The system
satisfies the following assumptions:

(i) the sampling intervals are independent and identically distributed;
(ii) the nonlinearity is differentiable, of sector type and has bounded slope,

i.e., if m(a) is the output of the nonlinearity for an input a,

(15) Idm/dal < K,

(16) 0 <= am(a) <= koa2"

(iii) the input noise is described in 3.1;
(iv) the linear plant is time invariant, i.e. (see for instance Kalman and

Bertram [9]),

(17) X(k + 1)= G(k)X(k)+ h(k)m(ak)

with the same notation as in 2.1, and

(18) m(ak) m[a’X(k) + r(tk)].

Consider the stochastic Lyapunov function l/k X’(k)BX(k), where B is a
positive definite matrix.

If the system has been proven to be almost surely asymptotically stable for a
null input, then there exists 3 a positive definite B such that (see Agniel and Jury
E0])

1
(19) EkVk+l ---Vk _--< 0 a.s. forallk, r/ > 1,

The necessity of the existence of a Lyapunov function can be proved by an analogy with the
Massera theorem (see [11, p. 379]).
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(20) + E[h’(k)Bh(k)3m2(a’X(k)) <= 0 for all k a.s.

If the input r(t) is as described in 3.1, then

E V+ E{[X’(k)G’(k)BG(k)X(k)3
(21) / 2h’(k)BG(k)X(k)m[a’X(k) + r(tk)]

+ h’(k)Bh(k)m2[a’X(k)+ r(tk)]}.
The matrix G’(k)BG(k), the vector h’(k)BG(k) and h’(k)Bh(k) are Borel functions

of T; moreover, the a-field induced by T and M are independent by assumption.
By properties of conditional expectations (see Lo6ve [12, pp. 349, 350]),

E V+ X’(k)E[G’(k)BG(k)]X(k)

(22) + 2E[h’(k)BG(k)]X(k)Em(a’X(k) + r(t))]

+ E[h’(k)Bh(k)]E[m2(a’X(k)+ r(t))l a.s.

Since the nonlinearity is differentiable, we can apply MacLaurin’s formula to
get

(23)

with

m[a’X(k) + r(t)] m[a’X(k)] + (O)r(tk)

Ithl--Idm/dal =<K < by assumption (from (15)) and 0e[a’X(k),
a’X(k) + r(t)].

Since the sequences {r(t,)} and {T} are independent by assumption, and by
using the properties of r(t) and the fact that m(a’X(k)) is M-measurable, we obtain
(see Lo6ve [12, pp. 348, 349, 350])

(24) E’{m2[a’X(k) + r(tk)]} __< m2[a’X(k)] + K2C1 a.s.,

(25)

then

Ek[m(a’X(k) + r(tk))] m(a’X(k)) a.s.

1V <= X’(k){E[G’(k)BG(k)] 1B}X(k)EkV+
r/

(26) + 2E[h’(k)BG(k)]X(k)ma’X(k)]

+ E[h’(k)Bh(k)][m2(a’X(k))+
and from (19),

(27) E V +

for all k, a.s.,

-V E[h’(k)Bh(k)K2C1 < 0

We obtain an equation of type (14) with

C E[h’(k)Bh(k)]K2C > O.

for all k, a.s.
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The same procedure can be applied successfully to a large class of system
configurations and Lyapunov functions; in particular,

linear randomly sampled systems,
nonlinear randomly sampled systems with nonlinear element in the feedback

loop,
nonlinear randomly sampled systems with a stochastic Lyapunov function

in the Lur6 form as considered by Agniel and Jury [10], Kushner and Tobias

It can be shown that the constant C in inequality (14) is proportional to C in
most cases, and the physical interpretation of this remark will be illustrated in 5.

For linear systems, this property remains true if the system has an output
consisting of a bounded signal with a noise as described in 3.1. Of course, this
property is not true for nonlinear systems, but for some simple inputs, one can
sometimes circumvent this difficulty by considering the deterministic signal as an
initial condition.

It will be shown in the next section that for the class of systems considered
which have been shown to satisfy equation (14):

1. The sequence V (k 0, 1,...) is almost surely bounded;
2. EV is bounded for all k and EV =< sup [C(rl/rl 1)), Vo];
3. ]]X(k)ll remains almost surely bounded.

4. Properties of systems described by E V+ l/q)V C < 0 a.s.
k 0, 1,2,...,n.

4.1. Properties of Vk.
THEOREM 1. F is almost surely bounded.
Proof. As it is, {Vk} is not supermartingale. Consider {Wk} defined by

(28) w K-cq-1
Obviously, W and V are measurable with respect to the same a-field Mk.

Since conditional expectations are a.s. linear operators and since the conditional
expectation of a constant is a.s. equal to this constant (see Lo6ve 12, pp. 347, 348]),
inequality (14) becomes

(29) EW+ W < 0 a.s.,

i.e., W is a supermartingale satisfying an equation similar to (5). It is deduced that

(30) e(-Wo) _-< e(-w) < __< e(-) =< ...,
and recalling that V is positive for all k, then

(32) E(IWI) E(W + W;) < C + EV.q-1

(31) E(-W)= E(W; W)= C rl EV,
q-1
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Summing up, one has

(33) E(-W)+ <C- r/
<or sincer/> 1

q-1

The submartingale convergence theorem (see Appendix A) can now be applied
to the submartingale {- W} to obtain

(34) -W C r/ V--W < ,

V-V< ov a.s.,

(37) EV < - + Cr/_l 1
rik+

By a straightforward optimization procedure, (37) implies

(38) EV <__ sup Cq Vo for all k.

4.2. Properties of X(k).
THEOREM 3, IIX(k)ll is almost surely bounded for all k.
The proof is trivial since it is known that Vk is a stochastic Lyapunov function

if there exist nondecreasing functions (. and fl(. such that (0) fl(0) 0,

(39) (llX(k)[I)-_< V _<_/(llX(k)ll).

If Vk X’(k)BX(k), then (X’(k)BX(k))/2 is a norm for X(k), and then
V IlX(k)ll z < oe for all k, a.s.

THEOREM 4. EllX(k)ll is bounded for all k.
In the general case, since V is positive definite, an (. which is convex can

be found such that

(40) (llX(k)l[) -<_ V for all k.

By applying Jensen’s inequality,

(41) (E{IX(k)ll) < EV < sup IVo, C rl 1r/--1

and the procedure is as in Theorem 3.

(36)

and by induction,

(35)

and from (28) and (30), V < a.s. for all k.
TnEOREM 2. EV remains bounded for all k and

EV=<sup Crl_ i’V
Proof. Inequality (14) implies (see LoOve [12, p. 341])

rlEV < EV + tiC,
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However, in most cases of interest, is a quadratic form or a Lur6 form (see
Agniel and Jury [10]); for a quadratic form, if V X’BX,

I q XBXlr/ 1’(42) EUIIX(k)l123 <= [min2(B)] sup C

i.e., a bound has been found for the second moment of IIX(k)ll. The same kind of
result can be obtained for a Lur6 form.

5. Conclusions.
5.1. Linear randomly sampled systems. For periodically sampled systems,

it is well known that if (see (1))

(43) ]2i{a(Z)}l < 1,

then:
(i) the unforced system is asymptotically stable in the large,
(ii) there exists a unique solution to the matrix equation

(44) G’(T)BG(T) B Q,

i.e., given Q positive definite, there exists a unique positive definite B such that
(iii) the system is bounded input-bounded output stable.
For randomly sampled systems with independent identically distributed

sampling intervals, it is shown that if

(45) I.i{E[G(k) (R) G(k)3}l < 1,

then:
(i) the unforced system is almost surely asymptotically stable and also

shows stability of the second moment (see Kalman [3], Bharucha [5]);
(ii) the matrix equation

(46) E[G’(k)BG(k)] B Q

has a unique solution and Q positive definite implies B positive definite (see
Agniel and Jury [10], or our Appendix B);

(iii) the system is almost surely bounded input-bounded output stable and also
shows boundedness of the second moment for a bounded input (see 2 and 4).

In other words, with respect to almost sure stability and stability of the first
and second moments, condition (45) is similar to condition (43) for periodically
sampled systems.

It was shown by Agniel and Jury [10] that condition (45) is a necessary
assumption to show the stability of nonlinear randomly sampled systems. It will
be proved in a forthcoming paper that this condition is of interest to show almost
sure stability by a Popov-type method.

5.2. Nonlinear randomly sampled systems. It was shown that provided the
autonomous system was proven to be almost surely stable by a Lyapunov function
approach, a noise with zero mean and finite energy introduced bounded
disturbances.

The bound for EV is sup [C(rl/(rl 1)), Vo]. This introduces an interesting
physical interpretation, i.e., the bound is given by the major cause of disturbances,
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Vo representing the initial conditions and C(rl/(rl- 1)) the size of the input.
Moreover, it is not difficult to show (see Agniel [8]) that the bigger r/is, the faster the
system converges to its equilibrium for a null input and the smaller is the parameter
domain of stability. Here, the bound C(rl/(rl 1)) is continuously decreasing when
we increase r/> 1, i.e., when we make the system more and more stable.

5.3. Related work. In his book, Kushner [14] gives a comprehensive study
of equations of type (14) for finite time stability and excursion times.

Appendix A.
SUBMARTINGALE CONVERGENCE THEOREM (see Love [12, p. 3933). Let the

random variables Xn form a submartingale sequence.

(i) If sup EX,+ < o, then Xn 52; X < oe with

EX < sup EX +

EIXI <-_ sup EISl,
(ii) X.-- X where r >_ if and only if the IXl are uniformly integrable, and

then X.- X.

Appendix B. We wish to solve

(B.1) E[G’(k)BG(k) B (2.

Problem. Given a positive definite matrix Q, under what conditions can we
find a positive definite matrix B satisfying (B.1)?

Existence and uniqueness. Although G(k) is not necessarily symmetric,
G’(k)BG(k) is symmetric and it does not affect the generality of the proof to assume
B and Q symmetric (see Gantmacher [13, p. 294]). If bij and qij are the general
elements of B and Q respectively, (B.1) can be rewritten as

(B.2)

bll

b22
(EI-) (R) ()3) r] b3

b2n
b33

b3n

_b

q12

ql,,

q22

q23

q2n

q33

q3n
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where G(k) (R) G(k) is the first Kr6necker product of G(k) by itself. From (B.2) we
see that given the qij’s we can determine the bij’s provided

(B.3) 2,[E{G(k) (R) G(k)}] -# 1.

Since B and Q are taken symmetric, we can determine B completely from Q.
Condition for a positive definite B. Consider the linear system described by

X(k + 1)- G(k)X(k),
(8.4) X(0) Xo, k 0, 1,2, 3,...,

where X(k) is an n-dimensional vector with components xl(k), XE(k), xn(k) and
G(k) is an n n matrix continuous in Tk. If B is positive definite, condition (B.1)
implies that the system (B.4) shows stability of the second moment, and it is
necessary that (see Kalman [3], Bharucha [5])

(8.5) sup 12i{g[G(k) (R) G(k)]}l < 1;

then,

(B.6) E[x(k)x(k)] --. 0 as k --. oe for all i,j 1,2, ..., n.

Conversely, assume that (B.5) is satisfied and B is not positive definite. Then
there exists a state Xo such that X;BXo < 0. This implies that

E[X’(1)BX(1)] X)BXo X)QXo < 0

since Q is positive definite.
By induction,

E[X’(k)BX(k)] < X;BXo < 0 for all k 0, 1,2,...,

which contradicts (B.6). Therefore B must be positive definite.
In conclusion, given a positive definite matrix Q, there exists a unique positive

definite matrix B satisfying (B.1) provided (B.5) is satisfied.
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THE SOLUTION OF A QUADRATIC PROGRAMMING PROBLEM
USING SYSTEMATIC OVERRELAXATION*

COLIN W. CRYER"

Abstract. Let A be a real symmetric positive definite n n matrix and b a real column n-vector.
We consider the following problem" Find real column n-vectors x and y such that

Ax=b+y,

xry=O, x_>O, y>=O.

Problems of this type occur when the method of Christopherson is used to solve free boundary problems
for journal bearings. In such cases, A is a "finite difference" matrix.

We present a method for solving the above problem which is a modification of systematic over-
relaxation. This method is particularly suitable when A is a finite difference matrix.

1. Introduction. Let A (aij) be a real symmetric positive definite n n
matrix and b (hi) a real column n-vector. We shall be concerned with the fol-
lowing problem.

Problem 1. Find real column n-vectors x (xi) and y (yi) such that

(1.1)

(1.2)

(.3)

Ax-y=b,

xry 0,

x>__0, y>=0.

It is known that Problem is equivalent to a quadratic programming problem,
Problem 2 (see 2). Both Problems 1 and 2 have been extensively studied from
the viewpoint of linear and quadratic programming (Cottle and Dantzig [1],
Hadley [5, p. 212], and Lemke [6]) and there are many methods available for
solving these problems.

Our interest in Problem arose because problems of this type occur when the
method of Christopherson is used to solve free boundary problems for journal
bearings (Cryer [3]). In such cases, Problem has certain features which are
unusual in nonlinear programming problems:

(i) A is a large matrix, perhaps a 10,000 10,000 matrix.
(ii) A is a "finite difference" matrix. Typically, each row of A will have no

more than five nonzero elements. However, A-1 is a full matrix.
(iii) Because of the physical significance of the solution vector x, most of the

components x may be expected to be positive.
When these features are present, the conventional methods for solving Problems
and 2 have substantial disadvantages.

In {} 3, we introduce a method for solving Problem which is particularly
suitable when A is a "finite difference" matrix, since the method is a modified
version of S.O.R. (systematic overrelaxation). In 3, we prove that this method

* Received by the editors February 9, 1970, and in revised form November 30, 1970.

t Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706. This
work was supported by the Office of Naval Research under Contract N00014-67-A-0004.
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converges, and in 4, we study how the rate of convergence depends upon the
relaxation parameter.

2. Existence and uniqueness of solution. It is convenient to introduce the
following quadratic programming problem.

Problem 2. Find a column n-vector x which maximizes

(2.1) f(x) brx (xrAx)/2,

subject to the constraints

(2.2) x _>_ 0.

THEOREM 2.1. Problems and 2 are equivalent: if{x, y} is a solution ofProblem
1, then x is a solution ofProblem 2; ifx is a solution ofProblem 2, then {x, Ax b}
is a solution ofProblem 1.

There exists a unique solution to Problem 2 (and hence to Problem 1).
Proof Since A is positive definite, the equivalence of Problems and 2

follows from the Kuhn-Tucker theory (Hadley [5, pp. 212-214).
Since A is positive definite,f(x) is strictly concave (Hadley 5, p. 213]). Hence,

since x 0 is a "feasible" solution of Problem 2, there exists a unique solution to
Problem 2. The proof of the theorem is therefore complete.

3. Application of S.O.R. We study the following algorithm for solving
Problem 1.

ALGORIXHM 1. Choose a column n-vector xt)= (xl)), where x)>= 0.
Choose a relaxation parameter o3, where 0 < co < 2.

Generate a sequence of column n-vectors xk) (xk)), r) (r)), y) (y)),
k 1, 2, ..-, using the equations,

(3.1) +1) b 2 aijx}’+’’ aijxJ),
j=l j=i

(3.2) Xlk+ 1) max {0, xl) + corl+ 1)/aii},

(3.3) ylk +1) rlk +1) _+_ aii(xl, +1)

(We remind the reader that we have assumed that A is positive definite so

thataii>0forl =<i=<n.)
Algorithm 1 is a generalization of methods used by Christopherson [2] and

Gnanadoss and Osborne [4]; a brief account of the history of the algorithm is
given in Cryer [3].

Algorithm can be interpreted in two ways. On the one hand, Algorithm
consists of applying S.O.R. to the equations Ax b with the proviso that the
vectors x() should be nonnegative. On the other hand, as will be seen in the proof
of Theorem 3.1,f(x(+ 1)) >= f(x()), so that Algorithm 1 is a method for maximizing
f(x) subject to the restraint that x => 0. Of course, it is not surprising that two
interpretations of Algorithm 1 exist, since it has been known for a long time
(Temple [10]) that there is a connection between relaxation methods and the
minimization of quadratic forms.
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THEOREM 3.1. Let X(k) and y(k) be generated by Algorithm 1. Then X(k)-’+ X
and y(k)

_
y, where {x, y} is the solution ofProblem 1.

Proof The method of proof is similar to that used by Schechter [8], [9].
For any column n-vector u let

(3.4) G(u) 2f(u) urAu 2ub.

Then, direct computation shows that if u and v are column n-vectors,

(3.5) G(u)- G(v)= (u v)A(u v) + 2(u v)r(Av b).

It is convenient to introduce the vectors X(k’/) (xlk’l)), where

(3.6) (k+ 1,/) { xlk +l) if 1 =< =< 1,
--i

xlk) if/ < _<_ n

fork>_0and0=<l=<n. Then,

x(k+ 1,0) x(k), x(k+ 1,n) x(k+ 1),

rlk+ X) [b Ax(k + 1,i-

Ixlk + I) (k) (k +x ]au/ri
OOk + 1,i

(3.7)

and, from (3.1),

(3.8)

Let

(k + 1)/aiiy(k + XIk) + 0Ok + iri

0 0Ok+ 1,i

Using (3.5), (3.6), (3.8) and (3.10), we find that

G(x(k + 1,i)) a(x(k + 1,i- 1))

(3.9)

Then, noting (3.2),

(3.10)

and

(3.11)

and

(3.12)

IX(k+ 1,i) X(k+ 1,i- 1)]TA[x(k+ 1,i) X(k+ 1,i- 1)3

+ 2[xCk + 1,i) x(k + 1,i- 1)3T[Ax(k+ 1,i) b],

G(xCk + x,i)) G(x0, + 1,i- 1))

aii[xlk+l) Xlk)]2 2[xlk+l) Xlk)]rlk +1)

0Ok + 1,i(2 (-Ok + 1,/)Erlk + 1)32/ai,.

(3.13) G(x(k’l)) aoo.

Remembering that 0 < 09 < 2, it follows from (3.11) and (3.12) that G(xtk+ 1,i))
__< G(xtk+ 1,i-1)). Therefore, the sequence {G(xtk’i))} is monotone decreasing. But A
is positive definite so that G(u) is strictly convex and hence bounded below.

Consequently, there is a constant, G say, such that
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Next, we prove that

(3.14) [xlk+ 1) xlk)[ [a(- 1 + 2/o)]l/2[G(x(k+ 1,i-1)) G(xtk+ 1,i))]1/2,

where

(3.15) a min au

If XIk+ 1) xlk), then (3.14) is trivially true, so that we need only consider the case
when xlk+ 1) :A x}k). But then, from (3.10), Ok+ 1,i :/: 0, SO that, from (3.10), (3.11),
(3.12) and (3.15),

(3.16)
G(x(k+ 1,i- 1)) G(x(k+ 1,i)) (_ 1 + 2/co+ 1,i)aii[Xlk+l)

>__ (- 1 + 2/o))a[xlk + Xk)2.

Inequality (3.14) follows immediately from (3.16).
Noting (3.13), it follows from (3.14) that

(3.17) xk+ 1) xk) ._ 0 as k c, 1 <_ __< n.

Now, let x be any limit point of the sequence {xtk)}. Then there is an increasing
sequence of integers {kp}, p 1, 2, ..., such that

(3.18) X(kp)’-+ X as p c.

From (3.1), (3.3) and (3.18), we have that, as p oo,

r(k’) -. r b- Ax,
(3.19)

ytkp) __. y -r.

We assert that

(3.20) x _>_ 0, r =< 0.

That x > 0 follows immediately from the fact that X(k) 0 for all k. To prove that
r =< 0, suppose that this is not the case. Then there is an e > 0 and integers io and
ko such that r(k.) > e for k > ko Hence, from (3.2)-io p

!kp) .!kp- 1) > ,o)/aioio

for kp >= k’o. But this contradicts (3.17).
Next, we show that

(3.21) rTX 0.

Suppose that this is not the case. Then, noting (3.20), we see that there is an e > 0
and integers io and k’ such that -,o

r!kp) < e and --iox(kP) >= e for kp >_- k’. It follows
from (3.2) that if kp >= k’, then x(kp-io 1 >= --,ox!k") and

I ?o >iO

But this contradicts (3.17).
From (3.19), (3.20) and (3.21), it follows that {x, y} satisfies (1.1) through (1.3)

and is the (unique) solution of Problem 1.



SOLUTION OF A QUADRATIC PROGRAMMING PROBLEM 389

To complete the proof of the theorem we must show that the sequence
{x(k)) has at least one limit point. But this is a consequence of the fact that (see
(3.13)) x(k) R for all k, where R is the compact set

{x; Ix) =< (x)).
4. Determination of the optimum relaxation parameter. It is natural to

ask how the convergence of Algorithm 1 depends upon 09, and whether there is
a value of o9 for which the rate of convergence is maximized. In this section, we
partially answer these questions.

Since we make use of the theory of S.O.R., we first summarize this theory.
Let

(4.1)

and

(4.2) A =D-E-F,

where is a column m-vector, D is a diagonal m m matrix, and E and F are
respectively strictly upper and lower triangular m m matrices. Let

(4.3) ,(.) (1 co)-{(1 co)D + co’}.
For a given relaxation parameter co and initial guess io), let ), k 1, 2, ...,

denote the iterates generated by S.O.R. applied to (4.1). Let

(4.4) (k) ](k) .
Then (Varga [11, p. 59]),

(4.5) g( + ) ,(i.)g().
From (4.5) it can be seen that g() depends upon ., g,(o) and 09. The asymptotic rate

of convergence corresponding to .Z. and co is (Varga [11, p. 67])

(4.6) Roo[,o(.g.)] -log

where p[,(.)] denotes the spectral radius of o,(.). Equivalently,

(4.7) R[,o()] -log [sup lim sup
t!(o) k-

The optimum relaxation parameter, o) o)(..), is defined by means of the
relation (Vara Vll, p. 109])

(4.8) Ro[t3,o()] max R[o,()].
0<o<2

For certain classes of matrices , notably 2-cyclic consistently ordered matrices,
ogb(A) is known in terms of the eigenvalues of the Jacobi matrix corresponding to

(Varga 11, p. 110]).
Next, we introduce some notation. We set

(4.9) Z {1,2, ..., n}.
Let T c Z, B (Bij) be an n n matrix and z (zi) be an n-vector. Then TI
denotes the number of elements of T; B(T) is the ITI ]Zl submatrix ofB obtained
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by deleting those elements Bij for which q T or j q T; and z(T) is the TI
subvector of z obtained by deleting those elements zi for which q T. Finally,

(4.10) Z(z) {i t Z; z, 4: 0}.
We are now ready to consider Algorithm 1. Let {x, y} be the solution of

Problem 1, and let {x(k), y(k)} be generated using Algorithm 1. We set

(4.11) e() x() x.

From (3.1) through (3.3) and (4.11) we see that e(k) depends upon A, b, e(), and
By Theorem 3.1, e(k) 0 as k --, o for any e().

Corresponding to (4.7) and following Ortega and Rockoff [7 we define the
asymptotic rate of convergence corresponding to A, b, and 09, to be

(4.12) R(A, b, 09) -log {sup lim sup e(k) l/k).
() k-

LEMMA 4.1. Given x(), there is an integer ko such that jbr k >= ko,

(4.13)
xl)> 0 if it X,

xl)= 0 and ylk)> 0 if it Y,

where X Z(x)and Y Z(y).
Proof Let x() be given. Let r() be as in Algorithm 1. Since x) x and

r) -y, it follows that there is an e > 0 and an integer k such that if k >= k l,

then

xlk)> 0 if it X,

ylk)>o and rlk) < - if tY.

aiix ]/(60).Noting (3.2), we see that (4.13) holds if ko => kx + + [max (1)

THEOREM 4.2. Let A and b be such that

(4.14) Ixl + lY,I > O, <= <= n,

where {x, y} is the solution of Problem 1. Let X Z(x).
Then,

oo if X is empty,
(4.15) R(A, b, o) _)Ro(P,[A(X)]) otherwise.

Proof Let x() be given. Then it follows from Lemma 4.1, (3.1), (3.2) and
(4.14), that, for k ko,

e(k + 1)(X t/(A(X))e()(X),
e(+ 1)(y) 0.

The theorem follows from (4.7) and (4.12).
Condition (4.14) is satisfied by "almost all" A and b, and the following theorem

covers an important subclass of the remaining problems.
THEOREM 4.3. Let

(4.16) 0<o)__<
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and

(4.17) aij <-_ 0 .for j.

Then, R[A, b, col __< R[i2,,,(A[T])], where T Z- Z(y).
Proof Let x() be given. Using an idea due to Gnanadoss and Osborne [4],

we see from Lemma 4.1, (3.1) and (3.2), that for k >__ ko,

e( + )(r) C + le(/(r),
(4.18)

e(g+ 1)(y) 0.

Here, C( + 1) is a IT[ x IT[ matrix such that

(4.19) C( / 1) 1-[ H( / ’)L());
/=1

L() are [T[ x IT[ matrices such that

(4.0) e,o[A(r)] ");
/=1

and H( + ’) is a IT[ x [T[ diagonal matrix with diagonal elements equal to either
H(+ 1,))0 or In particular, when T Z, then L() (L)) and H( + l) diag(

where
ifi=jandi l,

1-o9 if i--j-l,

--coalj/all if/= land j -- l,

0 otherwise,

ifi=/= l,

H(k+ 1,/) if and XIk + 1) > 0ii

0 otherwise.

From (4.16) and (4.17), it follows that Ltg >= 0; that is, the elements of L(g)

are nonnegative. Hence, we see from (4.19) and (4.20) that 0 =< Ctk/ 1) _<_ ,[A(T).
The theorem follows immediately.

On the basis of Theorems 4.2 and 4.3 we make the following conjecture.
CONJECTURE 4.4. R[A,b, col _< R[.o(A[T), where T Z- Z(y), and

{x, y} is the solution of Problem 1.
Theorems 4.2 and 4.3 provide some help in choosing co so as to maximize

the rate of convergence of Algorithm 1.
If (4.14) holds, then we see from Theorem 4.2 that we should set co coopt,

where

(4.21) coop, co[A(X)].
Of course, (4.21) does not give coopt explicitly, since, in general, neither X nor
co[A(X)] is known explicitly. However:

(i) There are several methods of estimating an optimum overrelaxation
parameter co(.g,). One approach is to obtain rigorous a priori bounds on the
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spectral radius of the Jacobi matrix corresponding to . Another approach is to
choose a value for the overrelaxation parameter co, iterate a number of times, and
use the information gained to estimate cob(i,). Details and references are given by
Varga [11, p. 283].

(ii) If A is 2-cyclic, consistently ordered, and satisfies (4.17), then it follows
from the Perron-Frobenius theory for nonnegative matrices (Varga [11, p. 26])
that, for any X Z, cob(A[Xl) N cob(A). Remembering that it is in general better
to overestimate coopt rather than underestimate coopt (Varga [11, p. 1143), we can
estimate coopt by cob(A).

(iii) After performing k iterations of Algorithm 1, the set X can be estimated,
according to Lemma 4.1, by the set Z(x()).
In [3], some of these ideas were used to estimate coopt for Christopherson’s prob-
lem for n 64. The estimated value of coo, was co* 1.906, and with co co*
it was found that 146 iterations were needed to reduce the residuals rl+ 1)(see
(3.1)) to less than 10 -v. The iterations were also performed with co 1.0, 1.1,
1.2, ..., 1.9; the maximum number of iterations needed was 811 (for co-- 1.0),
and the minimum number needed was 70 (for co 1.8).

If (4.14) does not hold, then we can say much less about the choice of co.
However, if A is 2-cyclic and consistently ordered and (4.17) is satisfied, then,
from the Perron-Frobenius theory for nonnegative matrices, it follows that for
any T Z, Roo[2,o(A(T)) is a monotone decreasing function of co for 0 < co < 1.
Hence, the results of Theorem 4.3 suggest that we should choose co >= 1.
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PERTURBATIONS OF LINEAR CONTROL SYSTEMS*

JERALD P. DAUER’

Abstract. The purpose of this paper is to consider the controllability of linear control systems
which are perturbations (with respect to LP-norms) of controllable linear systems. We show that the
set of all completely controllable linear systems is open and dense in the set of all linear control systems.

1. Introduction. The problem of controllability of a linear control system

(1) A(t)x + B(t)u (it dx/dt)
defined on a bounded interval has been studied by several authors ]-[4]. Kalman,
Ho and Narendra [1], Weiss [2], and Silverman and Meadows [3] gave three basic
necessary and sufficient conditions when A and B are continuous. Conti [4]
studied the problem for A L and B Lp, 1 <= p < . Related results were
obtained by Youla [5], who studied realizations of weighting patterns with A,
B L2 (see also [6], [7]). In addition, when A and B are autonomous, Lee and
Markus [8, p. 100] showed that the set of completely controllable linear autono-
mous systems is open and dense in the set of all linear autonomous control systems.

The object of this paper is to generalize this result of Lee and Markus to non-
autonomous linear systems. In 3 we show openness with respect to LP-norms for
linear systems defined on bounded intervals. We give a density theorem in 4
which also proves an assertion of Kalman, Ho and Narendra ]. They commented
that intuitively linear systems are completely controllable. In fact, as they point
out, there are many linear systems that are not completely controllable, such as
(t) 2. However, if the system represents a physical process that involves
approximated parameters, the result of 4 shows that we can assume that the
system is completely controllable.

2. Preliminaries. Suppose system (1) is defined on a bounded interval
I- [to,tl]. The state vector function x is n-dimensional, the control vector
function u is m-dimensional, and A and B are n n and n m matrix functions
which are (Lebesgue) integrable on I. Let X be the fundamental matrix solution
of z A(t)z such that X(to) is the identity matrix.

Iff is a real-valued measurable function defined on I and r is such that __< r
< o, then define

[If 1,. If(s)l d

For r , define f[[r- ess sup {[f(s)l’sI}. Let U be the set of all such
functions fsatisfying f II < o.

System (1) is said to be completely controllable in U if for every x0, x E",
Euclidean n-space, there exists a control function u s U such that the solution x of

c A(t)x + B(t)u(t),

X(to) Xo
satisfies X(tl) X1.
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Let p be given, 1 =< p <_ , and let q satisfy lip + 1/q 1. For yeE", let
y* denote the transpose of y.

The following result is due to Conti [4].
THEOREM 1. Let 1 < q <__ and assume B eLp. System (1) is completely

controllable in Lq ifand only if

inf{ f
/P

ly*X(t)X- (s)B(s)l p ds

A set of vector functions {xl, ..., Xk} is said to be linearly independent over I
if for every nonzero vector (a l, ..., ak) e E there exists a subset J of I with positive
(Lebesgue) measure such that

k

ax(t) # 0
i=1

for all e J.

Weiss [2] and Kalman, Ho and Narendra 1] proved results similar to the
following two theorems. Their proofs can be extended to these results.

THEOREM 2. Assume B eL. System (1) is completely controllable in L
if and only if the rows of the matrix function {X- l(t)B(t)} are linearly independent
over I.

THEOREM 3. Let 2 <__ p <= and assume B eLp. System (1) is completely
controllable in Lp ifand only if

w , x-(s)(s)(s)*x- (s)*

is positive definite.
In the next section, we will use the following two lemmas in connection with

the preceding two theorems.
LEMMA 1. Let {x,..., Xk} be a set of measurable vector fitnctions in E"

which is linearly independent over I. Then there exists e > 0 such that any set oj
vector functions {Yl, "’", Yk}, satisfying ]yi(t)- )i(t)l < e for 1 <= < k and almost
every e I, is linearly independent over I.

Proof Let the function f be defined by
k

f(a, G(t)) aixi(t),
i=1

where a (a l, ..., ak)eEk and G(t)= (xi(t), ..., Xk(t))is an n x k matrix
function.

Fix an arbitrarily chosen ae cS(0), the boundary of the open ball with
center 0 and radius 1. Then there exists a set Ja I with positive measure and a
number ba > 0 such that If(a, G(t))l >= bafor all e J,. Further, by Lusin’s theorem,
there exists a compact set K I such that G is continuous on Ka and such that
the set K, f-I J, has positive measure.

Since f is uniformly continuous on the compact set

9.I cSl(0) x {n x k matrices H’IH G(t)l =< for some e K,},
there exists e, > 0 such that if e Ka, (c, Hc)e 9.1 and la cl + IHc G(t)l < e,,
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then

If(a, G(t)) f(c, Hc) < b,/2.

Hence if e K, f3 J,, we have If(c, H)I _>- b,/2.
Covering the compact set c3S1(0) with the open balls So/2(a), for a e cSl(0),

gives us a finite subcover with centers a,..., at. Let
(1/2k) min {ei’l _<__ <= r}.
Without loss of generality, suppose [yi(t)- xi(t)[ < for all t I. Let H(t)

(Yl(t), yk(t)).
Then, given any a c3S(0), there exists e 1, ..., r} such that la al < i/2.

Hence, la -ail + IH(t) G(t)l < ei for all e Ka, Ja," Therefore, If(a, H(t))l
>= bi/2 > 0 for all

Taking a Ek, a O, we have a/lal S(O). Using the above argument, there
exists i {1,..., r} such that

b

al j=
ajyj(t) --S_> > 0 for all 6 K,., f-I J,.,.

Hence {y, ..., yk} is linearly independent.
The following lemma can be easily shown.
LEMMA 2. Suppose W is a positive definite n n matrix. There exists e > 0

such that if the n x n matrix V satisfies W- VI < , then V is positive definite.
3. Openness. In this section, we will assume that system (1) is completely

controllable in various U spaces. We then examine the controllability of linear
systems which are perturbations of system (1). Throughout this section, C and D
will denote measurable n x n and n x m matrix functions.

The first result considers the natural setting of controllability in Lq, where
BeLp.

THEOREM 4. Suppose A L and B Lp, <__ p <= o, and assume that system
(1) is completely comrollable in Lq. There exists > 0 such that if

A-C p+ B-D ,<e,
then the system

(2) 3 C(t)y + D(t)u

is completely controllable in L.
Since the interval I is bounded, we have the following result.
COROLLARY. Assume the conditions of Theorem 4. For every r, p <= r <_ o,

there exists > 0 such that if
IIA-C/ B-DI<,

then system (2) is completely controllable in L.
Proofof Theorem 4. We first show that if IIA C is sufficiently small, then

the system

(3) y C(t)y + B(t)u

is completely controllable in Lq.
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Let Y be the fundamental matrix solution of C(t)z such that Y(to) is
the identity matrix. Then

’(t) A(t)Y(t) + [C(t)- A(t)]Y(t).

Applying the variation of parameters formula, we have

Letting M max 132(01 and N max IX- (t)l, we have

Y(t)- X(t)l - M2NIIA Gila + MN IA(s)- C(s)l Y(s)- X(s)l ds.

Thus, by Gr6nwall’s inequality, we have

(4) e(MNilA-CII)Y(t) g(t)l < M2NIIA CI1

Similarly, using adjoint equations,

(5) e(MNilA-CII)Y-a(t) X-1(01 < MN211A CIIx
Assume q > 1, and let

6 inf ly*S(t)X- X(s)B(s)l p ds

Theorem 1 states that 5 > 0 and that if ]Y*I 1, we have

>6>0.Ily*X(tx)x 1Blip
Hence IlUllp :/: 0. Therefore, using (4) and (5), we can choose e > 0 such that
if A CII < , then

21IBiI > MII Y-x S-tll / Y SllN

/ S Y Y- X- 111
Hence, for every y* such that lY*I 1, we have

> Ily*S(ta)X-aBllp
2 2

> O.[[y*Y(t)Y 1Blip

Theorem shows that system (3) is completely controllable in L for < q =< .
If q 1, then B eL(R). By Theorem 2, the rows of the matrix function

{X-l(t)B(t)} are linearly independent over I. Let > 0 be given by Lemma for
this function. Then, for sufficiently small IIA CII1, equation (5) gives

Y- ’(t) X 1(01 < for all I.

Using Lemma and Theorem 2, we have that system (3) is completely controllable
inLqforq= 1.
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Next, we show that if [1B D p is sufficiently small, then the system

(6) .f A(t)y + D(t)u

is completely controllable in Lq.
Assume that q > 1 and let M, N and 6 be as above. Let e fi/(2MN). Then,

for lib D lip < e and every y* with lY*[ 1, we have

>->0.> [y*X(tl)X BI p 2 2
[[y*X(t,)X 1D[ p

Theorem shows that system (6) is completely controllable in Lq for < q

The proof of the result for q is similar to that of the corresponding result
in the first part of the proof. Here, we need

liB- Dllo < ]]X_a
Again, we use Lemma 1 and Theorem 2 to show system (6) completely controllable.
Combining the results on systems (3) and (6) gives Theorem 4.

The following theorem considers controllability in a smaller set of controls
than the preceding result.

THEOREM 5. Suppose A L and B Lp, 2 <= p <__ , and assume that system
(1) is completely controllable in Lp. There exists e > 0 such that if

then the system

(2) p C(t)y + D(t)u

is completely controllable in Lp.
COROLLARY. Assume the conditions of Theorem 5. For every r, q <= r <= c

(in particularfor r p), there exists > 0 such that if

IIA C[[r + liB- DIIr < ,
then system (2) is completely controllable in Lp.

Proof of Theorem 5. As in the proof of Theorem 4, we will first consider
system (3).

Let Y, M and N be as in the proof of Theorem 4. Define V by

V Y- ’(s)B(s)B(s)* Y-(s)* ds.
0

If W is defined as in Theorem 3, then we have

I rl -< (2N + Y- X- 11 oo11 g-i X- 11 IB(stl 2 dso

Since I is bounded, we have IIBIl < oe implies IIBIl < oe. Thus, using (5), we can
make IW VI as small as we wish by making IIA CII sufficiently small. Since W
is positive definite, Lemma 2 and Theorem 3 show that system (3) is completely
controllable for IIA el suciently small.
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Now, consider system (6). Define P(t) B(t) D(t), let Wbe as in Theorem 3,
and let

Then

U W X- (s)B(s)P(s)*X- (s)* ds
tO

X- l(s)P(s)B(s)*X- l(s)* ds.

w- uI 211X-ll lIB IIPI
Since W is positive definite, it follows from Lemma 2 that if lib- DIl IIPII
is sufficiently small, then U is positive definite. Noting that

" X-a(s)P(s)P(s)*X- X(s)* ds

is positive semidefinite, we have that if [[B D]] is sufficiently small, then

X- (s)D(s)D(s)*X- (s)* ds

U + X-X(s)P(s)P(s)*X- (s)* ds

is positive definite. Theorem 3 shows that system (6) is completely controllable for

lIB DI] sufficiently small. Combining these results gives us Theorem 5.

4. Density. The following is a result on the denseness of completely control-
lable systems. The generality of this result is exhibited in the corollary.

THEOREM 6. Consider system (1), where A, B6 L. For each e > 0 there
exists a measurable n m matrix function D such that

]B(t) D(t)] < .for all I
and such that the system

19 A(t)y + D(t)u

is completely controllable in L
Further, given any 6 > O, we can choose D such that the (Lebesgue) measure of

{t 61 :D(t) 4: B(t)} is less than 6. Also, ifB is (piecewise) continuous, we can choose D
to be (piecewise) continuous. If B is constant we can choose D constant.

Proof Let e, 6 > 0 be given. Since B is measurable, there exists a closed set

Tx
_

I of positive measure such that B is continuous on T. Hence there exists
T
_
T and T such that the measure of T is positive, but less than 6, and such

that
]B(t)- B()[ < e/2 for all t T.

Let D1 be a matrix whose entries are algebraically independent over the
rational numbers and which satisfies

B([) D 1[ < e/2.
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Thus (the determinant) det (D 1) - 0 and

IB(t)- DI < e

Define the matrix function D by

for all e T.

B(t) for tI\T,
D(t)

D for t T.

Then det (X(tl)X-l(s)D(s)) det (X(tl)X-l(s)) det (D(s)) 0 for all s T. There-
fore, for each s T the rows of the matrix {X(tl)X- I(s)D(s)} are linearly independ-
ent. Hence, for each y*, ]Y*I 1 and each s T, we have

y*X(tl)X- l(s)D(s) O.

Since the function f(s, y*)= y*X(tl)X-l(s)D(s) is uniformly continuous on the
compact set 9.1 T x {y* "ly*l 1 }, there exists (, *)e 9.1 such that

0 < If(g, Y*)I If(s, Y*)I for all (s, y*)e 9.

Hence, for each y*, lY*I 1, we have

TlY*X(tl)X-

l(s)D(s)l ds >_ (measure of T) > 0.

Since D L1, Theorem gives the desired result.
If B is (piecewise) continuous, we can assume that T [t2, t3] for some

t2, 3 I. By defining D on a subinterval of T we can easily make D a (piecewise)
continuous function. If B is constant, define D(t) D1.

COROLLARY. Consider system (1) with A L and B Lp, <= p . For
each pair r, v, with <= r, v <= , and each e > 0 there exists a measurable matrix

function D such that

and such that the system

is completely controllable in Lv.
.f A(t)y + D(t)u

5. Remark. Suppose A, Be L 1, and let completely controllable mean
completely controllable in L. Theorems 4 and 6 show that the set of completely
controllable linear systems is open and dense in the set of all linear control systems
with respect to the LP-norm for _<_ p =< . This statement is also true if we re-
place thewords linear systems by continuous linear systems, piecewise continuous
linear systems or constant linear systems.
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BOUNDARY VALUE CONTROL THEORY OF THE
HIGHER-DIMENSIONAL WAVE EQUATION, PART II*

DAVID L. RUSSELL’

Abstract. The present work extends controllability results obtained for the wave equation in
two or more space variables in an earlier article 13]. In the earlier paper approximate controllability
was established for time T > 2To, where T is a constant related to the wave propagation speeds in
the medium, but only for three or fewer space dimensions. In the present article we establish this
result for an arbitrary space dimension. We also examine the controllability problem for T 2To,
the "critical time," and show that here controllability depends upon certain relationships between
the coefficients of the partial differential equation and the shape of the spatial domain under considera-
tion.

1. Introduction. This paper is a sequel to [13], where we began our study of
the approximate controllability of the higher-dimensional wave equation with
boundary value controls. There, and here, we let f be a bounded, open, connected
domain in R" whose boundary, F, is an analytic (or C and piecewise analytic)
(n 1)-dimensional surface in R". We parametrize F with an (n 1)-dimensional
vector variable s and indicate points on F by x(s). Integrals over f are written as

a(" )dx, while integrals over F are written r(" )ds. Taking to be a relatively

open subset of F and T a positive number, we define an admissible control to be
a function f: F (R) [0, T] R such that f C(F (R) [0, T]) and f vanishes identi-
cally outside a compact subset of P (R) (0, T).

For all such admissible controls f we let wY(x, t) solve the linear hyperbolic
mixed initial boundary value problem

(1.1) p(x)w (,j(x)w{)j 0 in n @ [0, T],
i,j

(1.2) w{(x(s), t)A(x(s))q(x(s)) f(s, t) on F (R) [0, T],

(1.3) we(x, O) =_ w[(x, O) =_ O, x e .
The subscripts and denote partial differentiation with respect to and X (the
ith component of x e R") respectively. The subscript x indicates the gradient
vector of the function to which it is applied. The vector rl(x(s)) is the outward
unit normal to F at x(s) e F. The real analytic functions p(x), eij(x), i,j 1, 2, ..., n,
are such that

Oij(X

p(x) Po > O,

v’A(x)v > 6o v 2 bo>O,
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in some open set which includes [ U F. Here A(x) is the n n symmetric matrix
whose entries are ij(x).

From 3] and [8] we learn that (1.1),(1.2),(1.3) has a unique C-solution
in (R) [0, T]. Thus we may let Rr denote the set of all terminal states (wS( T),
w(., T)). The set Rr is a subspace of the Hilbert space HE() of finite energy
states with inner product

((U, Ut) (1) Vt))E f [O(X)IJt(X)Vt(X -- u(x)A(x)v(x)’] dx

(here denotes the transpose of a vector) and norm

II(v, v,)ll (<(v, v3; (v, v,)))/.

The gradients ux, Vx are defined in the sense of the theory of distributions. To
avoid an indefinite inner product, two states which differ by (c, 0), where c is a
constant function on f, are identified. However, we will continue to speak of
elements of He(f as "states" rather than as "equivalence classes of states."

The control system (1.1), (1.2) is said to be approximately controllable in
time T if Rr is dense in He(f), i.e., if the validity of the equation

((wS( T), w{(., T)); (0, O))e 0

for all f Rr implies that (0, 0,) (c, 0), a zero energy state in He(f).
In [13] we showed that f, F, p and A determine a positive number To such

that"
(i) if T < 2To, the system (1.1), (1.2), (1.3) is not approximately controllable

in time T;
(ii) if T > 2T0 and n _<_ 3, then the system is approximately controllable

in time T.
We will refer to 2To as the critical time. When n it is known (see [5], [14],
[15], e.g.) that approximate controllability continues to hold for T 2To.

The purpose of the present paper is two-fold. First, we show in 2 that if
T > 2To, approximate controllability holds without any restriction on the
dimension n. Second, we show in the remaining sections that if n > 2, approximate
controllability may or may not hold for T 2To, the critical time, depending
on certain relationships between F, p and A. Because the proofs for T 2To
are very detailed, they are given only for special examples. In the concluding
remarks we describe the form which a general theory of critical time approximate
controllability would take.

2. A new proof of approximate controllability for T > 2To. The theorem
which we will prove in this section replaces Theorem 4 in 13]. The new result
has the advantage of being valid for all positive integers n. Many of the details
of the proof are the same as in the earlier result. Therefore we will concentrate
on the essential differences, referring the reader to [13] for complete treatment
of parts common to both proofs.

Let (0, 0) be a finite energy state, i.e., 11(0, O)[[e < oo, and assume that (0, 0)
is orthogonal to all states (wZ( T), w{(., T)) in Rr relative to the energy inner
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product. Thus

((wS( T), wf(., T)); (, ,)) I_ [p(x)wf(x, T),(x) + w{(x, T)A(x)’(x)] dx

(2.1)
=0

for all admissible controlsj We let v(x, t) be the generalized solution of the mixed
problem

(2.2) p(x)v,t (Oij(X)Vi) 0 in f (R) [0, T],
i,j

(2.3) vx(x(s), t)A(x(s))rl(x(s)) O, (x(s), t)e F (R) [0, T],

(2.4) v(x, T) (x), v,(x, T)= (x).

The existence of such a solution is proved, e.g., in [8] and [10], where it is likewise
shown that v(., t) and vt(., t) define continuous functions from [0, T] into HI(y)
and H(f) L2(f), respectively. (Recall that if m is a nonnegative integer, then
H’(D) consists of real functions u(x) whose derivatives of order =< m, taken in the
sense of the theory of distributions, lie in L2(f). H’(f) is a Hilbert space with
inner product

(u, a)n() 0_<111__<., f.[DPu(x)Da(x)]dx.
Here p is an n-vector with nonnegative integer components Px,P2, "", P,,

IIP Pl q- P2 -k- -+- Pn, and Op denotes ilil/(#xx)p’(Ox2)p...
As in [13] we smooth the solution v(x, t) by a process of antidifferentiation

and formation of finite differences. The innovation lies in the way in which the
antiderivatives are defined. We consider the elliptic operator

(ij()(,)bli)jBu
p(x) i,j=

which is defined on functions u C2() ( fl (,J F) satisfying the boundary
conditions

u(x(s))A(x(s))n(x(s)) O, x(s) r’.

This unbounded operator is symmetric with respect to the inner product (u,
fta u(x)f(x)p(x) dx and has an unbounded self-adjoint (with respect to that inner

product) extension, which we shall still call B, defined on a domain D dense in
LZ(f). (See, e.g., [4], [6].) Moreover, if(u, 1) 0, then there is a positive number 2o,
the smallest eigenvalue of B except 0, such that

> 2ollul
From this it follows that if we let / denote the restriction of’ B to
D (’1 {uLZ(f)[(u, 1)p 0}, then /- is defined, bounded and self-adjoint on
{u L(f)l(u, 1)p 0}, which we shall call/3.

From the work of Lions-Magenes [9, p. 165 ff.] it is known that if
g /5 ["1 Hm(f), m >= 0, then/- g /3 VI H"+ 2(f) and the mapping g /3 0 Hm(f)
-/-gb fq Hm+2(f) is continuous with respect to the norms 11"

H 2().
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(2.5)

Then

We return to (, ,) and let C and c2 be real constants such that

fn @(x) cl)p(x)dx fn @’(x) c2)p(x)dx O.

b(x, t) v(x, t)- c c2(t- T)

satisfies (2.2) and (2.3) and b(., t)e/5 fl H(fl), t6 [0, T]. Likewise,

,(x, t) vt(x, t) c2

is such that ,(., t)e/3 1"1 H(), e [0, T]. We define, for each nonnegative
integer k,

D- 2k) -k) D 2k + ) -k)

and conclude from the above cited work in [9] that for a nonnegative integer m,

D-"b( t) b VI Hm+ 1(’), 6 [0, T],

and that D-"b(., t) is a continuous function of relative to the norm II" [In-,+,tn)-
Since b(., t) is a generalized solution of btt Bb (i.e., (2.2)) one can verify without
difficulty that D-’b satisfies the same equation (in the strict sense if m > 0) and
that

d
dto’(D-O’b( " t)) b(. t).

Next we define

(t- T) (t- T)+
(2.6) D-’v(., t)= D-’f)(., t) + c m! + c2 (m + 1)!

and verify that

dtm(D-o’v(. t)) v(. t).

It is not in general true that D-%(., t) is a solution of v, By. But since c and c2
are constants, it is clear that we still have

(2.7) D-"v(. t) H"+ (fl), [0, T], rn >= 0.

We now refer to the theorem of Sobolev (see, e.g., [1, p. 32]) which states
that if v e H"() and if is a positive integer strictly less than m n/2, then v C(t)).
Moreover, there is a constant K, independent of v, such that

(2.8) IlVllc,<) _-< K [vlln,-(n).
We choose m 2k to be a positive integer such that m- n/2 > 1. Then from
(2.7) and the Sobolev theorem we have

D-my( t)e C2(fi), D -0’+ ’v(., t) D-O’vt(. t)e C(I).
The continuity of D-’v(., t), D -"+xv(., t), as functions of t, with respect to

]n-+ ,(n), n-,(n), respectively, combined with (2.8), then shows that D-my(., t)
e C2( (R) [0, T]).



BOUNDARY VALUE CONTROL THEORY 405

Now, for 3 > 0, we define

A(O-’v(., t)) O-"v( + 6) O-’v(. t), [0, T 6],

A(o-mv( t)) A(A- (O-’v( t))), [0, T k3].

Noting (2.6), the fact that D-mb solves b, Bb, and the fact that v Cz( (R) [0, T]),
we see that Am(D-’v( t)), which we will call v( t), is such that v(x, t) is a
C2-solution of (2.2), (2.3) in (R) [0, T].

The rest of the proof proceeds much as in [13] and we will give an outline
only. The interested reader should consult the earlier paper for details, noting
that there P of this paper was called F.

Using the divergence theorem one shows that (2.1) implies (with D denoting
lt)

(2.9) f [D -m+ v(x(s), t)Dmf(s, t)] dx dt 0
(R)[0,T]

for all admissible controls f. This implies that D-+ (x(s), t)= (D-%(x(s), t))
is a polynomial in of degree at most m whose coefficients are C-functions
of x(s), for (x(s), t) (R) [0, T]. Then

(Am(D-mv(x(s), t)))t Am((D-mv(x(s), t))t) =- O, (X(S), t) (R) [0, T- m3].

This, combined with the fact that Am(D-my) satisfies the boundary condition
(2.3), enables us to use the Holmgren-Fritz John uniqueness theorem [7] to show
that (Am(D-v)) must vanish identically for (x,t) K(, O, T- rob), the inter-
section of the forward cone of influence of at time 0 with the backward cone
of influence of at time T- m6. If T > 2T0, the set K(, 0, T- mi) includes
a set f (R) [(T/2)- e, (T/2) + e] for some e > 0, provided b > 0 is sufficiently
small. (See figures in [131.) Thus,

(Am(D my(x, t)))t O, (X, t) e f (R) [(T/2) e, T/2) +
which clearly implies

(Am(D-my(x, t))),, ------ 0, (X, t) e f (R) [(T/2) , (r/2) +

Since A’(D-mv) is a C2-solution of (2.2), (2.3) we conclude that

v(x, t) =- v(x), (x, t) e f (R) [(T/2) , (W/2) + ],

where v(x) is a C2-solution of the elliptic boundary value problem

(2.10) (aij(X)Ui) O, X ’,
i,j=

(2.11) Ux(X(s))A(x(s))ri(x(s)) O, x(s) e F.

But the only solutions of (2.10), (2.11) have the form

u(x) c, a constant, xef.

Thus

A"(D my(x, t)) C, (X, t) e fl (R) [(T/2) , (T/2) + ;],
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so that D-%(x, t) is a polynomial in of degree at most m whose coefficients are
C2-functions of x for x e f,. Then v(x,t)= D"(D-’v(x,t)) is a constant in
1 (R) [(T/2) e, (T/2) + el. In particular,

(v(., T/2), v,(., T/2)) (c, 0),

a zero energy state. Applying the conservation of energy principle, which is valid
for generalized solutions of (2.2), (2.3), we infer that

(v(., T), vt(., T)) (v, vt) (c, 0).

We see therefore that if (2.1) holds for all admissible controls f, so that
(v, v,) is orthogonal, relative to the energy inner product . ;. )e, to every state
in Rr, then I(v, v,) e 0 and (v, v) is the null element in He(f). We have proved
this without making any special assumptions on n, the dimension of the space
in which f, lies. Thus Theorem 4 of [13] can be replaced by the following stronger
theorem.

THEOREM 4a. The system (1.1), (1.2) is approximately controllable in time T
if W> 2To.

Combined with Theorem 2 of [13], which states that the system (1.1), (1.2)
is not approximately controllable in time T if T < 2 To, we see that we are justified
in referring to 2T0 as the critical time. We will see in the sequel that, if n _>_ 2,
critical time approximate controllability is a rather delicate question.

3. The critical time control problem. We are going to study the problem
for a particular partial differential equation in certain special domains. In 6
we will indicate a more general theory.

In R", n >= 2, we consider "rectangles" Er, r-- 1, 2,..., n, of dimension
n- r, defined by

Z {X (X X2 xn) RnIxi= 0 i-- r 0 < x <

j=r+l,...

Of course, E, is just the origin in R". For all real { we define

t3({) exp (1 1/{2) (_= 0 ir 0),

and for all x (x 1, x2, x")e R" we put

p(x) (x) + (x) + + (x").

,n}.

We define domains r
_

R" as follows"

f= {xeR"[ infp(x-y)< 1}.

Then f is an open, bounded, simply connected region in R" whose boundary

F= {xeR"[ infp(x-y)= 1}
yeEr

is an n-dimensional surface of class C which is piecewise analytic.
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In fr
equation"

we consider a boundary value control problem for the ordinary wave

(3.1) w w 0 in fr (R) [0, T],
i=1

(3.2)

(3.3)

Wx(X(S), t)rl(x(s)) f(s, t), (x(s), t)e F (R) [0, T],

wZ(x, O) w{(x, O) =- O, x e f.
We take P F, i.e., admissible controls are C-functions whose supports are
compact subsets of the interior of F (R) [0, T]. Thus control forces operate over
the whole boundary of f.

For (3.1) there is a universal wave propagation speed, 1. Thus, given an instant
to, the forward cone of influence of F at time to is given by

(3.4) K+(Vr, to) {(x,t)en (R) [to, +31 inf x- y __< t- to}
y.Fr

and the backward cone of influence of F, at time to is

K-(F, to) {(x, t)e f (R) (- oo, toil(x, 2to t)e K +(r, to)}.

(In (3.4) l" denotes the Euclidean norm in R".) We define, for T > 0,

K(F, 0, T) K +(F, 0) fl K- (Fr, T).

As shown in [13, 3], the critical time To has the property that

f (R) To} - K(F, 0, 2To)

but f (R) T/2} is not a subset of K(F, 0, T) if T < 2To. In the present case it
follows that To 1, and hence the critical time is T 2, because

sup {inf x- y )} 1.
xr yFr

We shall prove two theorems regarding approximate controllability of
(3.1), (3.2) in the critical time T 2. We give these theorems the numbers 5 and 6
since they complement the four theorems proved in [13] and 2 of the present
paper.

THEOREM 5. If r 1, the system (3.1), (3.2) is not approximately controllable
in the critical time T 2.

THFOREM 6. If 2 <= r <= n, the system (3.1), (3.2) is approximately controllable
in the critical time T 2.

The reader should be aware that these theorems apply for n 2 only. When
n the analogue of Theorem 5 is not true, for it has already been shown in
[5],[14],[15] that we do have critical time approximate controllability in this
case.

In order to prove Theorems 5 and 6 we need certain results from the theory
of distributions.

4. Distributions in H-l(r) with support in E. As in 2, we denote by
H l(f) real-valued functions v(x) defined on fr which lie in H(f.)--L2(f)
and have first order partial derivatives, defined in the sense of the theory of
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distributions, which also lie in H(fr). With the inner product

(again the subscript refers to partial differentiation with respect to x) H(fr)
is a Hilbert space. We have

Hl(f)
_
H(f)

and for each v e Hl(r),

which shows that the injection mapping of HI(f) into H(f) is continuous.
We will now indicate the construction of a third Hilbert space H-(fr) with

and the injection of H(fl) into H-(fl) is likewise continuous. To begin, let
u H(). We define a continuous linear functional on H():

(4.1) l,(v) (u, V)non.), v U().
Now if v H(),

and we conclude that (4.1) also defines lu as a continuous linear functional on

Hl(f). It follows that there is a unique element fi H(f) such that

(4.2) l,(v) (, V)Hl(ar),

We define

(4.3)

Now for all u e H(fr),

I[U[[H- l(a.) sup
veHl(an)
vO

V HI(an)

sup __< sup
vO vO

sup IlUllHO(an),
HO) 11o)

:/:0

the second last equality being true because H(f) is dense in H(f) relative to
the topology induced by the norm [[.

We define H-l(f,) to be the completion of H(f) relative to the norm

I1" llH-I(a,.)- Now ]]U[IH-X(r)--" ]]]Hl(’r) holds for u eH(fr), which is clearly
dense in H-(f), and this relationship extends (see [12]) to an isometry u
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between H-l(fr) and Hl(fr). The space H-l(f) is a Hilbert space with

(4.4)

The elements b of H-l(f,r) correspond to distributions 14 of order at most
(see [1 6]) on f.

We are now ready to prove two lemmas which will be of great importance in
the proofs of Theorems 5 and 6.

LEMMh 1. If n >= 2, there exists a nontrivial element dp H-1(1) such that"
(i) the support of 14, is a subset oj’E1;
(ii) if c is a constant function on 1, then 14,(c =-(p, c)/l(nl)= 0.
LF.MMh 2. If 2 <= r <= n, there is no nontrivial distribution in H-l(f) with

support in Z.
Proof of Lemma 1. Let denote a real-valued function of n- variables

x2, x3, x" such that, with 521 defined by

521 {2 (x2, ...,
I t C2(1) vanishes outside a compact subset of the interior of 521, and

(4.5) f. (2)d2 0, f. (I//(2))2 d2 =)d: 0.

For positive integers k 4, 5, 6,... define

0,

-(1/2)( + 3/4)2,

(4.6) Ok({) --(1/2)- 1/4,

(//4)2 / 1/(4k) 1/4,

0(- ),

Then, for x e ’ put

-1 __<__< -3/4,

-3/4__< {__< -1/4,

-1/4=< __< l/k,

-1/k < <__ l/k,

(4.7) Ok(x Ok(x 2) {0 if 2 Z1,

Ok(Xl)@(2) if X e ,.
Then 0 is defined as a function of class C2 in 1 for k 4, 5, 6, Now compute,
for any v e H l(fl),

cO(x)cv(x) fa a20(x)
X1 x dx

(x1)2 l)(x) dx

[- 3/4,- 1/4](R). [- 1/k, 1/k](R)2

O()v(x) axJ.
1/4,3/4](R)

(In each case the set described beneath the integral is the domain of integration
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for that integral.) Thus

kf - O(Yc)v(x) dx f
[- I/k, 1/kl(R) 3/4,- 1/4](R),

and, for k 4,5,6, ,j 4,5,6, ...,

O()v(x) dx +
[1/4,3/41(R)Y:

O(2)v(x) dx

(cO(x)
cx cx

kf ,(2)v(x) dx f
l/k, 1/k](R), [- l/j, 1/j](R),

dx

-O(2)v(x) dx xl

Applying the Schwarz inequality, we have

(4.8)

f
[- 1/k, 1/k](R),

Oj- O H(n) V HI(--I).

An inspection of (4.6), (4.7) readily shows that

Oj- O HtD) g’jk,

where

(4.9)

lim ejk 0.
joo
k--+

Let us put

k(X) k(X 1, .) 0(9), (X 2) G

0 otherwise.

Then (4.8) shows that the continuous linear functionals 14,,,, defined on Hl(fl)
as in (4.1), (4.2), have the property that

which implies (cf. (4.2)) that

and therefore, from (4.3),

Thus, in H-1(f21), {k} is a Cauchy sequence and has a limit be H-1(f21). It
remains only to show that 05 has properties (i) and (ii) stated in Lemma 1.
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Let v C(fl) have support K which is a compact subset of fl
Then, for all sufficiently large k, K f"l ([-1/k, 1/k] (R) ) is empty and

l,(v) (49, v),Ol ((/), v),,,, O.

Since q5 converges to q5 in H-1(f1), qk converges to in HI(YI), by virtue of
the isometry discussed just prior to (4.4). Therefore

lim (k, V) 0.
k-oo

Thus l+ vanishes when applied to v e C(fl) with support K not meeting 21,
and we have shown that the support of 1+ must be a subset of 21.

Similarly, for k 4, 5, 6, ..., c constant,

1,(c) (cb, c),,o(,
k- t()c dx d

l/k, 1/k1(R)2

c t_ q’()d 0,

from (4.5). Thus part (ii) of Lemma is proved. The second part of (4.5) readily
shows that q is nontrivial, and the proof of Lemma is complete.

Proof of Lemma 2. For p > 0 we define

(4.10) hp(xl,x2, Xr) --[(X1)2 -1
I- (X2)2 -[-"’"-}-(xr)2] lip.

We compute

(4.11) [(hpl2 4
1)2 (Xr)22/V-1-(x +(x’)+...+

i=1

Integrating (4.11) over the unit ball in R we obtain the integral

4oor_ 1/(4p + (r 2)p2),

where cot_ is the integral of over the (r 1)-dimensional sphere of radius 1.
Thus we see that if B is any bounded open set in R, then hp H(B) for p > 0 and

(4.12) lim Ilhp n,(m O.

(Note that r 2 is necessary for these conclusions.)
Given x (x ,..-,x, ,...,x")eR", let us set y= ,..-

z (x+1, x"). Each distribution defined on R has a natural extension
to a distribution defined on R". If (= (y, z)) C(R"), we let be defined on
R by v(z) v(O, z). Then () l(v) defines the extension of 1.

A result in [9, p. 78] shows that if
associated with can be expressed in the form

l(u (o. U.oa + g. u e c(.
i=

where ge H(), i= O, 1,..., n. This shows that l is a distribution or order
at most (i.e., if the
then lim le(v) 0).
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Thus if we take q5 e H-l(f), l has order at most 1. A theorem in [16, p. 99
ff.] then shows that if the support of 14 is a subset of Zr, there are distributions
10,11,12,’", lr defined on R with support in 2 {zl(0, z)eE} such that

1 io +
i=1 Xi"

Let O(z)e C(R-) have support K contained in some small neighborhood
of 2 in R-. Define v(= v(y, z)) in fl by

(4.13) v(x) v(y, z)= h4(y)O(z),

where h is given by (4.10). Then v e H(). Since 4 e H- (fl), the linear functional
l, can be defined on all of H()and we have

l(v)= io(V) + i
o(V)- ,

i=1

Let e (0,.-., 0, 1, 0,..., 0) in R, the being in the jth position. Define

v(x) v(y, z)= v(y + e, z).

One verifies without diculty that

(4.14) lim v- v nn)=0.

On the other hand,

i=1

h(O + ee)lo(O)- h
= (o

+ e)i(O)

hh4(ee)lo(O)- x(ee)l(O)
(1 gl/2)10(0) -+- 1/2g-1/21j(0).

Thus if lj(O) is different from zero,

lim 14,(v) +
e--0

and then (4.14) shows that lo cannot be a continuous linear functional on H(f),
contrary to our assumption that e H-1(fir). We conclude that 1j(0) 0. Since
this is true for all such and the support of l is a subset of E, we conclude that

l 0. We can do this for j 1, 2,..., r and conclude that

1 io.
Now, for p > 0, define vv(x as in (4.13), replacing 4 by p. Compute

14)(Vp) hp(O)lo(O)= lo(/)
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for all p > 0, since hp(O) 1. But (4.12) is easily seen to imply that

lim IIll,n 0
p-oo

and thus le cannot be a continuous linear functional on Hl(r) unless lo(O) 0.
Therefore, since le is a continuous linear functional on Hl(ftr), lo(O) 0 for all
of the form prescribed above. Then the fact that lo has support in 2;r shows that
lo 0. We have now shown that

1 0,

and Lemma 2 has been proved.
Remarks. Some readers may find the dual role of le, as a distribution of order

=< and as a linear functional on Hl(f), slightly confusing. Given
there is associated with it a unique element e H(ftr) and for all v e H l(f),

l(v) (, V)H,(,.
This also defines l, as a continuous linear functional on C(fr), since convergence
in C(ft) implies convergence in H(ftr). Thus l, is also a distribution in the
sense of Schwartz [16].

One can easily see that Lemma 1, part (i) continues to hold for n 1. (Just
put b , the Dirac distribution.) But (ii) cannot hold for n 1. The function
cannot be constructed as in (4.5). This explains why Theorem 5 is true for n >= 2
but not for n 1.

5. Proof of Theorem 5. A result in Lions-Magenes [9, p. 202 states that if
H- l(f) satisfies (ii) of Lemma 1, then there is a unique function H(f)

with fnl (x) dx 0 such that, in the sense of the theory of distributions,

(5.1) )ii in "1,
i=1

(5.2) x(X(S))rl(x(s)) O, x(s) e F
The sense in which (5.2) holds is also explained in [9]. In our applications is
harmonic outside a compact subset of fl and (5.2) holds in the classical sense.
Moreover, there is a constant M > 0 such that

(5.3) n(n =< M 411,,--().
Let the functions be defined on as in (4.9) and let be the corresponding

solutions of (5.1), (5.2) with replaced by . Also, let satisfy (5.1), (5.2) with
replaced by the element e H-() constructed in Lemma 1. Since lim

n-n)= 0, (5.3) implies that

lim 0HI(I)

It is clear that cannot be a constant on ; therefore (, O) is a nonzero energy
state. We let (, t), (, t), 4, 5, 6, ..., be generalized olutions in 0, 2]
of

(5.4) ,- , O,
i=1
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(5.5) /)x(X(S), t)tI(X(S)) O, (X(S), t) 1--1 () EO, 2],

satisfying

v(x, 1) (x), vt(x, 1) -= 0, v’(x, 1) (x), vt(x, 1) 0.

By the principle of conservation of energy, (v(., 2), v,(., 2)) is also a nonzero energy
state.

Let f be an admissible control. Then the support of f lies in a set

F1 (R) [6,2 6] for some fi > 0. Since the support of bk is I-l/k, 1/k-] (R) Z,
k is harmonic in f ([- 1/k, 1/k-] (R) ,). Then, by a familiar uniqueness result
in the theory of hyperbolic partial differential equations (see, e.g., [2]),

v(x,t)=-(x), vt(x,t)=-O for It- 11__< inf { x-yl[}.
y[- ilk,

Thus, for sufficiently large k, v(x(s), t)= 0, (x(s), t) F (R) [6,2- (5] and an
application of the divergence theorem (cf. Theorem 1 in [13]) shows that

(5.6)

I vt(x(s), t)f(s, t)ds O.
(R)[0,21

(The solution wI e C(f (R) [0, 2]) and it is proved in [10] that v H2(f (R) [0, 2]).
This enables one to use the divergence theorem without difficulty.)

Noting that

lim vt( ", 2) vt(., 2)11 no(fl,) 0,
koo

lim Ilvi(’, 2) v/( ., 2) /on,) 0, 1,2, n,
k-+oo

we conclude from (5.6) that

,2)vt(x, 2) +
i=1

wfi (x’ 2)vi(x, 2)1 dx O.

Since f is an arbitrary admissible control we have shown that the nonzero energy
state (v(., 2), v,(., 2)) lies in R and thus that R2 is not dense in HE(f) relative
to the norm I1" E-Thus Theorem 5 is proved.

6. Proof of Theorem 6. Much of the work necessary to prove Theorem 6
has already been done in 2 in the proof of Theorem 4a. We again assume that
(v, vt) is a finite energy state which satisfies (2.1) (with p 1, A =_ I and f f2r)
and we let v(x, t) be the generalized solution of (5.4), (5.5) satisfying the terminal
conditions (2.4). The solution v is smoothed by the same process of forming
antiderivatives and finite time differences as described in (2.5)-(2.8) ft. The diver-
gence theorem can again be used to obtain (2.9) (with F replaced by Fr), and thus,
via the Holmgren-Fritz John uniqueness theorem 7 to prove that (A’(D-"v))t
must vanish identically for (x,t)e K(F, O, T-m6), the intersection of the
forward cone of influence of Fr at time 0 with the backward cone of influence of

Fr at time T- m6.
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The essential difference between the proof of Theorem 6 and that of Theorem
4a lies in the fact that when T 2, the critical time, K(Fr, 0, 2 mc) does not
include any set r (R) [1 e, 1 + e] for any > 0, no matter how small we take
> 0to be.

If > 0 is small, the functions Am(D-%(x, 1)) are defined and twice continu-
ously differentiable for x . Now the operator A depends on , and we define

v6(x) 6-Am(D-%(x, 1)), x

The continuity of v(-, t) as a mapping from R into H() enables one to show
by elementary means that

(6.1) lim IUO(X) U(X, 1)llH(flr) 0.
60

NOW -mAm(D-mv(x, t)) v6(x, t) is twice continuously differentiable in
@ [0, 2 m3] and there satisfies

ii tt
i=1

and boundary conditions of the form (5.5). Thus the functions

ga(x) vt(x, To)

are, for a > O, continuous in and we have

4(x) g(x), x .
i=1

Now v(x,t)(= -’Am(D-mv)t(x,t)) has been shown to vanish in K(F, 0,
2 ), which implies that vtt(x, t) vanishes there also. We conclude therefore that

(6.2) g6(x) v(x, To) O, x ,
where

(6.3) {xel(x,1)eK(r,o,2 m6) ( @ {1})}.
The sets are monotone increasing as 3 0 with the property

(6.4) (- )= E.
a>o

Let ueH() g H(). Since gaeCO() HO() we can form the
inner product (gO, U)no(n)" Integrating by parts we find that

[(g6, U)Ho(nv) Uii U
i= HO(,.)

(v,u,),o(, v ,,(, u ().
i=l

Thus ga is an element of H() which defines, via (g, U)no(), a continuous linear
functional l on H() for which

1 IIv
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There is an element e Hl("r) such that

u e H l(’r).

Then, reasoning as in 4, we have

Similarly for 61 > 0, (2 > 0,

Now if we take a sequence {6k} of positive numbers with limk_ 6k 0, we have

lim Ivk v(., 1)ll/,nr) 0

from (6.1). Thus

lim [[gk- g6Jl[lt-l(n,. lim v -v
k-*oo
joo j-oo

=0

and we see that {g} is Cauchy in H- (’r) converging to an element g H- l("r).
Let Ig be the distribution (also linear functional on Hl(fr)) associated with g.

We claim that the support of g is contained in Zr. For, if u e C(Y) has support K
which does not meet E, then (6.4) shows that K is a subset of f for sufficiently
small 6 > 0. Then

lg(u) lim lgk(u) (g, U)no(n, O,

as we see from (6.2). Thus ls(u vanishes whenever the support of u e C(f) does
not meet 2 and we conclude that the support of lg lies in Zr.

In 4 we showed that if g e H- l(f) and lg has support in E, 2 =< r < n, then
g 0. Thus

and for every u e H l(r),

(6.5) lim lk(u) (gO, u)/o(n.)= 0.

Setting u -v(., 1)in (6.5), we have

0 -olim (gO, v(., 1))/oar) k-olim i=
tvoi vi(" ,1))o(a)

Since v converges to v(., 1)in H(Y) we have
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and we conclude that there is a constant c such that

v(x, To) c,

Since v,(., t) is a continuous mapping from [0, 2] into H(fr) one can show
by elementary means that

(6.6) lim v(., 1) v,( -, 1)11 /o(nr) 0.
6-,0

But v(x, 1)--0 for xef as we see from (6.3) and the fact that v(x, t)=-0
in K(F, 0, 2 m6). Combined with (6.4) this shows that

lim v(x, 1) 0 a.e. in

and then (6.6) shows that
vt(., To) 0 in Ho(n).

Thus (v(., To), v,(., To)) (c, 0) is a zero energy state. The conservation of energy
principle then shows that (v(., 2), v,(., 2)) is likewise a zero energy state and,
reasoning as in the proof of Theorem 4a, we see that (3.1), (3.2) is approximately
controllable in time T 2. Thus Theorem 6 is proved.

Remark. The Holmgren-Fritz John uniqueness theorem [7 cited here and
in 2 was originally proved under the assumption that the boundary F of f is
analytic. The boundaries F of the sets fr constructed in 3 do not have this
property--they are C and piecewise analytic. However, the results of [7] can
be extended to such boundaries with very little difficulty. If
where the F are relatively closed in F with disjoint relative interiors F, and if
each 1 is an analytic surface, then (A"(D-mv)) 0 on 1 implies, via [7], that this
identity continues to hold in K(I, 0, 2 m6). But the interior of K(F, 0, 2 m6)
is included in the set UK(I, 0,2- mr) and thus the continuous function
(A’(d-’v)) also vanishes in K(F, 0, 2 mr), as we need for our proof.

7. Concluding remarks. While Theorems 5 and 6 are stated for special
domains fr and a special hyperbolic partial differential equation, it is not difficult
to extrapolate these results to systems of the form (1.1), (1.2) in more gener,al
domains f with boundary F which includes a relatively open subset P whereon
control is exercised.

Given the critical time T 2To one forms sets K(F1,0, 2To mr) as in the
proof of Theorem 6. (See [13] for complete description.) Then we form the sets

no {xl(x ro) ff K(II, 0,2To mr)n [fl (R) {To}.]
As tends to zero the sets f0 increase. The complementary sets f f0 decrease
and we put

Z= O (n-n).
6>0

The dimension ore is what is critical. IfE contains a smooth manifold of dimension
n 1, the system will not be controllable in time T 2To, for one can construct
a distribution q5 e H-l(f) with properties (i) and (ii) of Lemma 1, solve

i,j
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set

(7.1) v(x, To) (x), ut(x To) 0

and then let v(x, t) be the generalized solution of (2.2), (2.3) satisfying (7.1). The
state (v(., 2To), vt(-, 2To)) will then lie in Rzro relative to the energy inner product
in HE(f). If Y has dimension n 2 or less one can show, as in Lemma 2, that E
cannot be the support of a nontrivial distribution in H-l(f) and prove critical
time controllability as in Theorem 6.

It is clear that in the "typical" case Z will have dimension less than n 1.
In fact, 2; will be a single point in many instances. It seems reasonable to conjecture
that Z cannot have dimension greater than n- 2 if F is an analytic surface.
Thus critical time approximate controllability is the rule, not the exception.

The results of [13] and the present paper leave the theory of approximate
boundary value controllability of systems (1.1), (1.2) in a fairly satisfactory state.
However, much remains to be done. Perhaps the most important task is that
of characterizing all finite energy states which can be reached (from a zero
initial state) in a time T _>_ 2To using controls f L2(F @ [0, T). A first step
is to consider JeC(FI (R) [0, T]) as in the present paper and try to bound
[[fll(r(R)o,r) in terms of wY( T) and its derivatives. Similar work has already
been done in [5], [153 for the wave equation in one space dimension. Results in
this direction would enable one to undertake a systematic study of the applica-
bility of the quadratic criterion to hyperbolic boundary value control problems,
as has been done, e.g., in [11] for the case of spatially distributed controls.
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RECURSIVE IDENTIFICATION OF LINEAR SYSTEMS*

J. RISSANENf

Abstract. Let the three matrices Z(N) (G(N), F(N), H(N)) define a linear constant system of
least degree which realizes the set of numbers fl, "’", fN regarded as a partial impulse response of a

system. An algorithm has been developed for recursively calculating the minimal partial realizations
for each N 1, 2,-.. such that

.-(N k)_ (N)_

This algorithm differs from the previous ones, such as that of B. L. Ho’s, in that there is a recursion on
N as well. Because of this, no a priori guess of the order of the system is required. Moreover, an addition
of terms to the initial sequence causes the computation of only a few new elements. When combined
with another algorithm for factoring covariance matrices the given algorithm permits a recursive
identification of linear random systems. No earlier recursive identification methods seem to appear
in the literature. Finally, a categorical description of the abstract realizations is given.

1. Introduction. Let A 1, A2, be the impulse response ofa linear constant
system of the type

x(k + 1)= Fx(k) + Gu(k),
(1.1)

y(k) Hx(k),

where x(k) X R", u(k) U Rp and y(k) e Y R for some integers n, p, and
m. In other words,

(1.2) A HFi- 1G, 1, 2,

The so-called realization or identification problem is one of recovering the
maps or matrices (G, F, H) from the sequence A 1, A2, The problem is classical,
but the first good solution was not found until 1965 when B. L. Ho, in his doctoral
dissertation, presented a neat algorithmic or nearly algorithmic solution to the
problem (see 1]). At about the same time related algorithms were described also by
L. Silverman and D. Youla [2], [10].

Subsequently, the problem was extended to the interesting case where only a
finite sequence A1, "’", AN was given. The same algorithm was shown to give a
solution [3], 4]. In that form the problem was a generalization of the Pad6
approximation problem, and the algorithm provided a solution which in many
respects is superior to the classical Cauchy-Jacoby formulas.

In this paper we consider the following more general variant of the same
problem: Given the partial sequence A1,’", AN, for each N 1,2, 3,
find a sequence of minimal partial realizations

(1.3) Y(N) (G(N), F(N), H(N))

such that

..E(N’)___E(N)_ ifN’ < N.
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Here the inclusion symbol means that the matrices in E(N’) appear as sub-
matrices of the corresponding ones in E(N). Thus, not only do we look for an
algorithmic solution to the partial realization problem for some N, but we want
a recursion on N as well. Moreover, we look for a solution where each extension
of the sequence of the Ai’s can be met by calculating just a few new elements
in the corresponding realization.

We point out that if Ho’s algorithm is used in this case, then each partial
realization must be calculated anew. Even when applied to a single partial
sequence our algorithm turns out to be simpler than that of Ho’s.

In 2 and 3 we give a self-contained abstract discussion of the realization
problem. We give a categorical characterization of the fundamental notions
of the minimal state space and the associated canonical factorization and reali-
zation.

In the final section we present an application where the problem naturally
leads to finding the partial realizations for an indefinite number of values N.

The discussion throughout is restricted to the case where the input and the
output spaces are one-dimensional. This is done to avoid introducing messy
irrelevant notations and indices. The reader should have little trouble extending
the results to the general case.

2. Linear input-output systems. We begin by giving a condensed but self-
contained exposition ofhow linear systems are characterized by their input-output
properties. Our approach differs from that of Kalman’s [3] above all in that the
important notions of canonical factorization and the associated minimal state
space are defined in categorical terms. This better emphasizes the universality of
these constructs; see also [6].

Let U and Y be one-dimensional vector spaces over the field R of the real
numbers; i.e., both of them may be identified with R. Let T_ denote the set of
nonpositive integers, and let f home(T_, U) denote the linear space of all
sequences o9:T_ U of finite support; i.e., m has only finitely many nonzero
components. Finally, let F hom(T/, Y) denote the linear space of all functions
or sequences 7:T/ ---, Y, where T/ is the set of positive integers.

The linear space L f F admits a ring structure with convolution as the
product:

(2.1) (a * b), a,_ibi, n T T_ (.J T+ a, b L.
iT

This product is well-defined since the sum contains only finitely many nonzero
terms for each n. Moreover, the product is commutative, and the ring has the
element (..., 0, 1,0,.-. e, in the zeroth position, as the identity.

Any elementfof F defines a linear mapping

(2.2) f:f--, F

When this paper was written Professor Kalman called our attention to a recent paper by Zeiger,
Some computational aspects ofHo’s algorithm (we have not found it published), in which Ho’s algorithm
was improved by a special factorization of the so-called Hankel matrix. That factorization is related
to the one discussed in 4. However, we exploit the factorization in a different way and the result is an
altogether new algorithm with features not obtained by that of Zeiger’s which still basically remains
similar to Ho’s algorithm.
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by the ring product

(2.3) (f(o))), (f* o)),, n e T+.
We take any such mapping f as an input-output description of a linear constant
system. This is justified, for iff HFi- 1G, then any system (1.1) defines an element
of F, and as will be shown shortly, any fin F admits a representation (1.1).

The element el (’", 0, 1, 0) of f defines a left shift, say an:
(2.4)

Similarly, it defines a left shift av on F:

(2.5) ar :F F, (at(7)), (el * 7),, n T+.
The commutativity of the ring implies that a linear mappingfof F satisfies

(2.6) fan avf,

which in [3] was taken as the definition of linear constant systems.
We now turn to the question of how to associate a state space, above all a

minimal one, to the mapping f This question is central to the whole theory of
systems described by their input-output properties, and we shall give two equi-
valent characterizations of the minimal state space and the associated canonical
factorization.

Consider any factorization off:

’- f )F

X

DIAG. 2.7

If g is surjective and h injective, the factorization is said to be canonical with a
minimal state space X. Such factorizations obviously exist; X f/kerf, with g
the natural projection, gives one. Moreover, all canonical factorizations are
equivalent in the sense that hg h’g’ implies the existence ofa unique isomorphism
q :X --, X’ such that g’= qg and h h’q (see [3], [5]).

These facts suggest an alternative definition of the canonical factorization
and the associated state space which incorporates the universal properties of
these constructs virtually without any further proving. We form the category
s of linear systems as follows. The objects are Diag. 2.7 with g surjective fLf,
and F are the same in all the objects. An object may then be denoted by (g, X, h).
As the set of morphisms, hom[(g’, X’, h’), (g, X, h)], take all linear maps such that
Diag. 2.8 commutes. Compositions and the identities are the obvious ones,
and the category axioms [9] for 5 are satisfied. Define a terminal object in this
category to be a canonical factorization through the associated minimal state
space.

We could give a standard construct as a limit for the terminal objects, which
would prove their existence. But since we must anyway show that this definition
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g h

X

DIAG. 2.8

gives the canonical factorization in the same sense as the previous one, we avoid
such constructs by proving the following theorem.

THEOREM 2.9. The factorization f hg through X f[kerf gives a terminal
object in s.

Proof We must show that there exists a unique a in Diag. 2.8, where X now is
taken as f/ker f and g the associated natural projection. Let z belong to X’.
Define a:z - g(co), where co is any point in f such that g’(co) z; one such exists
since g’ is surjective. This definition gives a function, since if also g’(co’) z, then
f(co) h’g’(co) h’g’(co’) f(co’), and co co’ kerr Hence, g(co) g(co’). That
a is linear and satisfies ag’ g is clear, a is the only such mapping since g’ is sur-
jective, which means that g ag’ a’g’ implies a a’.

The case where the dimension ofthe minimal state space is finite is of particular
interest. This is the case which we shall be primarily concerned with.

3. Minimal realizations. By a minimal or canonical realization of the system
described by an input-output mapping (2.2) is meant the intrinsic state description
(1.1) of the same system characterized by the three mappings Z (G, F, H) and
the associated spaces, U, Y, X with X minimal. Before describing how such a
realization is constructed recursively, we quickly define them in abstract terms.

The problem is to indicate in Diag. 2.7 how input sequences are successively
built into longer ones and to show how this induces the state transitions. Let
.j: U f2 by u (..., 0, u) denote the natural injection. Consider Diag. 3.1,
where X is minimal.

(u,o)e U x fl

(nCO + ju e f

(x, f) ,U x F 9(u,f(co))..
U xX

F rf(o) + f(ju)

[(u, 7) 0 if y s F/Im f]

DIAG. 3.1
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The mapping b induces the mappings (R) and , (R) unique, such that the diagram
commutes. The latter is defined in the diagram, and the former results from the
fact that h is injective

(3.2) (R) kO(1, h),

where k:F--, X satisfies kh l x.
(R) can be written as

(3.3) (R)(u, x)= Fx + Gu.

To see this, recall first that by U x X is meant the direct sum U P- U x X 2X,
where P and P2 are the canonical injections. Hence, there is a bijection:
horn (U x X, K) -, horn (U, K) x horn (X, K) in Diag. 3.4

U m U x

Daa. 3.4

for any linear space K. Taking K X and C (R) gives (3.3).
More explicitly, the mapping G is given by Diag. 3.1 as

(3.5) 6(u) O(u, 0)= gj(u)

and F as

(3.6) F(x) 0(0, x)= karh(x).

If P1 :F --} Y, PI(Yl, Y2, Yl, then the last mapping in (1.1) is given by

(3.7) H Plh :X Y.

By Theorem 2.9 any other canonical realization is isomorphic to the one given
above. The preceding formulas form the basis for the algorithm to be described
in the next section.

4. Realization algorithm. We need a few preliminary results. Let b f (e)
i-1b We arrange the entries in the so-called(f,f2,"") F and bi ar 1.

Hankel matrix’

flU2 ""f,

f2 f3 f+l
(4.1) A

f L+,’"

Let A(m, n) denote the dashed submatrix of A.
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Observe first from Diag. 2.7 that since h is injective in a canonical factori-
zation, the dimension of X, or the order of the system, is the same as the dimen-
sionality of the image off Since the set {tre} spans fL the image offis spanned by
the set {bi}. The order of the system is then the cardinality of the linearly in-
dependent vectors in the set {bi}. We need the following lemma.

LEMMA 4.2. If dim {b 1, b.,... } n, then b, b2, b, are the linearly
independent vectors in {bi}. In addition, A(n, n) is nonsingular and A(n, m), m >= n,
has rank n.

Proof Suppose that bk+ is linearly dependent on b x, ..., bk; i.e.,
-)bl 0. Then, trr of that same expression also vanishes, or

b+2 -{’- ckbk+ -[- "[- 1b2 0, and also b+2 is linearly dependent on
b, .-., b. Hence, the first n must be linearly independent.

Consider the last row in A(n + 1, n). Since b,+ is linearly dependent on
b,..., b,, the rank of A(n + 1, n) is still n. By symmetry the same is true about
A(n, n + 1). Hence the ranks of A(n, m) for m _>_ n are no greater than n. But since
they clearly can neither be less than n they all must be equal to n.

The algorithm is based on a factorization of A(n, m) of the following type"

(4.3) A(n, m) P(n, n)Q(n, m), m >= n, rank A (n, m) >= n 1,
where P(n, n) is lower triangular with l’s on the diagonal; i.e.,

(4.4)
fn" "f/+n-

P:

Iif+n-
f/+n

_Pn Pn,n-

"J+m-
/11
q21

qnl

q lill
q2il

ql,i+ 11 q,,

qn,i + 11 qn,m_
The factors are not unique, a fact which we shall take advantage of to obtain factors
with further desired features. By setting certain elements qu 0 we shall be able
to calculate the pu’s recursively one by one. Moreover, an addition of rows and
columns to A(n, m) will not change the numbers already calculated. A further
property of Q(n, m) is that the first n rows are linearly independent and the
last row is zero if the rank of A(n, m) n 1. With a minor modification the
algorithm would work regardless of what the rank of A(n, m) is. Since we took
U and Y to be one-dimensional we shall have no need for that case, however.

The factorization algorithm runs as follows.
Step 1. Set qi =f for all i. If n 1 we are done: P(1, 1) (1).
Step 2. In the other event, proceeding recursively, we have at the ith step

or row all the Pjk’S and qjk’S, j 0, 1,..., 1, determined. Let s(j) be the least



426 j. RISSANEN

integer such that qj,so) =/= O, j < n. s(j) exists because of the rank condition on
A(n, m). Set qk,sO) 0 for k > j. Equation (4.4), then, leads to a set of 1 equa-
tions, one for each column s(j), j 1,..., i- 1. Because of the previous con-
ditions, the unknowns Pil,’", Pi.i- can be solved recursively one by one from
these equations. The submatrix P(i, i) with (4.4) determine the remaining elements
of the ith row of Q(n, m), which completes the cycle.

As an example, consider
1 1 2 1

1 1 2 1 3
(4.5) A(4, 5)

3 2
We have s(1) 1. Set qi 0, > 1. Then

P21" -k- 1 "q21 1, P21 1.

Further, q22--0, q23

> 2, and the first and the third column give
Paxq11= 1 or Pax 1,

1, q24----1, q25- 2. Then, since s(2)= 3, qi3--O,

1 "q13 + P32q23 f5 1 or P32 0.

Continuing we get the result
1 1 1 1 2 1

(4.6) A(4,5)=
1 1 0 0 1 -1 2

0 1 0 1 1

1 -1 0 0 0 0
Define

P2x 1 ql

P31 P32 1 q2

G(n 1)

I_P.1 P,,,-

(4.7) P.(n- 1,n- 1)-

1,1

H(n- 1)= (1,0,..., 0), n- 1 elements.
THEOREM 4.8. Given fl,f2, let A(n 1, n 1) be nonsingular and m any

integer such that A(n, m) has rank n- 1. Then E(n- 1)= (G(n- 1), F(n- 1),
H(n 1)), X(n 1) R 1, where

(4.9) F(n- 1)= P-X(n- 1, n- 1)P.(n- 1, n- 1)

is a minimal realization of the sequence fx, f, + x.

Proof By the factoring algorithm the last row of Q(n, m) is zero. Hence by
writing the equality between the dashed columns of A(n, m) in (4.4) we get with

(4.9)
q qltq +

(4.10) F(n 1) i for all i.

-1, -1 +
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Denote the elements of R"- by x col(x1, ..., x,_ 1) and consider the equations

(4.11)
x(i + 1) F(n 1)x(i) + G(n 1)u(i),

y(i) H(n- 1)x(i).

With x(0) 0 and u(0) 1, u(i) 0, > 0, the first equation in (4.11) describes the
consecutive states which are just the columns of Q(n 1, m) in (4.4), or (4.10),
and the second gives y(i) q li f for 1, ..., m. We still have to show that
(4.11) realizes the rest of thef’s. This will follow from the special form of F(n 1)
which it inherits from P,(n 1), namely,

fll

(4.12) F(n- 1)--

1 0

Indeed, applying formula (4.11) for i= m + 1,..., m + n- 1 extends Q(n,m)
to Q(n, m + n 1) (the last row is extended as a zero row). Multiplying the result
by P(n, n) we get the corresponding extension of A(n, m) to A(n, m + n 1), say.
But due to the special shape of F(n 1), A(n, m + n 1) will have the following
elements"

fl f,, fro+n-1

f. f/._

This means that y(i) q li f for all =< m + n 1.
Any realization of the sequence fl,... ,f,+,_ extends it indefinitely. If such

a realization has order k < n 1, then A(n 1, n 1) has rank k by Lemma 4.2
which contradicts the assumptions. Hence, (4.11) is minimal.

We are now ready to describe the realization algorithm. It works under the
hypothesis that from some source we can pick the numbers fl, ,fu for any
N= 1,2,....

Step 1. Let k be the least integer for which fk 0. Take N 2k + 1 and
form A(k + 1, k + 1). It has rank _> k.

Step 2. Apply the factoring algorithm and find P(k + 1, k + 1) and Q(k + 1,
k + 1) (equation (4.4)). If the last row of Q is nonzero, the rank of A(k + 1, k + 1)
is k + 1. Increase N by 2, form A(k + 2, k + 2) and continue the factorization.
If the last row of Q(k + 2, k + 2) is still nonzero, increase N by 2 and repeat
until, say, for N 2n 1, the last row of Q(n, n) is zero. Such an n exists by Lemma
4.2 if the numbersf admit a finite order realization.

Step 3. From formulas (4.7) and (4.9) calculate the partial realization X(n 1).
Observe that the inverse of P(n 1, n 1) can also be calculated recursively since
this matrix together with its inverse is lower triangular.
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Step 4. Increase N by 1. Continue the factorization for A(n, n + 1). If the
last row of Q(n, n + 1) remains zero, increase N by 1, and repeat. If the last
row remains zero for all m, we have found the realization. (This cannot, of course,
be decided, so that the algorithm would never stop. A stopping rule is introduced
by setting an upper limit for m.)

Step 5. If for some m(> n) the last element in the last row of Q(n, m) becomes
nonzero, the last picked element fro+,-1 is not realized by the partial realization
Z(n 1). In this case, pick one new point, f,+,, and form A(n + 1, m). Continue
the factorization, pick one new point and repeat until either Q(n’, m) for some
least n’ =< m has last row zero or n’ m and the last row is nonzero. In the previous
case go to Step 3. In the latter case go to Step 2.

Comments. Due to the special form of the matrices (4.7) and (4.12) this al-
gorithm has the crucial "nesting" property (for k, see (4.13))"

..Z(n-k)Z(n)c_...., if k< 1;

where the inclusion sign means that the matrices in Z(n- k) are submatrices
of the corresponding ones in Z(n). Hence, at each step only a few new elements
as a function of the old ones and the new picked elements f need be calculated.
In fact, we have established a recursion of the type,

Z(n -+- k) Ill(n, Z(n),f2,+ ,..’, fro),

(4.13) m 1-I2(n, Z(n),f2,+," .’, f,,- 1),

k n3(n, Z(n),/2,+ , ..., f).
Another advantage of this algorithm is that the formulas (4.7) and (4.9) are actually
simpler than those in the Ho algorithm [3].

To illustrate the algorithm we give the sequence of partial realizations
corresponding to the example in (4.5) and (4.6). In Step 2, n 2, and in Step 3 we
get Z(1)= ((1), (1), (1)). In Step 4 an addition of f4 2 makes q23 - 0.
In Step 5 pickf5 1, and form A(3, 3). Returning to Step 2, we pick two new points,
f6 3 and f7 2. This time the last row of Q(4, 4) is zero, and we calculate Z(3)
following Step 3"

G(3)= F(3)= 0 -1 1 H(3) (1, 0, 0),

1 0 -1

which realizes all the numbers given in A(4, 5).

5. Identification of random systems. In this section we briefly describe
an application of the realization algorithm where its recursive nature proves to be
particularly useful.

Consider a system whose output forms a stationary random process
1, 2, .... Take E(yt) 0 for all t, and denote the covariances by r E(y,y,_ ).

Form the infinite symmetric covariance matrix, R (rij), rj r_ j.

Assuming the process to be of full rank, i.e., R > 0, we can factor R recursively
[7], [8] into the product of a lower triangular matrix B and its transpose"

(5.1) R BB’,
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where

(5.2) B

boo
blo bll

bno bnl

The recursive equations for the bij’s are obtained by comparing elements in (5.1)
starting on the top row and progressing down row by row. Observe that the
result is just a special case of the factoring algorithm in 4.

THEOREM 5.3. IfR satisfies Szego’s criterion,

log
Izl--1

then bij fi-j as
We omit the proof, which is a simple modification of the proof of the related

theorem, Theorem 6 in [8].
Applying the realization algorithm to the sets of numbers f,..., fN. N 1,

2, ..., we get a series of realizations. If the process is generated by a finite order
system, this series leads to the minimal realization.

Since we actually must use the approximations bj for f_j, the realizations
will be approximations, too. Because of this, the precise rank condition in the
algorithm should be replaced by some rule such as:the last row of Q(n, m) is
considered as zero if Iq,,l/llq,ll =< e, where qi is the ith column of Q(n- 1, m).
Since the last row represents the nth components of the state vectors, the error
so introduced admits a clear interpretation.

The above described scheme seems to compare favorably with the commonly
used procedures in that all of the computations progress in an orderly, recursive
fashion without any trial and error involved.

The outlined procedure has the defect that the computation of (5.1) involves a
growing amount of memory even when R(z)= ’,-o rz is a rational function.
We sketch an approach which in some respect is an improved version of a related
one by P. Faurre (see, e.g., [11]); see also [13].

One first applies the realization algorithm to the sequences of numbers
r0, r, ..., rN. This gives the realization (K, F, H) of order n, say, and the rational
function

P(z)
R(z) H(zI F)-FK + K’F’(z-1 F’)-aH’ + HK Q(z)Q(z-

The polynomial P(z) Y’,’-m Pzi’ m <= n, satisfies (5.3). Hence, the factorization
obtained by replacing R in (5.1) by the Toeplitz matrix P associated with P(z)
which has only 2m + 1 nonzero diagonals converges and gives in the limit

P(z) P, (z)P1 (z- 1).
The transfer function of the system is Pl(z)/Q(z). We leave the details of this
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procedure, above all the proof that the result is a "minimum phase" system, to
another context. Such a result, in effect, was announced in [12], which reference
was communicated to us by H. Aasnaes.

Acknowledgment. We are indebted to Professor R. Kalman, Dr. F. Palermo
and Professor T. Kailath for stimulating discussions during the preparation of this
paper.
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GLOBAL VARIATION CRITERIA FOR STABILITY OF LINEAR
TIME-VARYING SYSTEMS*

Y. V. VENKATESH]"

Abstract. The system under study is a linear feedback system consisting of a time-invariant block
G in the forward path and a time-varying gain k(t) in the feedback path. Improved sufficient conditions
for its asymptotic stability are derived by a combination of Brockett’s factorization technique of
generating Lyapunov functions and the Krasovskii-Corduneanu theorem. The resulting bound on

((dk/dt)/k) resembles but is distinct from the average criterion of Freedman and Zames [1].

1. Introduction. Consider the feedback system of Fig. which is governed
by the linear differential equation

()

where

p(D)y + k(t)q(D)y 0 on the interval [to, c),

Op(D) D" + p,_ + + Po,

Oq(D) qmDm + qm-1 + + qo

are constant coefficient differential operators with the order n of p(D) at least one
higher than the order m of q(D).

Let y x l, x2 dxl/dt,..., x, dx,_/dt; and x col [xl,x2,...,
Then (1) can be written as the vector differential equation

(2)
dx
dt Ax k(t)bc’x A(t)x,

where Ao is a stable matrix having the form:

0 0 0 0

0 0 1 0 0

0 0 0 0

--Pl --P2 -P

and b, c are n-vectors given by

b col [0,0, 1],

c col [-qo, -q, --qm, ,0]"

The gain k(t) is assumed to be absolutely continuous on the interval [to,
Let G(s) be the transfer function of the forward block, i.e., G(s) q(s)/p(s).

* Received by the editors January 2, 1969, and in final revised form December 7, 1970.

" Department of Electrical Engineering, Indian Institute of Science, Bangalore 12, India.
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Time invtrion stoble block

FIG. 1. A linear time-varyingfeedback system

Remark. The stability properties of the null solution (n.s.) of (1) are identical
with the stability properties of the n.s. of (2) and vice versa.

ASSUMPTION. The n.s. of (1) is asymptotically stable (a.s.) for every constant
function k(t) K in [0,

PROBLEM. Find conditions for the n.s. of (1) to be a.s. for every (absolutely)
continuous function k(t) with values in 0,

Literature on the preceding problem is too vast to receive due acknowledg-
ment here. For all unbounded dk/dt, the circle criteria of Zames 2], Narendra
and Goldwyn 3] and Sandberg [4] are well known. The circle criterion is applicable
even when the feedback is nonlinear and time-varying. Using a positive multiplier
approach similar to that ofZames [2], Brockett and Forys [5] and others introduced
a bound on the rate of variation ((dk/dt)/k) permitting the hypothesis on G(s) to
be weakened. Freedman and Zames [1] obtained an explicit stability condition
free of multipliers in terms of a bound on an average of ((dk/dt)/k), namely,

(3) slapt_>0- dr, < 4fla

for some T > 0, where sh is a constant determined from the Nyquist diagram of
G(s). What is noteworthy here is that the use of an implicit multiplier has been
avoided. However, condition (3) is not necessary and weaker conditions may be
possible.

2. Solution of the main problem. The present objective is to explore a route
towards obtaining sufficient conditions for the a.s. of (1) based on Brockett’s
technique [9 of generating a Lyapunov function and the Krasovskii-Corduneanu
theorem [6, pp. 56-57], [7]. In fact, a new condition on ((dk/dt)/k) is derived below
which is distinct from the modulus condition (3) of Freedman and Zames [1].
In order to state the main results of the paper, the following definitions and lemmas
will be needed.

See Definitions 3 and 4 below.
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DEFINITION 1. A complex-valued function Z(s) of a complex variable s is
called a positive real (strictly positive real)function of the argument s, if Z(s) is
real for real values of s, and for Re s > 0 (where Re denotes the real part) is analytic
and satisfies the inequality

ReZ(s) >= 0 (>0).

The following notation will be used" Ilxll denotes the norm of x, where

Ilxll 2 x’x; Xo denotes X(to); x(t; to, Xo) denotes the solution of (2) which takes
the value Xo for to.

DEFINITION 2. The null solution of (2) is said to be stable if for every e > 0
there exists 6(e; to) such that if Ilxo < 6(e; to), then x(t;to, Xo) < e for >= to.

DEFINITION 3. The null solution of (2) is said to be asymptotically stable if it
is stable and, in addition, there exists a 6o(to) > 0 with the property that if Ilxoll < 60,
then limt_o x(t; to, Xo) 0.

DEFINITION 4. The null solution of (2) is said to be exponentially stable if
there exist positive constants el, e2, such that, for >= to,

x(t; to,xo)l < 211Xol exp[-el(t to)].

LEMMA 1. The asymptotic stability of (1) is equivalent to the asymptotic
stability of
(4) p(D)n(D)y + k(t)q(D)n(D)y O,

provided n(D)z 0 represents an asymptotically stable system.
Proof Since the system described by n(D)z 0 is asymptotically stable,

n(s) 0 has all its zeros in the half-plane Re s < 0.
If qS(t) is a solution of (4), then n(D)c(t) is a solution of (1). Further, if n(D)c(t)

tends to zero as , so does b(t) showing that the stability of (1) implies the
stability of (4).

To prove the converse, note that if if(t) is a solution of (1), then there is a

function y(t), satisfying n(D)y (t) and such that y(t) is a solution of (4).
Now, because of the a.s. of the system described by (4), if(t) tends to zero as - .But n(s)--0 has all its zeros in the half-plane Re s < 0. Consequently, y(t),
treated as the output of a system with the transfer function 1In(s), also tends to
zero as .

LEMMA 2. A real function of a complex variable Z(s) m(s)/n(s), where m(s)
and n(s) are finite polynomials in s, is positive real if and only if:

(i) n(s) + m(s) has no zeros in the closed right half-plane (Re s _>_ 0), and
(ii) Re Z(j09) _> O for all real 09.

Proof See Weinberg and Slepian 8].
A. If u(s) is a polynomial with real coefficients, let Ev u(s) {u(s) + u(- s)}/2

denote its even part. Note that for real 09, Ev u(j09) Re u(j09). If u(s) is even and
Re u(j09) >- 0 for all real 09, then according to a theorem of Wiener, there exists a

unique polynomial v(s) with real positive coefficients such that v(s) v(-s) u(s),
and v(s) has zeros only in the closed left half-plane Re s __< 0. Let [u(s)]+) stand
for v(s) and [u(s)]- for v(-s). The latter is also known as the right half-plane
spectral factor, or, at times, as the negative spectral factor of the even polynomial
u(s). Observe that u(s)]-) has zeros only in the closed right half-plane Re s > 0.
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B. If ul(s) and U2(S are two polynomials with real coefficients and
Re [ul(jco)/u2(jco)] 0 for all real co, then clearly Re [ul(jco)Uz(-jco)] >= 0 for all
real co, and there is a unique factor [Ev u(s)u2(-s)]-).

Similarly, if/3 is a real constant and Re Z(jco )G(jco ) >_ 0 for all real co,
then

(5) r(s) {Ev m(s fl)q(s fl)n(-s fl)p(-s fl)}t-)
is uniquely defined. Moreover, if is a real constant and Re Z(j ) 0 for
all real , then

(6) rz(s {Ev m(s e)n(-s e)}(-)
is also uniquely defined. The polynomials r(s) and r2(s have their zeros in the
closed right half-plane only.

C. Let f(x(t)) be a given (scalar) function of trajectories x(t) on [0, ), for
example, of solutions of (2). Suppose the integral

(7) I f(x(r)) d

exists and is identical for all trajectories x(t) satisfying x(t) x and x(t2) x2,
where x and x2 are constant vectors. Then the integral (7) will be represented by
the notation

t(X2)

I /(x()) dz.
t(x)

Now suppose that at time t, the state is x and at (t + At), the state is Xo. Then

f
+ At

The time derivative of I along the solutions of (2) is obtained by allowing At 0
in {I(x) I(xo)}/At and substituting for x(t) the solution of (2)"

dV
f(x(,

dt

where now x(t) is the solution of (2).
D. Let Z(s- )G(s- ) be assumed to be positive real for some 0.

Then by Lemma 2, the solution z’(t) of the equation

(a m(- q(- z’ + n(- p(- z’= 0

is asymptotically stable. The order of this equation is greater than or equal to n.
Let z’(t) z(t)exp (t). Then z(t) satisfies the th order equation

(9) m(D)q(D)z + n(D)p(D)z 0,

and is asymptotically stable. Further, let

dt dt dt
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and

z(t) col [z,

Note that the order of (4) is also r/. The state vector x(t) of (1) is a subspace of x*(t),
the state vector of (4).

LFMMA 3. If Z(s fl)G(s ) is positive real for some fl >= O, and
m(s- )q(s- ) and n(s- )p(s- fl) have no zeros on the imaginary axis, then
there exists a positive definite function Vl(z, t) quadratic in z defined by

t(z)

VI(z, t) e- 2a, [m(D fl)q(D fl)(zet3’)] [n(D fl)p(D fl)(zeta’)]
.It(O)(10)

-(rl(D)ze’t)} dr,

where z(t) is any solution of(9) on [0, ).
Proof. As shown in [%, the integral in (10) is path independent. It remains

to show that Vl(Z, t) is positive definite. To this end, rewrite (10) letting z’ _A

to obtain

t(z)

V(z, t)= e-2t {[m(D- fl)q(D- fl)z’] [n(D- fl)p(D- fl)z’]
t(O)(11)

[r (D)z’] 2 dz.

But z’ satisfies (8), from which (11) takes the form

t(z)

(12) V,(z, t)= -e -2t3t {[m(D- fl)q(D- )Z’]2 -t-[’I(D)z’] 2} MT
t(O)

or

t(z)

(13) V,(z, t)= -e-2Et {[n(D filp(D fl)z’] 2 + [r,(Dlz’]2} dr.
,t(o)

Further, by the asymptotic stability of (8), (12) and (13) are valid for t(0)
t(z) O. Hence,

VI(Z t)-e-2t {[m(D- fl)q(D- fl)z’] 2 + [rl(D)z’] 2} dr

or

vl(z, t)= -=’ {[nW fi)pW fl)z’] + [r,W)z’] =} ,
from which it is evident that V1 is positive semidefinite. Suppose V is not positive
definite. Then

m(D fl)q(D fl)z’ -n(D fl)p(D fl)z’ r l(D)z’= 0

for some nonzero z’. That is, m(s- fl)q(s- fl), n(s- fl)p(s- fl) and r(s) have
common factors. This can only happen if m(. q(. and n(. p(. have imaginary
zeros, a situation ruled out by hypothesis. This proves the positive definiteness of
vl(z, t).
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E. Observing that m(D fl)q(D fl)(ze’) e’m(D)q(D)z(t), we can write
(10) as

t(z)

(14) V,(z, t)= e -2t’ e2{[m(D)q(D)z][n(D)p(D)z] [r,(D + fl)z] 2} d.
t(o)

The time derivative of Vl(z, t) is then given by

(15)
dV,(z, t)

dt
-2flVl(z, t)+ [m(D)q(D)z][n(D)p(D)zl- [r(D + fl)z]2.

In order to find the value of dVa(z, t)/dt when z(t) is the solution of (4), replace
z(t) by x*(t) and z(t) by y(t) in (15) and use (4) (after multiplication by m(D)q(D)y)
to obtain

dYe(x*, t)
(16) dt (4)

2fiV(x*, t) k(t)[m(D)q(D)y] [n(D)q(D)y]

[r(D +/)y].

F. Let it be assumed that Z(s ) is positive real (p.r.) for some => 0. Then
by Lemma 2, the solution W(t) of the equation

(17) m(D a)(e’q(D)W) + n(D a)(e’q(D)W) 0

is asymptotically stable. Let r/1 be the order of (17). It is easy to verify that r/1 => n
and the order of (8) is equal to r/1 or, at the most, greater than t/1 by 1. Further,
let W(t) be the state vector for (17).

LEMMA 4. If Z(s oO is p.r. for some >_ O, then there exists a positive semi-

definite quadratic form in W defined by

(18)

t(w)

Vz(W, t)= e-2t {[m(D a)(eq(D)W)][n(D a)(eq(D)W)]
t(O)

r2(D)(eq(D)W)2

Proof. The proof is similar to the proof of Lemma 3.
G. The time derivative of (18) is given by

(19)

dYe(W, t)
dt

2aV2(W, t) + [m(D)q(D)W] [n(D)q(D)W]

-[r2(D + a)q(D)W]2.

Its value along the trajectories of (4) is obtained by substituting y(t), the solution
of (4), for W(t) in (19)"

(20)

dV2(W, t)
dt (4)

2oV2(x*, t) + [m(D)q(D)y] [n(D)q(D)y]

[r2(D + a)q(D)y]2.
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It can be verified that

d
d[k(t)V2(W, t)]

(21)
(4)

dk
k

+ k(t)[m(D)q(D)y] [n(D)q(D)y] k(t)[r2(D + a)q(D)y]2

The proof of the following lemma is obvious.
LEMMA 5. Let 6l(t), b2(t) be bounded real functions on 0, ). If V(x*, t) >= O,

V2(x*, t) >= 0 and V2(x*, t) 6(t)Vl(x*, t) + 62(t)V2(x*, t), then

V12(x*, t) =< sup [di(t), di2(t)](V + V2)(x*, t).
t>0

H. Consider

[r I(D + fl)y]2 {[Ev m(D)q(D)n(- D)p(- D)](-)y} 2,

which is nonnegative and quadratic in x*. From Lemma 3, V(x, t) is positive
definite and quadratic in x*. By a well-known property of quadratic forms, there
exists a nonnegative constant 7a such that

[r,(D + a)y] 2 >__ 7 V,(x*, t).

Similarly, there exists a nonnegative constant 72 such that

[r2(D + a)q(D)y]2 >= 72V2(x*, t).

Let y be equal to the minimum of the two numbers y, 72; and let V(x*, t)
V(x*, t) + k(t)V2(x*, t). Therefore, in view of the fact that k(t) is nonnegative,

(22) [r,(D + fl)y]2 + k(t)[r2(D + a)q(D)y]2 yY(x*, t).

I. The time derivative of V(x*, t) along the solution of (4) is obtained by adding
(16) and (21) to give

dV(x*, t)
-2fiV,(x*, t) + / 2a k(t)V2(x*, t)

dt (4)

(23)
-[r(o + )y] (t)[(D + )q(D)y].

Let 0 ((dk/dt)/k) and

sup (-2fl- 7, O(t)- 2- )= -(t).
t0

Then, using Lemma 5, from (23) one obtains

(24)
dV(x*, t)

-(t)V(x*, t).
dt

J. DEFINITION. The solutions of (2) are said to have Property K-C if there
exist a positive constant o and a real function (t) on [to, ) such that

(25) llx(t)ll IlX(to)llOoe-tu(’)-u")v2, to.
LZMMa 6 (The Krasovskii-Corduneanu theorem). The solutions of (2) have

Property K-C there exist a positive definite and decrescent quadratic form
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v(x, t) x’P(t)x, and a real-valued function 2(t) on [-to, ) such that the derivative
of v(x, t) along the solutions of (2) satisfies the inequality

dv
(26)

dt
_<_ 2(t)v.

(2)

Proof Because v(x, t) is positive definite and decrescent, there exist positive
constants al and a2 such that

Integration of (26) gives

Consequently,

alx’x =< x’P(t)x __< azX’X.

from which

v(x, t) <__ V(Xo, t) exp

a lx’x =< v(x, t) __< v(xo, t)exp 2(r)

__< elloll exp 2(r) dr

[[X[[ 2 <2 2 ;t=-- xo exp 2(r) dr
01

Therefore, the solutions of (2) have Property K-C with r/o w//x and 2(t)
equal to the derivative of #(t).

COROLLARY 1. If to2(z) dz increases without bound as , then the
system (2) is asymptotically stable.

COROLLARY 2. If (1/T)+ -2(z) dz -V for some constants > 0 and
T > 0, then

lix[ [IXoi[o exp [-(t- to)/2], to,

and the system is exponentially stable.
K. Let (t) be a nonnegative (integrable and bounded) function on Ito, ),

and h(t) exp -tto ()dr. Assume that the integral tto (r)dr M < for all
in [to, ), and

0< lim (z) drM < .
Then h(t) is a bounded positive function. Note that

which is nonpositive.

Let

(27) Vo(x*, t) h(t){Vl(x*, t) + k(t)V2(x* t)},
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where Vl(x*, t), Vz(x*, t) are as defined in Lemmas 3 and 4, respectively. The time
derivative of Vo(x*, t) along the solutions of (4) is given by

aVo(x*, t)
dt

(28)

(4.)
-((t)Vo(x*, t) + h(t){-2V(x*, t)

+ [O(t)- 2o]k(t)Vz(x*, t) [r(D + fi)y]Z

-k(t)[rz(D + oOq(D)y])
__< sup {[-2/- 7, O(t)- 2 7] ’(t)} Vo(x*, t).

t>_0

3. Main results.
Tzoa 1. If
(a) Z(s) (the "multiplier")is a function of the complex variable s such that

Z(s ) is positive real for some o >__ 0;
(b) Z(s )G(s ) is positive real for some >__ 0, and m(s )q(s ),

n(s )p(s ) have no imaginary zeros; and
(c) for some positive constant 7,

(29) sup -2/?-7, - -2e-; dz
o>_0

increases without bound as or,
then the null solution of(l) is asymptotically stable.

THEOREM 2. Ifthe hypotheses (a) and (b) of Theorem are valid, M is a positive
constant, O(t) and [0(t) + 2(fl a) + denote respectively ((dk/dt)/k) and the positive
values of [0(t) + 2(fl a)], and

(d)

ft
t+T

[00:) + 2(fl- )]+ d: __< M < oe(i) T
(30) .for all finite T > 0,

(’to + T
(ii) lim - J, [0(:) + 2(/3 )]+ d __< 2/3 + y v

Too

for some v > O,

then the null solution of(l) is exponentially stable.
Proof of Theorem 1. As a Lyapunov function candidate for (4) and hence for

(1), choose

V(x*, t) Vl(X*, t) + k(t)Vz(x*, t),

where V(x*,t) and Vi(x*, t) are defined by (10) and (18) respectively. Clearly,
V(x*, t) is positive definite, radially unbounded, has continuous first partial
derivatives, and satisfies decrescent conditions by virtue of the boundedness of
k(t). Its time derivative along the solutions of (4) was shown to satisfy inequality
(24). Invoking the Krasovskii-Corduneanu theorem (Corollary 1), we conclude
that hypothesis (c) implies asymptotic stability.
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Proof of Theorem 2. As a Lyapunov function candidate for (4), choose

Vo(x*, t) h(t){Vl(X*, t) + k(t)V2(x*, t)},
where Vl(X*, t), Vz(x*, t) are defined by (10), (18) respectively, and h(t) is defined
in subsection K above. V0(x*, t) is positive definite, radially unbounded, has
continuous partial derivatives, and satisfies decrescent conditions by virtue of the
boundedness of k(t) and h(t). Its time derivative along the solutions of (4) was
shown to satisfy inequality (28). Invoking Corollary 2 of the Krasovskii-
Corduneanu theorem, we conclude that hypothesis (d) implies exponential stability.

Remarks. (a) The present global condition (29) for asymptotic stability of (1)
differs from the Freedman and Zames average condition (3) in that the integrand
of (29) may assume negative values, whereas the integrand of (3) may not.

(b) (Note that e >= ft.) The average condition (30) for exponential stability
of (1) allows larger positive variations of O(t) over a finite interval than (3) and
the negative lobes of O(t) do not enter into the integrand of (30).

(c) The condition on G(s) in Theorems 1 and 2 can be replaced by an explicit
geometric condition, free of multipliers (for details see [1] and [9]).
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A NOTE ON THE NECESSARY CONDITIONS FOR OPTIMAL
STRATEGIES IN A CLASS OF NONCOOPERATIVE N-PERSON

DIFFERENTIAL GAMES*

I. G. SARMA AND U. R. PRASAD’

Abstract. In this note, we show that the main results of our previous paper Ill, the properties of
the value function vector and the equilibrium point principle stated in Theorems and 2 of [1], are

extendable to a slightly larger but considerably more realistic class of games.

In general, an N-person game can have multiple equilibrium points. The
equilibrium points of a two-person zero-sum game (called the saddle points),
if nonunique, are automatically both interchangeable and equivalent. This is not
the case for a general N-person game. However, if all the equilibrium points of an
N-person game are interchangeable (without necessarily being equivalent), then
all of them constitute the Nash noncooperative solution of the game. These notions
are discussed by Nash [2] and Luce and Raiffa I3].

In our original paper 1], the solution of an N-person game is characterized
by (2.4) and the resulting payoff function is assumed single-valued on . This is
equivalent to assuming the twin conditions of interchangeability and equivalence
which are valid in general only for two-person zero-sum games. To emphasize that
two-person zero-sum ideas are not applicable when dealing with N-person games,
we introduce the more realistic concept known as the Nash noncooperative
solution for these games. This solution also satisfies (2.4) but the resulting payoff
function can be discontinuous across certain well-defined manifolds in . The
following simple example bears out these points.

Example. The state of the game satisfies the following differential equations:

1 X2,
1)

2 hI1 -- CR2

with u and /,/2 constrained as

(2) lull 1; lu2l 1.

The terminal surface 1 U 2 is given in terms of the parameter a (x2f tf) as

(3)

x > 0t2(1 + c)’ x2

X2:’X2 > O}2

The playing space is in between and 2 as shown in Fig. 1. The payofffunctionals

* Received by the editors April 7, 1970, and in revised form December 10, 1970.
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0

FIG. 1. Nash noncooperative solution ofexample

(4)

of the players are given by

j 1EXo, ul (]) 1(0. .ql_ dr,

j2[xo, Ii]-- 2(0")+ {lull + blu }dr,

where

(5)

x2$

(])1(O-) (1 -t- c
xf e -l

x2, Xs e 2,

X2,(1 + b)

4(a)= (1 +c)
xe,

X2y X G ,.
The constants b and c in (1) and (4) are related by

(6) 2<c<b.

The optimal control actions should necessarily minimize the Hamiltonians
for the players. Hence, we have

H 2x2 + X(u + cu2),
(7)

H2 lull + blu2- 2x2 + 2(u + cu2),
and

u* -sgn2,
(8)

u2. -dez(2c/b),
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where we define

(9)

j" +1, z > 0,
sgnz

-1, z<O,

z> 1,

dezz 0, Izl < 1,

-1, z < -1.

The adjoint equations are given for 1, 2 by, 0,
(o) .
As u1. and U2. assume the only values of +_ and 0, in view of (9), the term
HI,,U] corresponding to the other player’s optimal strategy is absent in (10).

Applying the transversality condition (4.4) at 1, we have

o
+c _i +c]

{X2f +" (H -- CU2) O,
()

l+b /21{ 2r- 0
+c +c

lull + bluel .x2f + ,22(ul q-- cH2) 0

with the quantities referred to time ty. Solving (11) to be consistent with (6), (8)
and (10) yields

(12)
X[(tz) (tz) 0,

X25
2+c+b b

,(t)2(ty)
(2 + C)Xz, 2 + c

and

(13) ul(t) 1; u2(t)-- 0 for < tf.
By a similar application at 2, we have

(14) ul(t) 1; U2(t) for < tf.

The resulting paths are shown in Fig. 1. It is clear that the strategy of player
is continuous on . The second player’s strategy is discontinuous giving rise to his
dispersal surface A. This surface divides the playing space into two regions, 1
and N2. (Because of this, this switching surface could be denoted by A/12,2.)
For starting points on A, the value to the second player W2 must be the same
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whether the paths reach or 2. By actually equating the values, we get

(15) A { (x x)’x x, x > 0

where r/is given by

b+l 2+b-cl[-l+(c-1)r 1/2

c-1 c-1 1 c-2
(16)

+r/ )1/2-1 +(2+c+b)
(1 +c)(2+c)

The optimality of this solution can be conclusively shown by verifying the
Bellman equations for W1 and W2. It can be further verified easily that for starting
points on A, the value function W of player is greater for the paths reaching
2 in comparison with the paths ending on . This result has no counterpart
in two-person zero-sum differential games, for obvious reasons.

Now, we make the necessary changes in the results of our original paper to
include these situations. Let U* be a playable N-tuple which introduces a regular
decomposition on N. The hypersurface A/’ll,i2 which (if it exists) separates
and 2 and across which U* is discontinuous, is called the dispersal surface of
player (R. Isaacs, [4]). The payoff P(t, x, U*) is single-valued in except on the
dispersal surfaces. On the dispersal surface A/ll, of player l, the /th component
of P(t, x, U*) is assumed to be independent of the two optimal paths branching
into 1 and i. Then U* is said to be the Nash noncooperative solution relative
to the normal form defined by the strategy sets U], 1, 2, ..., N, if the addition
P(t, x, U*) satisfies (2.4) of [1] with the interpretation that suitable one-sided limits
are taken whenever necessary. The rest of the assumptions on the optimal paths
remain the same as in the paper. The solution U* in this sense consists of inter-
changeable (but not necessarily equivalent) equilibrium points, whenever multiple
paths arise.

For the enlarged class of games having the Nash noncooperative solution,
Theorem 1 holds with the difference that the value function W need not be contin-
uous across the N manifolds. As explained earlier, W will however be continuous
across ,Al,i. Analogous to [5], it is straightforward to show that for any (t, x)
on AI,,, the following condition holds:

H’(t, x, (U*; Uli,), li, at li, dx
(17)

H’(t, x, (U* uli2), 11,2) dt li2
where dt and dx are any differentials on the manifold and the subscripts l, 2

indicate the appropriate one-sided limits.
It may be noted that in (4.3), it is tacitly assumed that the terminal surface has

the parametric representation

( 8) ,(o); x

Similarly, in (4.6), the following parametric representation is assumed for the
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manifold

(19) T/k(O’);

These are clear from the context.

x X(r).
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EXISTENCE OF OPTIMAL STOCHASTIC CONTROL LAWS*

V. E. BENE"
Abstract. We give an approach to optimal control of systems described by stochastic functional-

differential equations of It6’s type" dx(t) f(t, x, u(t, x)) dt 4- dw(t)), 0 1, with a cost functional
k(u) E .fo c(t, x, u(t, x)) dt to be minimized. Here w(. is Brownian motion,fand c are nonantiipative
functionals describing system dynamics and cost rate respectively, and u(t,. is a causal control law,
to be chosen, taking values in a space F of control points, and depending at at most on given informa-
tion about the past {x(s), __< t}.

A key role is played by the information available for control. This is described by giving, for each t,

a sub-a-algebra G of the a-algebra St over the continuous functions C C[0, 1] generated by sets
{y :y(s) e ,4} with 0 __< =< and A Borel in Re. St is the a-algebra corresponding to knowing the whole
past of the trajectory prior to t. The set // of admissible control laws consists of functions u’[0, 1]
x C F which are Lebesgue in t, and Gcmeasurable in y for each t. There is a a-algebra G over
[0, 1] x C such that admissibility is equivalent to G-measurability.

Our formulation is based on a result of Girsanov (Teoriya Yeroyatnostei, 5 (1960), p. 285)" For
(0 a nonanticipative functional of Brownian motion w, the transformed measure d/ exp (q)dP
with

((p) q dw - II dt

makes the functions w(. )-f’oq dt a Wiener process, provided E exp ((q)= 1. This result suggests
and justifies taking, for the solution x(. of the system equations, the process determined by Girsanov’s
device with q f(t, w, u(t, w))" in this case we say that u attains the density exp ((q).

The control problem is reformulated as a search for admissible u that achieve inf,ou E exp ((q)f c dr.
That is, with each u //we associate, as the solution of the system equations to be considered for the
purpose of our minimization of k(.), the functions w(.) under the measure exp ((q)dP, with the
justification that under this measure

w(t) f(s, w, u(s, w)) ds

is a Wiener process.
Novelty of the approach lies in these features" (i) control is closed loop" (ii) admissible controls

need not be smooth" (iii) the Radon-Nikodym derivative used by Girsanov directly gives a measure
corresponding to a solution of the system equations.

As a principal result, we prove that if F is compact metric, if f(t, y, u) grows at most linearly with
y(t), and if Gt St (i.e., if the whole past is available for control), then the set of densities {exp (q)’p

f(t, w, u(t, w)), u //} attainable by the admissible control laws is convex, and there exists an optimal
control law u* //achieving infuou E exp (p) f. c dr.

1. Introduction. We give a new approach to two aspects of the optimal
control of systems described by stochastic functional-differential equations.
These aspects are the formulation of the control problem, and the existence of
optimal control laws. Particular emphasis is placed on the role of the information
about the past of the trajectory that is available to the controller as a basis for
control decisions.

Novelty of the approach lies in four features: (i) A generalized notion of
what is a solution of the stochastic system equations is used: a Radon-Nikodym
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derivative functional used by Girsanov [1] directly gives a measure corresponding
to a solution. (ii) Control is closed loop. (iii) No restriction of the admissible
control laws to be (for example) Lipschitz is imposed; a control law is admissible if
it is unambiguous, nonanticipative, suitably measurable, and restricted in its
dependence to the available information;it does not have to be smooth. (iv) A
general description of the information available to the controller is assumed;
to our knowledge, only the case of complete information about the past carries
with it sufficient convexity to yield closure and existence results by the usual
methods.

The systems of principal interest here are those governed by a stochastic
functional-differential equation

(1) dx(t) f(t, x, u(t, x)) dt+ dw(t), e [0, 1],

where w(. is a d-dimensional Brownian motion, f is a d-vector-valued nonanti-
cipative functional, and the "control" u is a function (with values in a prescribed
space F) whose value at may depend at most on specified information about
the past of x(. prior to t. The tasks to be tackled are first, (because u need not be
smooth) to formulate a suitable meaning for the "existence" of solutions to (1),
second, to pose a minimization problem for cost functionals

k(u) E c(t, x, u(t, x)) dr, c >__ O,

under the constraint (1) and the information restriction on u, and third, to prove
within this formulation that optimal admissible controls exist. Cost criteria
involving final values of smooth functions and random stopping times can also
be handled by our approach, as the reader can verify.

We first informally describe our approach to the existence problem by con-
sidering the system (1) with u(.,. chosen and fixed, and we set

h(t, y) f(t, y, u(t, y))

for y in the space C of continuous R<valued functions. We also assume that a
Brownian motion w(.) is given on a probability space of points co. In many
cases of interest, e.g., if h(t,. is Lip in y uniformly in t, (1) has a unique solution
[2], [3], a stochastic process x(t, co) with continuous sample paths; the measure
v which x(., co) induces on C is absolutely continuous with respect to Wiener
measure t, with Radon-Nikodym derivative [3]:

(2) d---(y exp h(t, y) dy(t) Ih(t, y)l 2 dt y C.

In such a case we do not need to solve (1) to find the cost of using control law
u(.,. );the cost is simply

(3) k(u) c(t, y, u(t, ))ate(y) a,().

These circumstances suggest directly using a Radon-Nikodym derivative
functional like (2) to define a solution of (1), to single it out as the relevant one,
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and thereby to give the definite form (3) to the cost of using the control u(.,. ).
That this is possible was shown by the late I. V. Girsanov [1] in a 1960 paper that
is only now attracting the attention it deserves.

Girsanov considered a nonanticipating Brownian functional q(t, co), square-
integrable almost surely, and defined the functional

(4) e() exp q)(t, co) dw(t) - [q0(t, co)[2 dt

He then showed that if E exp’](q)- 1, then the transformed measure
dP exp s(q) dP makes the function

w(. co) w(s, co) q(u, co) du

a Wiener process on Is, t], i.e., it makes w(., co) w(s, co) a solution of the equation

w(t) w(s) q)(s, co) ds Wiener process.

In other words, the functional "solves" the stochastic differential equation
dx q)(t, co)dt + dw by giving a transformation of the basic measure into one
corresponding to a solution. Girsanov’s result is a generalization of Cameron
and Martin’s translation theorem [4] in which q was not random.

We propose to use Girsanov’s theorem to accomplish our first task, the
clarification of the existence of solutions, as follows: to obtain the stochastic
process corresponding to use of u(.,-) as control law, we put

(5) qo(t, co) f(t, w(co), u(t, w(co))), (qo) (q),

in Girsanov’s functional (4), and we take the functions w(., co) under the measure
exp (q0) dP as the required process. This procedure gives the conveniently explicit
form

(6) E e c(t, w(co), u(t, w(co))) dt

for the cost of using u(.,. ), and obviates solving the system equation (1), salutary
effects indeed; the cost can be computed by numerical integrationover Wiener
space!

Our second task, of posing a minimization problem, is now straightforward.
We describe the information available for control in terms of a r-algebra G on

[0, 1] x C, and we can characterize the admissible controls as the G-measurable
functions taking values in the control space F. The control problem becomes this:
To minimize (6) over admissible controls u(.,. ), with the understanding (5).

With a definite minimization problem at hand, we can pass to the third task,
proving that optimal admissible control laws exist. Our basic result is that if the
entire past of the trajectory is available for control, then optimal admissible
control laws exist, provided that f(t, y, u) is continuous in the control variable u,
that it does not grow faster than linearly in y(t), that f(t, y, F) is convex, and that
F is compact metric. In this case it is possible to construct, out of an arbitrary
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minimizing sequence of control laws, a new minimizing sequence for which the
corresponding stochastic processes converge to a process obtained by using an
optimal control law. Closure and existence theorems, analogous to those used
in deterministic optimal control, turn out to be difficult to prove, harder than in
the nonstochastic case. This additional difficulty is due in large part to the role
of the information available to the controller. As in the nonstochastic problems,
convexity and continuity are basic in existence proofs, as is a version of Filippov’s
lemma 5].

2. Historical remarks. The problem of the existence of optimal stochastic
control laws for processes of diffusion type has been studied by Kushner [6] for
Lipschitz closed loop controls and measurable open loop control entering linearly.
Fleming and Nisio [2] considered open loop controls entering multiplicatively,
and proved existence theorems using Prokhorov’s topology. The case ofincomplete
information was broached by Fleming 7] in a paper on control of partially
observable diffusions: only some of the state-vector components are observed.

The functionals e originated with the work [4] of Cameron and Martin
on Wiener measure. After It6 extended stochastic integrals to random but non-
anticipative integrands, they reappeared in the work of Ventcel [8] on additive
functionals, in that of Skorokhod [3] on differentiability ofmeasures corresponding
to diffusion processes, and in Girsanov’s work. They were first used in control
theory by Mortensen [9]; Kailath [10], Duncan [11], and Kallianpur and Striebel
[12] have noted their relevance to estimation and filtering. They are implicit in
the work [13] of Stroock and Varadhan on diffusion processes with continuous
coefficients, and explicit in McKean’s exposition [14] of stochastic differentials
and integrals.

3. Formulation. Let F be a compact metric space of control points, and
let C C[0, 1] denote the space of continuous functions y(. with y’[0, 1] ---, R.
The sets {y(.)e C’y(s) A} for 0 <_ s =< <_ 1 and A Borel in Re, generate a
algebra S of C-subsets. This is the a-algebra representing knowledge of the past
from 0 to t. We shall suppose that the system dynamics are given by a function
f’[0, 1] x C x F Re with these properties"

(i) f(t, y,. is continuous on F for each t, y;
(ii) f is nonanticipative in the strong sense that f(t,., u) is measurable with

respect to St for each t, u e [0, 1] x F;
(iii) If(t,y,u)12 <= x(1 + ly(t)12),xaconstant, foreveryt, y, ue[O, 1] x C x F,
(iv) f(., y, u) is Lebesgue measurable for y, u e C x F.
We take the view that an admissible control law is a function u "[0, 1] x C F

with the interpretation that u(t,. indicates what point of the control space F is
to be exercised as control at time t, and with the proviso that u(t,. depend only on
whatever information (about the past of the trajectory) the controller is allowed
to know, remember, and use at time t. The restrictions on u(.,. representing the
pattern of available information will be described mathematically by the concept
of measurability with respect to a a-algebra. Roughly speaking, if s1 and
are two a-algebras over the same space, and if ,5 12, then the functions
measurable on se’l are less complicated, ("depend on less") than those which are
measurable with respect to s2 but not
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The information pattern will be described by specifying, for each e [0, 1],
a a-algebra G St, and by imposing the condition that for each u(t,. be
Gt-measurable.

Thus the admissible controls will be all those functions u’[0, 1] x C--. F
such that

(i) u(., y) is Lebesgue for y e C,
(ii) u(t, is Gt-measurable for e [0, 1].
It is possible and convenient to express the property of being an admissible

control in terms of a single a-algebra. This is done as follows" consider the
measurable subsets E of [0, 1] x C such that

(i) every t-section of E is a Gcset, for e [0, 1],
(ii) every y-section of E is a Lebesgue set, for y e C.

It is easy to verify that G is an algebra; since G is closed under monotone limits,
it is a a-algebra; it can then be proved that a function h on [0, 1] x C is
G-measurable if h(t,. is Gcmeasurable for fixed e [0, 1] and h(., y) is Lebesgue
measurable for y e C. Thus measurability with respect to G concisely expresses
the requirement of admissibility.

The preceding assumptions have concerned the information available for
control and the system dynamics. The reader should note, though, that although
a-algebras over C were used, no probabilistic machinery has been introduced
yet; this is now done.

We assume as given a probability space (fl, P, 9) of points co e f, with P(A)
the probability of a 9-set A. On this space is defined a measurable separable
Brownian motion {w(t, co), 0 __< =< 1, co e f} taking values in Re, with continuous
sample paths.

There is a set flo e 9 of full measure such that w(., co)e C for co e fo. The
process induces a measurable map w’fo C according to the formula w(co)

w(.,co). This is seen as follows" every set {yeC’y(t)eA} for A Borel is in $1;
every set {co "w(t, co) A} for A Borel is in 0; but

{co’w(t, co) A} f] no w- l{y e C’y(t)e A},

and so w- 1S . The classes w- 1G,, e [0, 1], and w- 1St, e [0, 1], are all
a-algebras; they will provide us with a way of doing all our work in the probability
space (f, P, 3) and then returning, for our control laws, to the space C. Setting
N w-1G and w-1St, we have the following diagram"

G c_ St
W-1 ) W-1

algebras over C

induced algebras over

express what is available for control express the total past
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Let q :[0, 1] x fo -+ [0, 1] x C according to the formula q(t, co) t, w(co).
Define q-1G, where G is the a-algebra expressing admissibility. - is a
a-algebra of [0, 1] x o sets, and will be used to express the requirement ofadmissi-
bility in terms of functions of t, co rather than t, y for y e C. Indeed, we shall prove
the existence of optimal control laws by first expressing them as -measurable
t, co functions, and then (properly, now) as G-measurable t, y functions, using the
following result.

LEMMA. If h:[0, 1] x fo-+ F compact metric is -measurable, then there
exists a G-measurable u:[0, 1] x C -+ F such that

u(t, w(co)) h(t, co), co e fo.
This result is elementary (see [15, p. 185]).
The following convenient terminology is used"
The set s of admissible drifts consists of all functions g’[0, 1] x f Re

of the form
g(t, co) f(t, w(co), u(t, w(co))), u 6 //,

i.e., where u’[0, 1] x C F is an admissible control law.
The set ag of admissible dr!fts consists of all functions g’[0, 1] x f--, Ra

form

(co) e) g e

i.e., where g is an admissible drift.
It is to be noted that admissible drifts are random processes and attainable

densities are random variables.
(fLC, P) is the probability space on which is defined a Wiener process

(Brownian motion) {w(t, co), co e f} in d-dimensions. We propose to cut through
all the questions of existence and uniqueness of solutions to (1), and at the same
time obtain and use a representation of the criterion value achieved by a given
admissible control law u, by taking, as "the solution" of (1), the process obtained
by taking the functions w(., co) under the measure

dP e(g) dP, g f(t, w, u(t, w)),

where it is assumed (and for suitable f, proved) that P(f) 1, and where

(g)o | f(t, w(co), u(t, w(co))) dw(t)
d 0

j If(t, w(co), u(t, w(co)))l 2 dr.
0

This procedure provides a solution of (1.) in the sense that under the transformed
measure P,

w(t, co) f(s, w(co), u(s, w(co))) ds

is a Wiener process. If we define

W(t, co) w(t, co) f(s, w(co), u(s, w(co))) ds,
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then W(., 09) is a Wiener process under/3. If in this context we give the new
name x(t, co) to w(t, co), then the definition of W(., co) tells us that

f(s, x(co), u(s, x(co))) ds + W(t, co).

With measure / this asserts that x is the solution of an equation with drift
f(s, x, u(s, x)) and Brownian noise W, which is what we wanted to find. The corres-
pondence between f and the solution curves is the same as before, but now P
gives their distribution. This procedure does not assign, to each sample function
w(., co) of the original Wiener process, a "solution function" x(., co) constructed
out of w(co).

It is possible and useful to eliminate the dependence of the criterion on the
control law through the cost function c(-, .,. ). In the nonstochastic case this is
done by adding one more differential equation

dxo(t c(t, x, u(t, x)) dt

and minimizing Xo(1). In our stochastic case we can make an analogous simplifi-
cation, provided that c is nonanticipative, a reasonable condition. Heuristically:
we replace the d-vector function f by the (1 + d)-vector function c, f; we add
another dimension w0 of Brownian motion, independent of w, to w to get a
(1 + d)-dimensional motion

Z Wo,W WoWI Wd,

and we swap the integral

cdt
0

for the end-value Wo(1). If now { {, is defined by

h(t, z) dz(t) - [h(t, z)[ 2 dt

with h(t, z) c(t, w(co), u(t, w(co))), f(t, w(co), u(t, w(co))), then the functions z(.
under the measure exp dP will, if E e 1, have the property that

z(t) h(s, z) ds

forms a Wiener process of d + 1 dimensions. Replacement of the time-integral
by Wo(1) is justified by the fact that

E c(t, w(co), u(t, w(co))) dt e(f)= Ew0(1 e.
To see this, note that

(f) + c(t, w, u(t, w)) dwo(t -- Ic(t, w, u(t, w))l 2 dt
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and that under the measure exp dP the function

Wo(t) c(s, w, u(s, w)) ds

is a Wiener process in one dimension; hence,

0 E wo(1 c(s, w, u(s, w)) ds e

Ewo(1)e E c ds e’E{e-’l}.

If c(-,.,.) satisfies growth conditions similar to those on f(., .,-), and
denotes the -algebra corresponding to the w-process over [0, 1], the conditional
expectation on the right will be 1.

Thus, we may and shall assume henceforth that the cost rate c(t, y, u) is
simply the zero-index component fo(t, y, u) of a new (1 + d)-dimensional right-
hand side" f(t, y,u), with f:[0, 1] x C x F R +e.

Finally we discuss the question of a prescribed initial value x(0) a for our
solution x(. of

dx f(t x, u(t x)) dt + dw.

As presently formulated this initial condition is x(0) 0, since the Wiener process
starts at 0, and we took for x(. the functions w(-) under the measure e(g dP.
The initial condition x(0) a 0 can be realized by taking instead the functions
w(. + a under the same measure; if desired, g can be redefined so as to be a
functional of w(- + a instead of w(. ); this is a simple shift. As will be shown, the
important thing is that exp {(w(t)+ a).O- O.Iog ds} be a martingale with
respect to e(g dP for all 0; since this process differs from the previous one in
having a factor exp a. 0, the result is clear. In view of these facts we shall assume
x(0) 0 henceforth.

We thus arrive at this formulation ofan optimal control problem for stochastic
functional-differential equations:To minimize the integral

wo(1 e(g) dP E Wo(1) e(g)

subject to the condition that g be an admissible drift, i.e., have the form

g(t, 09) f(t, w(og), u(t, w(og))),

where w(. is a Wiener process, u(.,. is an admissible control, and

fo(t, y, v) c(t, y, v), t,y,v6[O,1] C F,

i.e., the zero component off is the cost rate c. In this form of the problem we
minimize the average of the value of x0(’) at the endpoint 1; the functional
exp (g) determines what this averaging is.

The functions z(t) E{e;)l Set} have many interesting properties, described
by McKean [14]; among them is the fact that they are the unique solution of the
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stochastic differential equation

(7) dz(t) z(t)q(t) dw(t), 0 <= <= 1.

This allows us to rephrase the control problem as that of minimizing E Xo(1)z(1
subject to (7) and the same conditions on q9 as before.

4. Martingale proof ofGirsanov’s theorem. We have proposed basing an
approach to optimal stochastic control on an absolute continuity theorem of
Girsanov [1, Theorem 1]. In this section we prove this theorem by a direct mar-
tingale method, and note its applicability under our assumptions. Girsanov

1[(.]912 dt <proved that if q9 is a nonanticipative Brownian functional with o
a.s., and if E exp ((q) 1, then the process

is a Wiener process under the measure exp ((qg) dP. We shall put his result into a
more symmetric form.

THEOREM 1. Let q be a nonanticipative Brownianfunctional with o
a.s. The following are equivalent"

(i) w(t) o q9 ds is a Wiener process under e() dP;
(ii) E e( +0) 1 for every constant 0
(iii) E e() 1.

Proof of (i) implies (ii)" dP= e) dP makes W(t) w(t) o q9 ds a Wiener
process, so for 0 Rn,

/ exp {0. W(1) 1/2[0[ 2} 1.
But

((o + 0) ((o) + ((0)- f q O ds

((q) + 0. w(1) 1012 0, o ds

((qg) + 0. W(1) 1/21Ol z.
So

E exp {((q9 + 0)} =/{0. w(a) 1/2[0[ 2} 1.

Proof of (ii) implies (i)" Let E ed() 1. Then since ed,() is a supermartingale
[14, p. 25] we have a.s., for 0 s 1,

E{e)l} et),

E et) EE{e ]} < E e).

Thus E et) 1. Further for s < t,

0 1 E e6(*) E e8(’)E{e(’) 115}.
Since e(’) > 0 a.s. we have

E(et)l} 1 a.s.
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In particular (ii) implies that for any 0 Rn,
E e’+{ )l}= 1 a.s.

It follows from Doob 22, Theorem 11.9, p. 384] that if a continuous process
y(. has the property that

eO.y(t)-1olzt/2

is a martingale for every 0 Ra, then y(. is a Wiener process. Thus it is enough
to show that

exp 0. w(t) O. o ds 101t
is a martingale with respect to e( dP, i.e., that for 0 N s N N 1,

exp 0.[w(t)-w(s)-0. odu-IOl(t-s)/ 1 a.s.

The conditional expectation above is an -measurable function 0(m), m e,
such that for B e ,

{0() e( dP exp 0. [w(0 w(s)3 0. du lOl(t s) e( de

f e(e+(e++(o dP

f E{e(l} e(++(dP

f E{e(+l} e( dP

e( dP

f e( dP (B),

because the conditional expectations above all equal a.e. It follows that 0
a.e.

To encompass Girsanov’s theorem and complete the proof of Theorem
we must show that (iii) implies (ii). Accordingly let E exp ()= 1, and let
bounded be such that

dt 0 N
0

Then also

--01 a.e.,0 dt
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and thus (q9N + 0) (q9 + 0) in probability. Together with the hypothesis
E exp (q) 1, this implies by Girsanov’s elementary Lemma 5 [1] that

e(, + 0) __, e(, + 0) in L 1.

Each qN + 0 is bounded, so

1 E e(%, + 0) __, E e(+ 0) N

This completes the proof of Theorem 1.
Girsanov’s theorem can be viewed as stating that the Wiener measure p

on C is a fixed point of the composition of two transformations of measures, the
first corresponding to weighting by e(), the second to translation by o q)ds.
Since e() is -measurable and integrable, it corresponds to an S 1-measurable

e() dP,p-integrable functional r/on C according to the formula A Y] d/ w (a)

A e $1 For y e C set Ty(t)= y(t)- to qg(s, y)ds. For measures v on C define
Wvand vT-1 forAeS1 by

Wv(A) dv,

v T- I(A) v(T-

Then Girsanov’s theorem states that p (Wp)T- 1.

5. Some preliminary results. In view of the role of condition E exp ((qg)
in application of Girsanov’s theorem, it is particularly important to clarify the
conditions under which it obtains for attainable densities exp ((g), g ’. We
prove the following lemma.

LEMMA 0. E exp ((ag) 1 for all g and >= O.
Proof The proof to be given is the same for all a => 0, so only the case a 1

is described. Let g ’, and

y(t, oo) w(t, o9) g(s, o9) ds

so that in Girsanov’s terminology [1] y(., o9) is an It6 process with respect to
w(-, co) corresponding to the matrix 1 and the vector g(., o9). The result will
follow from Girsanov’s Lemma 7 provided that we find for each e > 0, an integer
N(e) and a monotone system of open sets Cs(t) with

C(t) 6 S,, C(s) C(t) for > s

and such that"
(a) {og"y(., o) CN(t)} ,
(b) P{w(.,o9) C(1)} > 1-e,
(c) ]g(t, o9)1 < N if y(. o9) C(t),
(d) if x(. C(s), x(. C(t), > s, then there is a z with s < z < such that

Let

x(.) e C(u) for u < , x(.) Cu(z).

CN(t) {x e C" I + 2e2(t q- sup Ix(s)l 2) < N2/I}.
se[O,t]



EXISTENCE OF OPTIMAL STOCHASTIC CONTROL LAWS 457

It is easy to verify that properties (a), (b) and (d) obtain. To prove (c) consider
that the growth condition on f gives

Iw(t)l 2 __< 21y(t)l 2 / 2 1 / Iw(s)l 2 ds

sup Iw(s)[ 2 =< 2 sup ly(s)l z /2 1 / sup Iw(u)l z ds
s[0,t] s[0,t] u[0,s]

__< 2 e2 + sup ly(s)12/
s[0,t] !

by Gronwall’s inequality. Hence if y(., o9)6 Cs(t), then

c(1 / Iw(t)l 2) < N2,

Ig(t, o9)1 < N,
which proves (c).

LEMMA 1. There exists a constant > 1 such that

,sup E e

Proof Consider that

Ig(t, o9)l z dte(g) exp (eg) - 2 o

_<_ exp (eg) +
2

: (1 + Iw(t)12)dt
0

Since E e(g) 1, the density e(g) makes the function

x(t) w(t) g ds

a Wiener process. Also

Iw(t)l 2 =< 2lx(t)l 2 /

for which Gronwall’s inequality gives

Iw(t)l 2 =< 2 0(2K / sup

It follows that

/ Iw(u)l 2 du

0<t<l

Ee={g)<--e{==-)"/2Eexp{{(g)+(2-) 2tc + o_<t_<,sup Ix(t)l 2 exp202:}.
Since x(. is a Wiener process under exp (eg)dP, the expectation on the right
is of the form

h()E exp {/((z2 )e22r sup Iw(t)12),
0_<t_<l
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where h(.) is bounded near 1, and so is finite for > small enough (Doob
[loc. cit., p. 392]).

Lemma implies that the set N {e(g), g e} of attainable densities is
uniformly integrable.

LEMMA 2. If g,, n >- 1, is a sequence of admissible drifts, and

weak lim, exp {(g,)

in L or L2, then

E{I} >0 a.s., 0<_ <__ 1.

Proof If E{]} 0 on a set A , of positive measure, then

E(t, og)xa EE{I}ZA

EZa O.

Since 0 a.e. we must have 0 a.e. on A. By weak convergenceA e*(gn) dP O.
Hence some subsequence, relabeled {e(), n 1}, converges to 0 a.e. on A, and
so ((g,) - a.e. on A. But

(g,) g, dw Ig,I dt.

[1 + Iw(s)123 ds, which is independent of nThe second term is bounded by x f o
and finite a.e., so f o g, dw a.e. on A. Thus

Also though,

P A 0 g, dw> -N 0 for every

g, dw <= -N <= P

uniformly in n.
Now observe that

N>0.

<_ N- 2E ]g,I 2 dr,

=< o(1),

P{A} P A g. dw > -N + V A g. dw <_ -N

Let e > 0 be given. Pick first N so large that the second term is less than e/2
uniformly in n; then pick n n(N) so large that the first term is less than e/2.
Thus P{A} O.
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then

LEMMA 3 (H. P. McKean, Jr.). If y(t) o q)(u, co) dw(u) and

r(t) Iq)(u, co)l du,

r-(x)=inft’r(t)=x for x <_ Iq)l du,

y(T-l(t))

is a Wiener process terminated at T(1).
Proof Let )j(t) be the indicator of T-l(tj) > t, where

and let

z(t) exp
j=l

YJ j(p dw +
,=

Yjk jzll 2 du

Note that on T(1) > max tj,

min{T- l(tj),T- l(tk)

jll du I12 du
0

min (tj, tk)

and

f] 7.jq) dw y(T- l(tj)).

The stochastic differential of z(. is

dz(t) iz(t) 7j)jq)dw(t)
j=l

so that

Since

z(t) + z(u) yjXj(u)q)(u) dw(u).
j=l

Iz(t)l exp IjTkltjtk,
j,k=

we can multiply by ;tTl)>maxt, and take expectations at to get

Ez(1)ZTl)>maxt,-- Pr {T(1) > max ti}
or

/jTk min (tj, tk).E exp
j=l

7jy(T- l(tj)) T(1) > max ti exp
j,k=

This says that conditional on its still being defined at the maximum time max
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the process y(T-a(t)) is Gaussian with a covariance appropriate to Brownian
motion.

LENMA 4. For w(. a Wiener process, and y(. ).and T(. as in Lemma 3,

Pr{ sup ly(t)l >a} =<Pr{ sup [w(s)l >a} +Pr{T(1)>t}.
0<t<l 0<s<t

Proof. Let [0, 1] so T(t) is defined and T-l(T(t)) t. Then

y(T-l(T(t))) y(u) for some u [0, t]

and so

sup [y(t)[ > a = sup [y(T- l(T(u)))[ > a.
O_<t_<l O<u_<l

Thus, since y(T-1(. )) is a Wiener process as long as it is defined,

Pr{ sup ]y(t)] > a} __< Pr{ sup ]y(T-l(T(u)))] > a}
O<t<l O<u<l

__< Pr{ sup [y(T-I(S))[ > a}
O<s<T(1)

__<Pr{ sup [w(s)[ >a} +Pr{T(1)> t}.
O<_s<_t

We shall also need a version [15] of an implicit function lemma due to McShane
and Warfield [5]; this version allows simultaneous explicit as well as implicit
dependence on the independent variable, provided that this dependence is
measurable with respect to the same a-algebra as is the desired function.

If dd is a a-algebra of subsets of a set M, and S is a topological space, we say
that a function g:N S, N d{ (defined on N) is rid-measurable if and only if
g-I(F) g for closed F

_
S.

LEMMn 5. Let (M, l) be a measure space, A a separable metric space, and U
a compact metric space. Let k:M x U A be continuous in its second argument
for each value of the first, and /-measurable in the first for each value of the
second. Let y :M A be /-measurable, with

y(x) e k(x, U), x e M.

Then there exists an g-measurable u :M U such that

y(x) k(x, u(x)).

From Lemma 5 we can obtain an implicit function lemma for limits.
LEMMA 6. Let (M, #), A and U be as in Lemma 5. Let h :M U A be

continuous in its second argument jbr each value of the first, and let u, :M--, U
be a sequence of d/l-measurable functions, and z a Jhnction such that pointwise

h(x, u,,(x)) z(x).

Then there exists an dial-measurable function u’M --, U such that

z(x) h(x, u(x)).

Proof Since U is compact metric, there is a continuous map q of the Cantor
set C onto U. Find, by Lemma 5, rid-measurable functions ,’M --, C such that
u,(x) (,(x)), x M. Define (x) lim sup,-.oo ,(x), u(x) ((x)). Fix x
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and find ni-- ni(x), 1,2,..., such that

,,(x(x)- (x).

Then h(x, (,,(x)(x)))-* h(x, ())). Thus z(x)= h(x, O((x))). u is ///-measurable
because if 0 is an open set of U, then

u-’(o) {x :(x)e -(o)} e ,
since ,-(0) is open in C, because , is continuous.

6. Convexity. In deterministic control theory there are counterexamples
which indicate that restrictions must be placed on the "right-hand side" of the
constraining differential equation if optimal control laws are to exist. Conditions
of linearity or convexity have been imposed for this purpose. The fundamental
paper [16.] of Markus and Lee postulated a form linear in the control u(.):

(8) Yc(t) f(t, x(t), u(t)) g(t, x(t)) + H(t, x(t))u(t),

with H a matrix and u a vector. Roxin [17 suggested that it was enough to assume
convexity of f(t, y, F) for each t, y, with F the space of control points. These
conditions (of linearity or convexity) were used to show that a certain function
obtained as a weak limit by a compactness argument was indeed an admissible
"right-hand side", i.e., was f(., x(. ), u(. )) for some measurable u(. with values
in F.

A similar, and in some respects a worse, situation holds for stochastic optimal
control. In the deterministic case an admissible control has only to be measurable
and to take values in the right set. As has been noted by Fleming [18, p. 79], in
the stochastic case the concept of admissibility is much more complicated. This
is because now control can depend with advantage on available information.
As a result, difficulties arise in showing that functions obtained as weak limits
are indeed of the desired form, e.g., admissible drifts (g e ) or attainable densities
( ).

In our setup, the important and difficult problem seems to be that there are
drawbacks to using each of the natural ways in (or places at) which to take convex
combinations in order to turn weak convergence into strong by the Banach-Saks
theorem. One can take them in , and try to show under convexity of that
from a minimizing sequence of admissible drifts one can obtain a convergent
minimizing sequence by convexifying. Or one can take them in 9, provided is
convex, and then prove that is closed. It turns out that need not be convex
even under Roxin’s convexity condition, although special Roxin-type conditions
suffice for certain forms of f in (8). And when is convex, the property of being
a minimizing sequence is not known to transfer from g)

_
to a sequence

of convex combination of {g,). Further, we have managed to prove @ convex
only in the case of complete information about the past (G St); counter-
examples suggest that is rarely convex. (Some of these results and counter-
results are the meat of this section.) The trouble then is that it is difficult to show
either that convex combinations of minimizing admissible drifts are minimizing,
or that convex combinations of minimizing attainable densities are attainable;
the second alternative is feasible when G S, and most of our-results concern
this case.
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We have described the structure of the available information by saying that
for each time there is a a-algebra Gt on C representing information available
at t, and that the control law at must be measurable on Gt. However, the infor-
mation in G may be very different from (usually it is much smaller than) that on
which the system depends at t. In other words for some u F, f(t,., u) may be
nowhere near being Gt-measurable. As a result may not be convex. In particular,
Roxin’s condition does not ensure that the set of admissible drifts is convex unless
the system depends on no more than the controller knows, a situation atypical
in practice.

We give two examples of the failure of Roxin’s condition to guarantee con-
vexity of s’. These examples are included mostly because they illustrate how the
pattern of available information affects convexity, not because convexity of
is useful. Indeed the properties of the functional exp ((.) have precluded our
finding a role for convexity of s so far.

Example 1. Let F [0, 1, f(t, y, u) exp {uy(t)} for y(.) e C scalar, and
suppose that Gt is the four element algebra {, At, A, C}, where At is some
measurable set. This situation corresponds to knowing at only whether y(. )e
or not. We have

f(t, y, I-’) [1,

a closed convex, set, so Roxin’s condition is satisfied. Let u and u be two ad-
missible control laws. Clearly U l(t and U2(t are constant on At. Suppose
now that Uo is an admissible control law such that

f(t, y, Uo(t, y)) 2f(t, y, ux(t, y)) + (’1 2)f(t, u, u2(t, y)).

Then, on A, dropping arguments on the u’s, we have

e"") 2 e"’(t)+ (1 2)e"(t),

u0 y- log {2 e"’y(t) + (1 2)

But Uo must be constant on At, while the right-hand side above obviously depends
on what function y(. from A one has. Thus if At contains two functions assuming
different values at time t, then Uo cannot be constant on At, and so ’ cannot be
convex.

Example 2. The drift in Example is not at most linear in growth unless
u 0. To get one that is, let F and Gt be as before, but take

f(t, y, u)= (u + y2(t))x/2.

Then f(t,y,F)= []y(t)l,(1 + yZ(t))/2], a convex set, so Roxin’s condition is
satisfied. Let now Uo, u, and u2 be admissible control laws such that

(u0 + y2(t))1/2 (b/1 -[-- y2(t))/2 + (1 2)(u2 + y2(t))1/2,

with arguments on the u’s omitted. Then

u0 (2(Ul + y2(t))/2 + (1 2)(u2 + y2(t))’/2)2 y2(t)

must be independent of y(. for y(. in At. This is impossible unless y(t) is the
same number for all y At.
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When the system depends on no more than the controller knows, then Roxin’s
condition implies the convexity of. Such is the content of the following theorem.

THOe-aM 2. Iffor each t, u f(t, ., u) is Gt-measurable and iffor each t, y f(t, y, F)
is convex, then is convex.

Proof f(.,., u) is G-measurable for each u, and f(t, y,. is continuous for
each t, y. By Roxin’s condition, with u and u2 admissible,

2f(t,y, ux(t,y)) + (1 2)f(t,y,u2(t,y)) f(t,y,F).

Then the result follows from the implicit function Lemma 5.
We turn now to consider the convexity of the set of attainable densities.

The principal result is the following theorem.
THEOREM 3. IfG St, i.e., if the whole past is known, and iff(t, y, F) is convex

Jbr t,y [0, 1] x C, then is convex.
Proof For e;(’e , a >__ 0, 1, ..., n, and 7= ai 1, we are to find

an admissible drift g such that

(9) e{(g) a e(gO
i=1

Consider the process

a e;tg’)gi(t o9)
g(t, co)

ai e;b(gi)
i=1

We note that g(t,. is -measurable, and that g(., co) is Lebesgue measurable
for almost all co. Thus g(.,. differs from an -measurable function at most on
a null set. By Roxin’s condition, with 2 Lebesgue measure,

(lO) g(t, co)e f(t, w(co), F) a.e. [2 x P].

By changing g(t, co) on a set of measure zero, we can induce it to satisfy (10)
everywhere. Thus by Lemma 5, there is an -measurable function 7 "0, 1] x f F
such that

g(t, co) f(t, w(co), (t, co)),

and further [15], there is a G-measurable function u’[0, 1] x C--, F such that
a.e.

u(t, w(o)) y(t, o).

Hence g(t, o9)= f(t, w(co), u(t, w(co))), which shows that g is an admissible drift,
g ’. To see that (9) holds we note that the stochastic differential of the ratio

e(g)//i aie(g’)

is zero.
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7. When is a subset of L2 ? Let L2 L2(, P, 5x) be the real Hilbert space
of functions measurable on 5 w-l(S1) and square-integrable with respect
to P. When

_
L2, L2 provides a particularly convenient topology for .

Unfortunately it turns out that is demonstrably a subset of L2 only when the
"right-hand side" function f(t, y, u) in the equation of interest,

dx f(t, x, u(t, x)) dt + dw,

increases with y either slower than linearly or linearly at a slow enough rate.
While these conditions cover many cases of interest, they do not cover the general
case of at most linear growth. Further, there are choices of f that are linear in y
for which L2 In this section we prove some of these facts.

LEMMA 7. If If(t, y,/,/)]2 K(1 + [y(t)] 2) for some < 1, then is a bounded
set ofL2

2Proof Take g sO’, T f o ]g] dt. Then since 2a < 2,

T > t=:, Iw(t)l 2 at >

= Iw(t)l 2 dt

1/2

[w(t)[ 2 dt
0

(_t 1/2

> --1

1/2a

> --1

Thus for any number 0 < 2 < Tg2/8 (2/8 is the abscissa of convergence of
E exp 211wll 2) [19],

P{T > t} __< P Ilwl 2 >

<= e -xtt/’- )’/ E exp 211wll 2.

wll 2 Iwl 2 dt

Lemma 4 now gives

P{e(g) > a} -< P{f] g dw > log a}
ftt _(log2a)/2t -,(t/K- 1)1/< e + const, e

log a

Let log a/(4 + 2e), so that

P{etg) > --< / log a
e + const, e-

Since (t/c- 1) :/’- is eventually larger than x/2, the result follows.
To illustrate how e;(g) can fail to belong to L2 consider the scalar case

(d 1) f(t, y, u)= toy(t) + u, take F [0, 1] together with the control law that
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is identically 0, so that g(t, co) xw(t), and

(g) w(t) dw(t) - Iw(t)l z dt

K 2 K K2

f5w (1)
2 2

Iw(t)l 2 dr.

If x is negative, i.e., if feedback is negative, then e(g) is actually bounded by exp 1/2x.
In general, we can use a result [19] of L. A. Shepp to find for what values of x
eg) has what moments. He showed that for m(. a measure on [0, 1],

E exp - wZ(t) dm(t)

if and only if the integral equation

g(t) 1 (t u)g(u) dm(u)

has a solution positive in [0, 1] if it does, the value of the expectation is g(0)- 1/2.
Choosing dm(u) =/K2 du 26(u- 1)du, we have

We find

(t u)g(u) du + 2 (t u)g(u)b(u 1) du

,/2 (t u)g(u) du + 2x(t 1)g(1),

g’(t) 22 g(u) du + eg(1),

g"(t) 22g(t),

g’(1)-- g(1),

g() .
2g(t) (1 + x) e’/-"-1) + (1 x/) e- ,/-t,- 1), O<t<l.

This has a zero at if and only if

e2r,/-2t X// 1 e2r4-

1 + 2:xflog +i
Thus the function on the right is out of the range [0, 1] if and only if the

expectation exists. In particular, if 2 2 and

x-!> 21/ lg xf + 1

then E e2(g)
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8. Closure and existence. We come finally to closure and existence theorems

similar to those of deterministic control theory. When is a bounded subset of L.,
these results are proved in a natural way using strong and weak L.-topologies.
When is known only to be a subset of Lv, they are proved in a more laborious
way by using stopping times r ---, 1 as N , for which

exp ’(g)

is in L2 for each N.
TEORE 4. L2 is closed in Lz-norm topology.
Proof Let exp (g.) converge strongly to Lz(P). By It6’s representation

[20] of square-integrable functionals of Brownian motion we can write

() + (s, ) w(s),

where is a nonanticipative functional with

E j I(t,)l z dt <
d0

Let (t)= E{I}. Then

(t) 1 + E (s, ) dw(s)l + E (s, ) dw(s)l

1 + e(s,m)w(s)

because the first stochastic integral is -measurable, and the second conditional
expectation is zero.

Jensen’s inequality gives

The right-hand side goes to zero, by Schwarz’s inequality. This shows that for each
t,

Ele- (t)l EI e(l o(1).

Hence e( (. in L(2 x P).
Now since

E e(g(s) dw(s) O(s) dw(s) E e(g(s) O(s) ds,
0

there exists a subsequence, assumed relabeled, such that

e(g( (.

a.s. [2 x P (2 Lebesgue measure).
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Noting that

(t)g(t) q(t)= [(t)- e’(g)]g(t) + eSg")g(t) q)(t)

and that [g,(t)[ z <= const. [1 + [w(t, co)lZ], we can conclude from Lemma 2 that
g, converges almost surely to a function g. By Lemma 6, g is an admissible control,
and

(t) 1 + (s)g(s) dw(s).

Hence [14], (t) exp ’(g) with g e s’. Thus e 9, and is closed in norm topo-
logy.

Remark. If is a bounded and weakly sequentially closed subset of L2,
then an optimal control law exists.

Proof This is almost obvious. Let g, be a minimizing sequence of admissible
drifts..@ is weakly sequentially compact, being bounded. Thus we may suppose
that exp (g,) converges weakly in L2 to an Lz-function e 9. Hence there is an
admissible drift g such that exp ’(g). The cost of using drift g, is

Ewo(1 e(g") Ewo(1 e(g)

Since g, is minimizing, g is an optimal admissible drift.
Our basic L2 existence result is the following theorem.
THFORFM 5. If Gt St, iff(t, y, F) is convex, and if is Lz-bounded, then

an optimal control law exists.

Proof The first two hypotheses imply, by Theorem 3, that @ is convex.
Theorem 4 implies that is strongly closed. Hence it is weakly closed, and existence
of an optimal admissible drift follows from the preceding remark.

LEMMA 8. /f ZN min 1, inf :[w(t)[ N}, then

sup E exp 2)"(g) <
ge’

Proof If zN )fi sup Iw(s)l=<u, we have )’(g)= )(zug), and with r(t)
o<__s<__t

j’; Igl 2 dr, T T(1), W(t) fg’-(t) g dw, T-1(0 inf u" T(u) t, the argument
in Lemma 4 gives

Z(zNg)>loga )(,{T<__t, sup IW(s)[>loga} -Jr- Z{T>t}"
O<_s<_t

Take x{ + N2} to get

)c,,g)>,oga <= ){ sup w(s)l > log a},
0 <s<x(1 +N2)

P{e(ZNg) > a} P{(zug) > log a}

=< P{ sup IW(s)l > log a}
O_<s<(1 +N2)

1 x// log2a--< log a
c(1 + N2)exp-

2(1 + g2)
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But

const.
a (log a)/2K( + N2)

log a

log a__< const, a-2- for
2(1 -[- N2) >

2 + e.

E exp(2(U(g)) P{exp (()ug) > a}a da

< const, depending on N but not on g.
LEMA 9. Let be a random variable measurable on 5’, with E][ p < oe for

some p > 1, and such that

(t) e{l}
is a continuous martingale. Let r be a stopping time and let be the a-algebra of all

sets A such that A { t} e . Then a.s.

() E{I}.

Proo We shah show that () is -measurab]e and that B e implies

Js (z) dP f. e dP.

To show that () is -measurable it is sufficient to show that every set of
the form {m" (z) A, z N t}, A closed, belongs to . Let z, be a countable cover
of [0, t] by open sets of diameter N ()). Then to within a set of measure zero [15],

{m’(z)eA,zNt} U {zeSand-(A)S#}.
S6Rmt

Also, with D a countable set dense in S,

{’-(A) n S } U {o’(,s)eA}
sS

U {o’(,s)eA}.
seD

Thus () is -measurable. Moreover, with B , and 0 t0 < tt < < t, 1,

{ti- <ti}

i=1 {ti- <Nti}

fB (z)dP + fB {ti-<zNti}[(ti)--()] dP.
i=1

With (m) (ti+ ) on {t < z N t+ }, we have

I (r)l dP $ I (r)l dP P/’-(B).
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Clearly It/ (z)l p _<- 2 supo_<s_<ll(s)l p, and by the martingale property,

E sup I(s)lP<( P p

o_<s_<l p -1 EI(1)IP

Thus the integrand I/- (r)l p approaches zero a.s. as maxo<i_<,lti- ti-,ll 0
and is dominated by an integrable function; hence the second integral above
goes to zero.

LEMMA 10. If is an integrable Brownian functional measurable on , with
> 0 a.s., then there is a functional such that

(t) E{lt} eg’E,

where o [[2 dt < a.s. and / is nonanticipative.

Proof It is easy to see that (t) > 0 a.s. for each t. Now J. M. C. Clark has
shown [21] that if is an integrable -measurable function, then there is a non-
anticipative function q(.,- such that for s < t,

e{l,} E{I} J
P [qg[ 2du< 1,

5eo is trivial, so (0) E. Let now

q(u, oo)

,(t, o)

fl (t, co)
E + qgdw

For fixed o, (., o) is a Lebesgue function of t; for fixed t, it is -measurable;
so it is nonanticipative. Evidently

(s)C,(s)dw(s)

McKean [14] has shown that the only solution to this stochastic equation is

(t) exp )($)E.

It remains to prove that o Iql 2 dt < a.s. This will follow from

P{o_<,_<linf (t)=<O}=O.
Since (. is a martingale, Jensen’s inequality gives

E{log (t)l} < log E{(t)[} log (s),
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so that log (. is a submartingale. Hence

P{ inf (t)_>_e-"} =P{ sup [-log(t)] =<n}
0<t<l 0<t_<l

>
sup [- log (t)l -> n}
=t_-I

P{ inf (t)<e-"} <_n-lE.
0<t<l

NOW

dP,

{co" inf (t) _< O}
___

f3 {o9’ inf (t)< e-"}
O<_t<_l n>_.l O<_t<_l

Let N be fixed, and choose a subsequence of {g,}, assumed relabeled, so that

_1 exp O(,Ngi) -- exp (ZN) in strong L2

As in the convexity result Theorem 3, the function

e(g’)gi(t
g*,(t, co) i=

i=1

exp (xNg,) exp ()NO) in weak L2.

and the probability of the intersection on the right is zero.
THEOREM 6. If Gt St, and iff(t, y, F) is convex for t, y 0, 1 C (Roxin’s

condition), then is weakly sequentially closed in L
Proof Let etg") approach L1 weakly. By Lemma 10, the martingale

(t) E{I} is representable as exp() with (t,o) nonanticipating, and
square-integrable in a.s. Thus (. has continuous sample paths almost surely.
Since (Lemma 1) is a bounded set in Lp for some p > we can show that
belongs to the same Lp. The processes exp (g,)= E{e(g")lt} 0 =< __< 1, are
also continuous Lp-martingales. Introduce the stopping times

zN min {1,inft’lw(t)[ N}.
Lemma 9 implies that a.s.

exp (g,) E{e(g")l,}
Since E{. I,,} is "self-adjoint" we have for h e L(R),

EhE{e(g,’)lz}

EhE{IS’u} EE{hlSu}.
It follows that for each N, exp "(g,) approaches (rN) in weak L1. By Lemma 8,
for each N, the sequence exp ’"(g,) is bounded in L2. Hence the convergence
above holds in weak L2-topology, and (:N) L2 for each N.

Let ZN ZN(t, co) Z{u>t}, so that (zN) exp ((ZNO) and ()(g.) ((zNgn).
We have shown that for each N,
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is an admissible drift such that

_1 exp {(zNg,) exp {(zNg,*).
/i=1

The strong L2-convergence implies, as in Theorem 4, that Zuq e )uf(t, w(co), F) a.s.
It follows that

(t, o) f(t, w(o), F) a.s.

Thus by Lemma 5 and the elementary result in 3, is an admissible drift. This
proves Theorem 6.

THEOREM 7. If is weakly sequentially closed in L, then an optimal control
law exists.

Proof By Lemma 1, is uniformly integrable. The inequality

fA e;(g) dP <= | e() dP + NP(A)
(g) log N

then shows that lim yA e;() dP 0 as P(A) - O, uniformly in g e . @ is clearly
bounded, and so it is weakly sequentially compact in Lx. Thus we may assume
as given a minimizing sequence g,, n => 1, of admissible drifts such that e
converges weakly in L to a member e() of 9. The cost of using g, is

Exo(1)e{(g")
-* inf k(u).

We next note that for some p > 1, q p/(p 1), and

we have for h

sup iw(s)12 >N},
Osl

IEwo(1)zue;(h) <_ EX/qZNlWo(1)lq. E 1/p

Lemma shows that the second factor is bounded uniformly in h ’; the first
factor vanishes as N increases. Let e > 0 be given, and choose N so large that

IEw0(1)zNe(h)I <

for all h e e’. Then by the weak Ll-convergence choose no so large that n > no
implies

]Ew0(1)(1 ZN)(e(g) e(g-))l < .
It will follow that Ik(g,)- k(g)l < e for n > no. Since was arbitrary, g is an
optimal admissible drift.

Our final result removes from Theorem 5 the hypothesis that be included
in a ball of L2.

THEOREM 8. /f G, St, if f(t,y,F) is convex, and if If(t,y,u)12<__ const.
(1 + [y(t)[2), then an optimal control law exists.

Proof Theorem 6 implies that is weakly sequentially closed in L. The
result follows from Theorem 7.
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STOCHASTIC CONTROL FOR SMALL NOISE INTENSITIES*

WENDELL H. FLEMINGf

Abstract. This paper is concerned with the approximate solution of stochastic optimal control
problems which arise by perturbing the system equations in the deterministic Pontryagin control
model, through an additive white noise term with small coefficient. The system states are assumed com-
pletely observable. Mathematically the problem becomes one ofsingular perturbation of the Hamilton-
Jacobi equation by a small secondorder term. Our main results concern expansions of solutions of the
perturbed equation in powers e, 82, g3, of the noise variance coefficient e. The results obtained hold
in regions where the corresponding solution of the Hamilton-Jacobi equation is sufficiently well-
behaved.

1. Introduction. This paper is concerned with the approximate solution of
some stochastic optimal control problems. The models of control systems which
we consider are perturbations of the deterministic optimal control model of
Pontryagin [22]. We suppose that, in the stochastic problem, the system is per-
turbed by random disturbances which take the form of an additive white noise
term in the system equations (1.1). If the noise coefficient a in (1.1) is small, it is
reasonable to seek an approximate solution of the stochastic problem in terms of
quantities computable from the Pontryagin problem (with a 0). Some rather
weak statements of this kind were proved in [7, pp. 269, 276]. Stronger results
were obtained in [9, p. 527] for the randomly perturbed simplest problem in
calculus of variations. In the present paper still sharper statements are proved;
see the theorems in 6 and 7.

Mathematically, the problem becomes one of singular perturbation of the
Hamilton-Jacobi equation (1.8) by a small second order term (equation (1.8)).
Our main results concern the validity of the approximate formulas (1.11)-(1.12),
in regions where the solution qg of (1.80) is sufficiently well-behaved. Such regions
are called regions of strong regularity ( 3). A rather general first order equation
q9 + F(s, x, qgx) 0 can be regarded as the Hamilton-Jacobi equation for some
control problem (indeed, for the simplest problem in calculus of variations).
Hence our results apply to such equations. See Theorem 7.2.

We consider the same kind of stochastic optimal control model as in [7].
Let

(t) (l(t), n(t))
denote the state of the system at time t. Thus (t) is a vector in n-dimensional space
R. The state process evolves according to stochastic differential equations,
written in vector-matrix notation as

(1.1) d f(t, (t), u(t)) dt + a dw,
where w is an n-dimensional Brownian motion with w(s) O. At the initial time s,
an initial state vector

(1.2) x-- (s)

* Received by the editors May 26, 1970.

f Department of Mathematics, Brown University, Providence, Rhode Island 02912. This work
was supported in part by the Air Force Office of Scientific Research under Grant AF-AFOSR 67-0693A
and in part by the National Science Foundation under Grant GP6733.
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is known. We require that (s,x) Q, where Q is a given open subset of R"+ 1.
The control u(t) applied in (1.1) at time is a vector subject to

(1.3) u(t) K,

where the "control set" K is a closed convex subset of some Rk. The control u in
(1.3), as well as and w, is generally a stochastic process defined on some probability
space ft. Following custom, we simplify the notation by writing u(t), (t), w(t)
instead of u(t, o), (t, o), w(t, o), oo .

Let z denote the first time >= s when (t, (t)) Q; z is called the exit time
from Q, and is sometimes denoted by z2 to indicate its dependence on Q. The
criterion of performance of the system is

(1.4) J E L(t, (0, u(t))

where E denotes expected value.
If a 0 and u is a (deterministic) function of t, then (1.1) is a vector ordinary

differential equation. Instead of (1.4) we have the performance criterion

(1.4o jo L(t, (t), u(t)) dt.

The problem of finding a control function u such that jo is minimum is precisely
that of Pontryagin. There is an extensive literature; see for instance [13], [19], [22].

When a 4:0 we must specify the information available to the controller.
Let us assume that the state (t) is completely observable at each time t. This
assumption is essential if the stochastic control problem is to be reduced to one
in partial differential equations via dynamic programming. It is interesting to try
to replace it by other observability assumptions. Wonham [26] proved a separation
principle reducing certain partially observable problems to completely observable
ones. Kushner [16] considered the case of random disturbances entering the
system as impulses at discrete time instants, rather than as white noise as in (1.1).
See also remarks about the open loop problem at the end of 6.

Since the states are completely observable the controller may take

(1.5) u(t)-- Y(t, (t)),

where Y is a control policy belonging to a certain class o ( 4). Sometimes Y is
called a closed loop, or Markov, control policy, also a program [13]. Given a control
policy Y and initial data (s, x), the states (t) evolve according to a Markov process.
The policy Y controls the local drift coefficientf r, defined by

f r(s, x) f(s, x, Y(s, x));

and (1.1) can be rewritten in the customary form [5], [12, Chap. 8]"

(1.1’) d f dt + a dw.

The stochastic optimization problem is to find among all Y one for which J
minimizes (1.4).



STOCHASTIC CONTROL 475

For simplicity let the noise coefficient a be a diagonal matrix, with diagonal
elements (2e) 1/2. The components of aw(t) are then independent and have mean 0,
variance 2e(t s). In (1.4), let us write J Y(Y; s, x), and

(1.6) q(s, x) inf Y(Y; s, x).

For each (s, x) and p R" let

(1.7) H(s, x, p) min [L(s, x, y) + pf(s, x, y)].
yK

Let s, x, denote the partial derivatives of a function (s, x). Let

i=1

denote the gradient vector and Laplacean in the variables x. If Q belongs to a class
of regions suitable from the viewpoint of parabolic equations ( 4), if K is

compact, and if we impose suitable assumptions on L ( 2), then satisfies in Q
the parabolic partial differential equation

(1.8) + eA + H(s, x, )= 0

together with the data

(1.9) (s, x) 0 for (s, x) e O*Q.

Here 3*Q is the "essential" portion of the boundary 3Q ( 4). The optimal policy Y
has the property that

(1.10) L(s, x, y) + (s, x)f(s, x, y) min on K

when y Y(s, x).
Thus the completely observable optimal control problem is in principle

reduced to solving the boundary problem (1.8(1.9) for , and then minimizing
L + foverK for each (s, x) e Q. This is usually difficult to do in practice, although
some approximate methods have been proposed. See for instance [15], [25]. In the
present paper we seek approximate formulas for and for small positive .

When e 0 we define o by

(1.6) (s, x) inf J(u; s, x),
us

where do is as in (1.) and is an appropriate class of (open loop) controls ( 3).
It can be shown that also

(s, x) inf dO(y; s, x).

Formally, o satisfies in the Hamilton-3acobi equation

(1.8) + H(s, x, )= 0

with o= 0 on O*Q; an optimal policy yo is found formally by minimizing
L + f over K.

We wish to find , (and hence also Y) approximately in terms of quantities
computable from o. Two apparent difficulties are immediately seen. One is
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mathematical, the other practical. First, the function 99
0 is not differentiable every-

where; one must usually interpret (1.8o in some generalized sense [7]. The policy
yO need not be continuous, and one does not know that the system equations
d fro dt can be solved for the optimal deterministic trajectories. The apparent
practical difficulty is that the boundary problem (1.8)-(1.9) does not seem easier to
solve numerically than (1.8)-(1.9).

However, let us attempt to solve the stochastic problem, not in all of Q, but
merely near some particular optimal trajectory 7. We suppose that 7 lies in some
region N of strong regularity ( 3). In N, 99

o is rather smooth and satisfies (1.8) in
the classical sense. We seek in N expansions of the type

(1.1 1) qg q)O .+. 01 "+- e202 "]- + ’lOl + o(el),

(1.12) qg, (./gx
0 -- /3(01) -+- 2(02) + -- ,l(Ol) + O(,l).

The coefficients 0,..., 01 satisfy the equations found by differentiating (1.8)
repeatedly with respect to e and setting e 0. These equations involve the partial
derivatives ofH of corresponding orders and of qO. The validity of such expansions
will depend on smoothness properties of H, discussed in 2. For certain problems,
including the linear time optimal problem with polyhedral K, we know only (1.11)
with 1 in such problems, H is not even of class Ca. In other problems where a
strong convexity condition holds we may take 2 in (1.11) and 1 in (1.12).
See 6. In 7 we discuss problems without control constraints (thus of the type in
calculus of variations). For such problems one can take arbitrarily large, but
finite. One cannot let and obtain q9 as a convergent power series in e; q* is at
best a C, not real analytic, function of for e __> 0. It turns out that the optimal
trajectory 7

0 is a characteristic curve for the equations which 0j, (0) satisfy.
Therefore the values Os(s, x), Oj,(s, x) at the left endpoint (s, x) of 7

0 are integrals
along o of expressions involving partial derivatives of q9 and H ( 6). These
partial derivatives can be calculated from the method of characteristics in a
neighborhood of 7. See the Appendix. When there are no control constraints ( 7)
one needs for this purpose a solution to the secondary minimum problem in
calculus of variations. For 7

0 to lie in a region of strong regularity it suffices in this
case that"

(i) the initial point (s, x) of o be regular (meaning that 7 is the unique
optimal deterministic trajectory with initial point (s, x)); and

(ii) the classical Jacobi condition holds (meaning that (s, x) is not a conjugate
point).

One might expect that the optimal stochastic trajectories, with the same
initial point (s, x) as 7, remain in N with probability very nearly 1. A sharp estimate
of this kind is Corollary 5.7.

Our method also answers the following question. Suppose that the controller
does not solve the stochastic optimization problem, but instead uses the optimal
deterministic policy yo. (More precisely, suppose that he uses a policy Y
agreeing with yO in N.) How close to the optimum is the performance J(Y s, x)
in the stochastic problem? See the end of 6.

The program of the paper is as follows. We begin with some properties of H
( 2) and a discussion of the Pontryagin problem ( 3). In 4, 5 we obtain some
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preliminary estimates for the convergence of q) and qg as e --. 0, which are weaker
than those eventually proved in{}{} 6, 7. A crucial step is to establish convergence of
o to qgx uniformly on compact subsets of N (Lemma 5.5)..

In 4-7 we impose a strong convexity condition (2.2’). This insures that the
optimal policies Y for e > 0 belong to . The standard Ito conditions then
guarantee that the system equations (1.1) have a solution when Y Y. In 8 we
give some partial results when (2.2’) does not hold. The optimal Y may then be
discontinuous; however, the existence of solutions to (1.1) for e > 0 is still guaran-
teed in the sense of [24]. An interesting open question is to prove precise formulas
for the perturbation of switching surfaces for Y, for example, in the linear time-
optimal problem. Formal studies of such perturbation problems were made in
[4 and [23].

In 9 the autonomous problem is mentioned. Equation (1.8) is then of
elliptic type. In 10 some examples are given, including one studied by E. Hopf 14]
in which (1.8) is equivalent to Burgers’ equation. These examples show that our
results are in many respects best possible.

2. Assumptions on f, L, K; Properties of H. If F is an open set, we write
g C(F) to mean that the function g together with its partial derivatives of orders
j 1, ..., are continuous on F. If F is not open, then g C(F) means that g
agrees on F with a function g’ s C(F’), where F’ is open and F c F’. If F is clear
from the context, we sometimes write merely g Cl.

Throughout, we assume that f, L C(R"+’+.I). However, we shall use their
values only on [To, T] x R" x K, where [To, T] is a fixed (finite) time interval and
the control set K c Rk is closed and convex. (In 9 we consider the autonomous
case, with f, L defined on R"+k.)

The following additional assumptions are made.

f is linear in the control variables y (y l, ..., y), namely, f(s, x, y)
A(s, x) + B(s, x)y. The functions A, B (respectively vector- and n x k

(2.1) matrix-valued) are bounded together with their first order partial
derivatives.

L(s, x, y) is convex in y, namely,

(2.2) vLryv > 0 for all vectors v R.
L > c > 0. Moreover, L and its gradient L, in the variables x (x, ...,

(2.3) x,-are bounded on [To, T] x R" x K for any compact K K.

In (2.2), as throughout the paper, we use vector-matrix notation. Thus Lr
denotes the matrix of second order partial derivatives, and

vLyyv Lriyivivj.
i,j=

If in (1.4), r -= T, which means Q (To, T) x R", we can replace L by L + const.
In that case (2.3)is equivalent to the assumption that L is bounded below. (The
boundedness assumptions on A, B, L can be replaced by suitable growth conditions
as Ixl--* oe; see [10]. However, when we work in some bounded region N, the
behavior of these functions for large Ixl is of interest only in that they insure the
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global existence of the solutions q9 to (1.8)-(1.9) and a uniform bound for q on N.)
To avoid some analytical difficulties, and to obtain stronger results, we replace

(2.2) in 4-7 by the stronger condition

(2.2’) vLrrv c(lYl)lvl , c > 0,

for all v R", where c(r) is a positive, nonincreasing function of r. We also suppose
in 4-6 that K is compact. In that case c(]yl) >= Co > 0 for all y K.

Properties of H. If K is compact, then H is clearly well-defined by (1.7). If K
is not compact (as in 7), then we shall always assume (2.2’) and the following.

For each (s, x, p), L + pfhas a minimum on K at a unique y V(s, x, p).
(2.3.)Moreover, IPl =< v implies IVI =< R(v) for some nondecreasing R(v).

We are interested in continuity and differentiability properties of H. We
begin with a known lemma. For completeness a proof is included.

LEMMA 2.1. Let F R" be open and K Rk compact. Let and its gradient
in the variables q be continuous on F K; and let

(2.4) q(q) min (q, y).

Then:
(a) W satisfies a Lipschitz condition on any compact subset F of F.
(b) If (qo, Y) is minimum on K at Yo and is differentiable at Yo, then

(2.5) Wq(qo) q(qo, Yo).

(c) Suppose that, for every q F, (q, y) has a minimum on K at a unique point
y V(q). Then CI(F).

Proof Since q is bounded on F2 K, where F2 is a neighborhood of F1, a
Lipschitz condition

I(qx, Y) (qo, Y)I <= Clqa qol
holds for qo, q e F1 and y e K. (The constant C depends on F1. Let (qi, Y) be
minimum on K at Yi, 0, 1. Then

tI)(ql, Yl) (qo, Yl) =< q(ql) q(qo) =< O(ql, Yo) (qo, Yo),
(2.6)

IW(ql)- W(qo)l _<- Clql qol.

This proves (a). To prove (b), we subtract (ql qo)q(qo, Yo) from the middle and
right-hand terms of (2.6) and divide by Iql qo]. This gives

(2.7) lim sup Iq qol-[W(q)- W(qo)- (q qo)O(qo, Yo)] =< 0.
q qo

Since q is differentiable at qo, this implies that q kI-/q (take q qo -+ ph,
where h is a fixed unit vector, p 0.) This proves (b).

To prove (c) by compactness of K, 1/is continuous. It suffices to verify that
is differentiable at each qo F and to use (b) with V(qo)= Yo. Let us subtract
(ql qo)fq(ql, Y 1) from the middle and left-hand terms of (2.6), where Y V(q 1).
By continuity of V and qq we get

lim inf [ql qo[-l[q(ql) W(qo)- (ql qo)rbq(qo, Yo)] >= 0.
q qo
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This together with (2.7) implies that tp is differentiable at qo. This proves (c).
Note. In the older literature differentiability is called total differentiability.

By Rademacher’s theorem [6, p. 216], tp is differentiable almost everywhere in F if
tp is Lipschitz on any compact F1 c F.

Now let q (s, x, p), L + pf, and tp H. According to Lemma 2.1, we
have the following lemma.

LEMMA 2.2. Let K be compact. Then:
(a) H is Lipschitz on any compact set.
(b) If H is differentiable at (s, x, p), then

(2.8) H= L + pf, H.= L + pf., Hp= f.

(c) Let F R2n+ be open. If L + pfis minimum on K at a unique y V(s, x. p)
.for every (s, x, p) F, then H CI(F) and (2.8) holds there.

In (2.8), Ls, fs, .", f are evaluated at a point y, where L + pf is minimum on
K. In (c), y V. The symbol fx denotes the matrix of partial derivatives f/xj,
where f (f, f).

Example 2.1. Let f y, L 1, K {[y[ __< 1}. Then H(p)= 1 -[p[ is not
differentiable at p 0. V(p) -IP]- P, P 4: 0. This is a simple special case of the
time-optimal problem. The autonomous version of (1.8) is just the eikonal equa-
tion [qo[ 1. See [2, p. 88].

LEMMA 2.3. Assume (2.2’), and either K compact or (2.3’). Then:
(a) H C1.
(b) H, Hx, Hp, Vare Lipschitz on compact sets.
(c) If F is a set such that V C(F), then H C + (F).
Proof First consider the case K compact. By reasoning in [7, p. 259], noting

that (2.1) implies Oy Ly + pB, we find that V is Lipschitz on any compact set.
The remaining assertions follow from (2.8), with y V(s, x, p).

If K is not compact, let [p[ __< v. Then [V(s, x, p)[ __< r for r R(v), and we may
replace K by the compact set Kr K {[y[ __< r}.

Example 2.2. Let f y, L 1/2[y[2, K {[Yl _-< 1}. Then

_1/2[p12 if[p[ < 1
g(p)=

1/2-[P[, if lp] >= 1.

Hv is continuous, but Hpp is discontinuous when [p[ 1. V(p) -p if [p[ __< 1,
V(p) -]p]-tp iflp] >_- 1. V is Lipschitz, but not C where Ipl 1.

If there are no control constraints, then more can be said.
LEMMA 2.4. Assume (2.2’), (2.3’) and K Rk. Then H C and Ly(s, x, V)
pB(s, x).
Proof. By calculus,

0== Ly + pB.

By (2.2’) and the implicit function theorem, V e C. Hence H e C.
Note. If f =y and B is the identity matrix, the dual formulas Ly -p,

Hp y are the classical Legendre transformation and its inverse.
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3. The Pontryagin problem; Regions of strong regularity. In this section we
collect some definitions, and recall the classical formula for solution of a linear
first order partial differential equation by characteristics. Then we prove a certain
lemma, Lemma 3.1, which is similar to a lemma in [9, p. 523].

Givens (To, T) let ’ denote the class of all bounded, measurable functions u
from Is, T] into the control set K. (These u are sometimes called open loop controls.)
As usual u and v are regarded as the same if u(t) v(t) almost everywhere. Let Q
be open, with Q c (To, T) Rn. The Pontryagin problem is: given initial data
(s, x) Q minimize J(s, x;u) in (1.4) among all u q/s. Let us suppose that an
optimal u exists. (This is true ifK is compact and (2.1)-(2.3) hold. For noncompact
K additional assumptions are needed; a special case is treated in 7.)

Let /o ;O(s x) denote the optimal trajectory corresponding to u:

yo {(t,(t))’s <= <= z},
d
dt f(t, (t), u(t)),

with (s) x and z the exit time ofo from Q. We often write z (z, o(zo)) for
the exit place. If (2.2’) holds, then any optimal u is continuous on Is, zo].

There may be several optimal control functions u for the same initial point
(s, x). Such points (s, x) are known to present difficulty from the viewpoint of
constructing an optimal control policy yO. We call them irregular points. In the
situation considered in 7, the irregular points are exactly those where the function
990 in (1.6) fails to be differentiable [9, p. 520].

We shall need to assume that (s, x) belongs to a region N where stronger
properties hold. Let us write D LI cD for the closure of a set D.

DEFINITION 3.1. Let N Q (_9o, where (90 is open. Then N is a region of
strong regularity if there exist disjoint C hypersurfaces El, "", E,, and disjoint
open sets N1, "’", Nm such that"

(a) N- (E J [_J Era)--N1 U... U Nm.

(b) N f’l E1 N f-I OQ, ONi c E U E+ U (?N ?Q)forj 1,..., m- 1,
t3Nm E, U (N t3Q).

(c) For any (s, x) N, there is a unique optimal u ’s. The corresponding
optimal trajectory (s, x) is contained in N.

(d) For (s, x) N, ;(s, x) meets Ei nontangentially at a single point (s, x)
for __< j, and 7(s, x) does not meet E for > j.

(e) po CI(N) and o C(N) for j 1, m.
(f) For (s, x) N,j 1, ..., m, and(s,x)E1,L + qgfhasaminimumonK

at a unique point y Y(s, x), where yO Co(N).
(g) For (s, x) N.i, j 1, ..., m, and (s, x) E, the function V in Lemma 2.3

belongs to C(F) for some open set F containing (s, x, qg(s, x)).
See Fig. 1.
The classical technique for constructing regions of strong regularity is the

method of characteristics, applied to the Hamilton-Jacobi equation. (In calculus
of variations this is called constructing fields of extremals (see [13, Chap. 3]).) In
the Appendix the method is outlined in the setting of the Pontryagin problem.
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FIG.

The functions in (f), (g) are related by

g(s, x) V(s, x, o(s, x)).

Since o CI(N) the Hamilton-Jacobi equation (1.8) holds in N. Moreover,

(3.2) u(t) V(t, (t))

except perhaps for sj. For this reason we call yo the optimal control policy in
N. We do not require that the C extensions of yo from Nj_ and Nj to Nj_
and N agree on Y. When yo is discontinuous across Yj, we call a switching
surface. (In (d) nontangency means from hoth sides of j.) If yo is continuous
across g but its first order partial derivatives are discontinuous there, then we call
Z,j a transition surface.

A switching or transition surface Zj is usually determined by an equation of
the form Gj(s, x, go) 0. The hypersurface Gj(s,x, p)= 0 often separates two
regions in R2"+ such that V obeys some control constraint in one region but
not in the other.

If the strong convexity condition (2.2’) holds, then there are no switching
surfaces. If besides (2.2’) there are no control constraints ( 7), then we may take
m 1. There are in that case neither switching nor transition surfaces.

For notational simplicity we set fo fro. Thus
f(s, x) f(s, x, Y(s, x)).

Consider a linear partial differential equation

(3.3) s + fx + g(s,x) 0 in N

with the data ff 0 on El. Suppose that g C(Nj) forj 1, ..., m. Let

(3.4) O(s, x) g g(t, (t)) dr, (s, x) e N.
(s,x)

Then g, is continuous in N, C(Nj f) N) for j 1, ..., m, and is a solution
to (3.3) with the data on Z. This follows by the classical method of characteristics
[2]. If yO and g are continuous across Xg, then the first order partial derivatives of
$ are continuous there. Otherwise, the discontinuities in the first order partials of
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across Xj can be calculated. The derivatives of in directions tangent to X;j
are the same from both sides, while the derivatives tangent to the characteristic
curves from (3.3) satisfy dO -g.

In particular, take

d/= (po,, g= HO,, and $=q%o, g= HO,
where Hx, Hx,(s, x, qg,), etc. Recall (2.8). We find that the second order partial
derivatives of o are continuous across a transition surface 2j (however, the third
order partial derivatives are generally discontinuous across I2.3. Across a switching
surface E.i, first order, but not second order, partials of Oo are continuous.

The following notations are used in the next lemma, and frequently in later
sections:

denotes a region of strong regularity;

denotes a bounded set with N N.

(3.6) d(z) distance (z, OQ) for z Q.

(3.7) I11[, max
s<r<t

In case T and the meaning is clear, we write

IIllr I111.
In the lemma it is convenient to denote the solution of the deterministic

system equations by r/(rather than ):

(3.8) dr/= f(t, (t), u(t)), s <= <= T,
dt

with r/(s) x. Note that u, r/are defined on Is, T], although their values after the
exit time z from Q do not affect jo. If u u is optimal, we write as above r/= o
and zo, zo for the corresponding exit time and place.

LE,MA 3.1. Let K be compact, and N’, N as above. Given a > 0 there exists
6 ((a, N’) > 0 with the following property: If (s, x) e N’, d(t, rl(t)) < 3, and

then

L(r, rl(r), u(r)) dr < q)(s, x) + 3,

[(t, r/(t))- z[ < a, It o[, < a, [u(r)- u(r)[ dr < a.

Proof The conclusions can be restated as follows. Suppose that (sin, x,,) N’,
m 1, 2, (Sin, Xm) (S, X), (tin, rim(t,,)) Z as m --. oe, and

lim inf L(t, rl,, u,,) dt <= lim (p(s,,, Xm) qO(S, X).

Here r/m satisfies (3.8) with u Urn, Ylm(Sm) X,m, and Z c3Q. We must show that
z z, and as m --. oe,

lure ul dt O.
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Since K is compact we may assume (by taking subsequences) that Um tends
weak* in L[s, T] to some u e ’s. Then using (2.1), we have that qm tends uni-
formly on Is, T] to the solution t/1 of 01 f(t, u 1, t/1) with ql(s) x. By lower
semicontinuity of jo with respect to weak* convergence (using (2.2)) and the strict
positivity of L in (2.3), we conclude that u is optimal. By uniqueness of u, (c) of
the definition of strong regularity (Definition 3.1),

ul(t)-" N0(t), t/l(t) 0(t) for s =< =< to,

and Z Z0. Since tm 0, lit/,,- [It,, 0. (So far we have used only the fact
that each point in N’ is regular.)

To complete the proof, let

h(t, y) L(t, (t), y) + p(t)f(t, (t), y),

p(0 qx(, (0).

Then h(t, y) has a minimum on K at the unique point y u(t), except perhaps for a
finite number of sj, j 2,..., m, as in (d) of Definition 3.1. Let I be any
compact subset of Is, ro] not containing these sj. Given > 0 there exists fl fl(z)
tending to 0 as --, 0 such that

(3.9) h(t, y)- h(t, u(t)) < lY- u(t)l </3,

provided e I. By linearity (2.1) off in y and convergence of tm to :0,

lim pO(t)f(t o, Urn) dt pO(t)f(t o, uo) dt.

By the first part of the proof,

lim L(t, 0 Um) dt lim L(t ., Urn) dt L(t o uo) dt

Therefore,

lim h(t, u,,(t)) dt h(t, u(t)) dr.

Since h(t, u) h(t, u) and t tends to r, h(t, Urn) h(t, u) in measure on I.
By (3.9), u tends to u in measure on I. Since Urn(t) K, K is compact, and the
measure of Is, r] I can be made arbitrarily small,

lim lUre uO[ dt O.

4. The stochastic problem; Preliminary estimates. Throughout 4-6 we
assume that K is compact, and that (2.1), (2.2’), (2.3) hold. The main results of the
present section are the estimates contained in Lemmas 4.4 and 4.5.

We begin with some notation and preliminary remarks.
(a) The class of control policies. Let consist of all functions Y from

[-To, T] x R" into K with the following property: for each T’ < T there exist
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positive constants C, a (depending on Y and T’) such that

Y(s’, x) Y(s, x)l =< Cls’ sl ,
Y(s, x’) Y(s, x)l <= CIx’ xl

for every x, x’ R" and TO <= s, s’ <= T’.
(b) The region Q. To insure that the boundary problem (1.8)-(1.9) has a

well-defined solution, we take Q an open subset of(To T) R" ofa shape "suitable"
from the viewpoint of parabolic equations. Thus we assume that

3Q BTo (.J S I..J BT,
where BTo,BT are open subsets of the hyperplanes {To} R", {T} R" respec-
tively, and the "lateral boundary" S is a compact subset of a C manifold So.
Moreover, if v (Vo, v l, ..., v,) is normal to So at a point of S, then vi # 0 for
some > 0. Let 6e denote the class of all such Q.

The "essential" part of t3Q is denoted by

3"Q S [,.J BT.

Let C1’2(Q) denote the class of functions bounded and continuous on 0_, with
s, ,, ffij continuous on Q, i,j 1,..., n. If Q 6e, then the function q9 in
(1.6) is the unique solution of (1.8}-(1.9) in C1’2(Q). See [7, 2], [11, Chap. 7] or
[18]. Actually, qg is H61der continuous on Q, and qg, 99ixj are H61der continuous
on any compact subset of Q (S BT) i,j 1,..., n. The optimal policy Y
defined by (1.10) belongs to ; more precisely, Y has an extension for (s, x) Q
which belongs to . See [7, p. 261]

If S is empty, then d*Q is the hyperplane {T} R". The boundary data (1.9)
are then Cauchy data.

We shall write

(4.1) A= s + eAx.

We also put f f r,, U Lr,, where as in 1

g’(s, x) g(s, x, Y(s, x));

and we put H H(s, x, q). Thus (1.8) becomes

L,0 A+H=A+f% +
(c) Some probabilistic notions. Let f be the space of continuous functions o9

from [To, T] into R". We shall suppose that all processes which appear are defined
on this sample space I). Fix s s TO T]. Let Bst denote the least a-algebra containing
all sets {o9 D’og(r) A}, s _<_ r __< t, A R" open. A process on the time interval
Is, r] is called nonanticipative if (t) (meaning (t,. )) is Bt measurable for s __< __< T.
A random variable z with s __< _<_ T is a (nonanticipative) stopping time if the
event r > is B, measurable, s __< __< T. If and r’ are stopping times, then

r A :’= min (r, ’)

is also a stopping time..
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Let be a continuous nonanticipative process on Is, T], with values in R".
Such a process is specified by a measure n on BsT, if we set (t, 09) 09(0, 09 f.
In particular, let w be an n-dimensional Brownian motion on Is, T], with w(s) 0;
the associated n is a Wiener measure.

Let D c [To, T] R", with interior Do not empty. If (s, x) Do, let

zo inf {t’(t, (t)) q Do}.
We call to the exit time; it is a stopping time. Thus in formula (1.4), tQ.
We also write zo (to, (zo)) for the exit place.

Given a control policy Y, a continuous nonanticipative process is
determined by the system equations (1.1), the initial data (1.2), and (1.5). See
[_3, Chap. VI, 3] or [12, Chap. 8]. The process is in fact Markov and strongly
Feller [5, Chaps. 11, 13], also [24].

If Y is the optimal policy, then write for this process"

d f’(t, (t))dt + (2e) 1/2 dw, s <= <= T,

with (s)= x. The corresponding exit times and places are denoted by rb, zb.
(d) Two estimates for maxima. Suppose that

d f(t, (t), u(t)) dt + (2e) x/z dw,

dr f(t, r/(t), u(t)) dr,

with (s) q(s). By a standard estimate for ordinary differential equations,

(4.2) I r/lit =< cg’l/2llWllt, S <= <= T,

where C is a positive constant depending on T- To and a bound for ILl. (This
notation II, was defined in {} 3.)

Since w is a Brownian motion with w(s)= 0, the random variables
Wl(t),..., w,(t) are independent with mean 0 and variance s. For any 2 > 0,

Pr llwllt > 2} < 4n Pr {wi(t) > 2 } <-- 4nz(t s)l/z { 22)}n (2z)1/22
exp nZ(t s

See [3, p. 392]. Therefore for/l ee-1/2 we get, after writing Ilwll for Ilwllr,

Pr {el/2 wll > e} C1/z exp (-fl/e),

for suitable positive C,/3 depending.on e.
(e) A stochastic analogue of the fundamental theorem of calculus. Suppose that

satisfies the stochastic differential equation

d{ b(t, {(t)) dt / (23) 1/2 dw, s <= <__ T,

with (s) x. Assume that b is continuous on [To, T) R", bounded, and satisfies
a uniform Lipschitz condition in x on [To, T’] R" if T’ < T. In particular, one
can take b fr, where Y . When Y Y, b .f; another useful choice will be
b b, where b’: is defined in 6. Let (s, x) D, with D open, and ’ a stopping time
such that s =< ’ __< to. If k C1’2(D), with A + bx bounded, then

(4.4) 0(s, x) E (AgO + box) dt + EO(z’),
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where z’= (z’, (z’)). This is a consequence of the following well-known [12,
p. 391] Ito formula for stochastic differentials of composites. Let e C1’2(Rn+ 1).
Then

(4.4’) d(/(t, (t)) (A + bx) dr + (2)1/2,, dw.
To get (4.4) from (4.4’), let 11 c D. Take such that 0 on Oa. If z’ _<_ zD1,
then we get (4.4) by integrating (4.4’) between s and ’ and taking expected values.
From properties of stochastic integrals,

E dw E 7.,dw O,

where ): is the characteristic function of the interval Is, t’). Finally, D is the union
of an expanding sequence D1, D2,"" with Oj c D; and t’ is the limit of the
monotone sequence of stopping times zj r’ A

Note. Equation (4.4) is actually valid under the weaker assumption that
belongs to the class (D) defined in 8. This can be shown by an approximation
argument, which we shall carry out under the following somewhat stronger
assumption than e -(D). Suppose that C(O) with the second order partials
O,,,j bounded and continuous except on a finite number of C hypersurfaces
E2, ..., 5;,,. (In the proofs ofTheorems 6.4 and 6.5 we encounter such functions
Take 1,2,"" in C1’2(R"+1)such that, for each i= 1,2,..., j tends to
uniformly on Oi as j oo while Aj + b()x is bounded on Di and tends to
Ap + bp,, on D (E2 L} U E,,). For each > s the probability distribution
of (t) is absolutely continuous with respect to Lebesgue measure. In fact, the
probability density is a weak solution of the forward equation see for instance [8].
Therefore,

Pr {(t)6 E2 U... U ’’m} 0

for almost all t, which implies

lim E [A + b(O)x dt E [A0 + b/ dr.

From this we get (4.4) as before.
In the next lemma the notation is as follows. Let (9 be an open set and

D f) (9. We suppose that D c N, where N is a region of strong regularity;
moreover, fo fro is assumed to be defined outside N so that fo C((9 D).
See (f) of Definition 3.1. (We do not require outside N that L + qOf be minimum
at yo.)

Let Co be such that

[f(s, x’) f(s, x)[ __< Coix’ x[
for (s, x), (s, x’) 6 (9. Let

d f(t, (t))dr, s <= <= t,

(s)=x, (t,(t))eD fors_<_t_<_t,
(t,(t))6(9-D fort <t_<_t.

Let b and the process be as in part (e) of this section, (s) x.
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LEMMA 4.1. Given a > 0 there exists e > 0 with the following property"

If [fo b[ < e in (9 and e 1/2 [w [,, < e, then"

(i) I’co- "cl < a, (’co, (’co)) c*Q.

Proof. Let #(t)= w(t A

(t) x + b(r, (r)) dr + (2g)1/21(t).

Then [[ff’ll tlwl[,, and (t)= {(t) for s < <= zo. By standard estimates for
ordinary differential equations,

[(t)- (t)[ _< 3e + CO [(r)- (r)[ dr,

provided e1/2[[# <e and s__<t__<tl A%. We may assume that tl>_-z+a.
For sufficiently small e, the hypotheses of the lemma imply

ce > t, ol[, < a,

(t, (t))e D for s __< __< z a,

(t, (t))6 (9- D for r + a _<_ _<_
These inequalities imply (i) and (ii).

Note. Let 7 be the trajectory corresponding to o on Is, o], as in 3. Then e

depends on a, Co, and distance (7, (9) but not on e.
The following lemma gives an upper estimate for q9 near a boundary point z

in a region of strong regularity. The method is to lefine locally a solution of a
linear equation (4.5) which serves as a "barrier" at z. In Lemma 5.1 a corresponding
lower estimate for q9 near z will be proved.

By relative neighborhood of z we mean a set M Q (q (9, where (9 is open and
contains z.

LEMMA 4.2. Let N be a region of strong regularity and z N 3*Q. Then
given m > 1 there exist eo > 0 and a relative neighborhood M’ of z such that
qg’:(S, X) <- mlP(s, x)for all (s, x) M’ and 0 < e < o.

Proof. Let M be a relative neighborhood of z such that M is of class and, N (where N1 is as in 3).,,Let Y be some control policy such that o in
M, Y e , and Y e C1((9) for some open (9 with M Q f-I (9. Let e C1’2(M)
satisfy

(4.5) A +fr+Lr =0 inM

with 0 on c3*M. Let be the solution of (1.1) corresponding to Y with initial
data (s, x) M. Since Y yo in M, by (4.4),

M

(4.5’) (s, x) E L dr, (s, x) e M.

Let

(s, x) J(s, x; Y) E Lr at.
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By the definition (1.6), p <= . By (4.4) and the fact that also satisfies (4.5),

(s, x) (s, x) + E(ZM), (s, x) M.

Let # > 0 and q (1 + p)qO. Then in M,

(4.6) Ap + fq9 + L e(1 + p)Aq9 pL.
Since Aq9 is continuous in and L >= cx > 0 by (2.3), the right side of (4.6) is
negative for small e. Moreover, q9 >__ 0 and ff 0 on t3*M. By the maximum prin-
ciple for parabolic equations, __< q9 on M. Moreover, is bounded on Q by
C (T- To)sup L, and 0 on c3*Q. Thus

(4.7) (s, x) _<_ p(s, x) + C Pr {z e OM ?*Q}.
To estimate the probability on the right side, we use Lemma 4.1 with b fo.
Let a > 0 and a relative neighborhood M’ of zbe chosen such that M’ M and,
for all (s, x) e M’,

distance (0 3(9) > a

As usual o vO(s x). Thus, for some e > 0,

(s, x) <_ q(s, x) + C Pr {el/2iiw[[, >__ e}, (s, x) e M’.

Since ZM is a random (not fixed) time we cannot apply (4.3). However, let

#(t) w(%t A t)= 7.(r) dw(r),

where ;g is the characteristic function of Is, ZM). By properties of stochastic integrals
[12, p. 383],

Pr {llwll >= 2} Pr {llllr }

=< ,-2E x2(r) dr-- )c- 2E(’CM S).

Since L Cl > 0, by (4.5’)

E(M s) c-l0 -1.
Let 2 ee-a/2. For suitable C,

Pr {zuM *Q} N Cee-2(s,x).
From this and (4.7),

(1 C2g) (1 + )o.
Since we get Lemma 4.2.

Note. If A c N *Q and A is compact, then the same kind of estimate in
Lemma 4.2 holds in a relative neighborhood of A.

For making certain estimates it is a useful technical device to consider not
only control policies, but also nonanticipative control processes. Such a process
will be denoted by u. The system equations (1.1) with the initial data again have a
well-defined solution . The process { is nonanticipative, but not necessarily
Markov.
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Roughly speaking, a nonanticipative u may use past data in an arbitrary way,
while a control policy Y uses at time past data only through the current state (t).
One cannot obtain better system performance using nonanticipative controls than
with control policies. In fact, let Y be the optimal control policy and as in
part (c) of this section. Then

u(t) Y(t, (t))

is an optimal nonanticipative control. See [7, p. 263]. This result is to be expected
from the assumption of complete observability.

The following was proved in [7, p. 264].
LEMMA 4.3. Let u be any nonanticipative control process and z’ any stopping

time with s c’ <= c2. Then

q)(s, x) <= E L(t, (t), u(t)) dt + Eq)(c’, (c’)).

Equality holds if u u, .
The proof of the next lemma follows that for a corresponding result [9,

Theorem 4a] for the Cauchy problem (c c T). However, we need Lemmas
4.2 and 4.3 to deal with the case when exit may occur through the lateral part S of
c*Q. For the Cauchy problem the estimate for o qO in Lemma 4.4 is valid
globally, not merely in N’.

LEMMA 4.4. Let N, N’ be regions ofstrong regularity with N’ N. There exist
positive C and o such that

I,p(s, x) ,p(s, x)l _-< c/2,

Pr {zr e 0N t’Q} __< Ce

for all (s, x)e N’ and 0 < e < eo.
Proof. Part 1. Let (s, x)e N’. The optimal open loop control u is suboptimal

in the stochastic problem. The corresponding process is defined by

d f(t, (t), u(t)) dt + (2;) 1/2 dw

with (s) x. Let c be the exit time for that process, and

C’ C
0 / CN, z’ (’, (’)).

By Lemma 4.3,

q)(s, x) <= E L(t, , u) dt + Eq)(z’).

Since L > 0 and c’ _<_ c,
L(t, o, uo) dt <= q)(s, x),

q)(s, x) <__ q)(s, x) + E L dt + Eq)(z’).
I,u
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From (4.2) with u u, r/= o, and boundedness of Lx the middle term on the
right side is in absolute value _< Ce1/2 (we use C for any large enough constant).
By the note after Lemma 4.2 there is a relative neighborhood M of A N’ CI O*Q
such that c N and qS _< mlqgo for all (s, x)6 M and small/3. Since N’ is a region
of strong regularity, ,(s, x) c N’. Hence there exists e > 0 (not depending on the
choice of (s, x)6 N’) such that /31/2 w < e implies z’6 M. Define d(z) by (3.6).
If z’ 6 M, then either

or else
’ rN, z’ e c3*Q, d(z’) 0;

, o, d(z’) <= I(z) (z)l.
In either case, d(z’) <= I1 o I,, From Lemma 4.2 we have for such w,

pS(z’) <= mlq(z’) <= Cd(z’) <= C/31/211wl[

E{qgS(z’); t/211wll < e} =< C/31/2.

On the other hand, q0 is bounded on N (by (T To)sup L). Hence from (4.3),

E{qoS(z’);/31/2[ wll _-> e} __< C1/2 exp (-/3//3).

These two inequalities give

(4.8) q)S(s, x) <__ q)(s, x) + C/31/2.

Part 2. To get an inequality opposite to (4.8) we use the fact that the optimal
stochastic u is suboptimal in the deterministic Pontryagin problem with prob-
ability 1. Again, let (s, x) N’. From the definitions of s, us,

d f(t, , us) dt+ (2/3) 1/2 dw.

Define r/s by

dq f(t, rl s, us) dr,

with rlS(s) S(s) x. Let :s :, ] exit time from Q of (t, r/S(t)), and

r =’csA rl, z=(r,

With probability 1,

(4.9) d(z) I 11 C/2 wl,

(4.10) q(s, x) <= L(t, rls, us) dt+ q(z).

Let 0 < a =< 1/2 distance (N’, ON 3*Q), and 6 be as in Lemma 3.1. Consider
the three mutually exclusive events

nl {CX/21lwl },

n {Cx/2 Iwll < , z M},
where M is as in Part 1, C as in (4.9). Using (4.9) we also take 6 small enough that
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II ll > a on B:. The event {z 3N t3*Q} is contained in B U B2. Thus

(4.11) Pr {zv dN 3*Q} =< Pr {B1} + Pr {B:}.
By (4.3) and boundedness of q9,

E{q(z); B1} <= Ce 1/2 exp (-fl/e).

By Lemma 3.1 with z, r/= r/,

(4.12) q)(s, x) + <= L(t, l, u) dt on B:.

By (4.9),

q(z) Cl/llwll on B3,

E{qg(z);B3} =< C,1/2.

We now take expectations in (4.10), to obtain

qo(s, x) + Pr {B:} <_ E L(t, rl, u) dt + Ce/:.

From L > 0, : __< z, L bounded, and (4.2), we have

E L(t, rl, u) dt <= E L(t, , u’) dt + CF, 1/2

<__ E L(t, ’, u’) dt + Ce/:

The first term on the right side is qg(s, x). Thus,

(4.13) q(s, x) + 6 Pr {B2} <= q)(s, x) + Ce 1/2.

This together with inequality (4.8) implies Iq q __< C, 1/2 and Pr {B2} <- C, 1/2.
By the (sharper) estimate (4.3) for Pr {B1} and (4.11), this completes the proof of
Lemma 4.4.

In proving (4.13) we have also established

(4.14) E L(t, , u) dt <= C, 1/2

This will be used in proving the next lemma.
LEMMA 4.5 Let N, N’ be as in Lemma 4.4. Given a > 0 there exist positive C and

o such that:

Z0 1/2(i) Pr {Izv >= a} <= Ce

> a} < CF, 1/2(ii) Pr {11 o II

(iii) Pr [u-u[dt>=a <=Ce 1/:,

for all (s, x) N’ and 0 < e < eo. Here .
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Proof We may suppose that 0 < a < distance (N’,c3N- c*Q). Define
B1, B2, B3 as in Part 2 of the preceding proof, but with 6 6(a/2, N’). Let

B4 B3 L(t, q, u) dt < q(s,x) + 6

Thesameproofasfor(4.13)showsthatP{B3 B4} Ce 1/2. Since P{B} + P{B2)
Ce/2, it suffices to consider the case when B holds. By Lemma 3.1, on B4,

a o a a
[z-- z[ <, 11 <, , [u- uldt <.

From the definitions of z}, z,

Iz} zl a Iz} zl + Iz z,
Iz} zl a Ir rl + (})-

Moreover, } on B (hence on B4) and N z. Hence

lz} zl a e + I- .l + I(z) ()1.

Since dq/dt is bounded, we get on B4
lz} zI C( ) + Ce/Ilw + }a.

Similarly, on B4,

t1 o I c( ) + ce/21lwll + 1/2a,

’lu- ul __< C(- ) + 1/2adt

for some positive C. Let # < a/(2C) 6/C. From (4.14) and (2.3),

Pr {z z >= p} __< (#cl)-E L(t, , #9 dt <__ Ce/.

This together with the estimate (4.3) proves Lemma 4.5.

5. Convergence of tp to tpx. This is proved uniformly on compact subsets of
a region N of strong regularity (Lemma 5.5). As a consequence of this and assump-
tion (2.2’) the optimal control policy Y tends in N to yO (Corollary 5.6). Like the
estimates in Lemma 4.4, Lemma 5.5 is a preliminary step toward more precise
results in 6.

We begin with a lower estimate for .q near boundary points to complement
the upper estimate in Lemma 4.2.

LEMMA 5.1. Under the hypotheses of Lemma 4.2, given m2 < 1 there exist
eo > 0 and a relative neighborhood M’ of z such that qg(s, x) >= m2qg(s, x) for all
(s,x) M’ and O < e < eo.

Proof From equations (1.89, (1.8), and (1.7),

Aq9+fqg+U=0 inQ,
o U_Aq9 + f qg: + > eAxp in N
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(Recall 4(b), (c) for notation.) Let ff o q)O. Then

Aqt + f: _< -A,q9 in N.

Let M be a relative neighborhood of z with M c N. Set ’ z’ZM, ZM By (4.4)
with ,

d/(s, x) >- eE A,q) dt + EO(z’), (s, x) 6 M.

From Lemma 4.4, 10(z’)l _-< C1/2 while by (1.9), d/(z’) 0 if z’ e ?*Q. Thus

(5.1) O(s, x) >_ eE Aq) dt- Ce/2 Pr {z’ e c3M c*Q}.

andL> cSincez’=< ze

(5.2) E Aq dt <= CE( s) <= Cc- lee(S X).

From (1.1) we have the elementary estimate

t[ gilt <= c(t s) nt- (2e) 1/2 Iwll,, s =< _< T,

where Ifl =< c. Take a > 0 and a relative neighborhood M’ of z such that

distance ((s, x), OM O*Q) >= 2a if (s, x) e M’.

> a. ButThen z’ e cM c*Q implies either z’ s > ac-1 or (2)/2llwll,
Pr {’ s >= ac-} <= a-cE{r s} <= (aca)-cqg(s,x),

Pr {(2e)x/2llwll , >= a} _< Ceq)(s,x)

by reasoning used to prove Lemma 4.2. Thus

(5.3) Pr {z’ e cM c3*Q} =< Cqg(s, x).

From (5.1), (5.2), (5.3) and Lemma 4.2,

O(S, X) --Cf,1/2q)O(s, X), (S,X) M’.

This proves Lemma 5.1.
LEMMA 5.2. Let N be a region of strong regularity. Then q)x q)O, q) q)O as
O, uniformly on any compact set A N f’l c3*Q.
Proof Since q9 99

o 0 on N f’l c3*Q, their derivatives in directions tangent
to c*Q are 0 there. It suffices to show uniform convergence of the normal deriva-
tives on A. Let v be the interior unit normal at z e A. Then

cq c3q
lim

qg(s x)- q(s x) /cq)/- qg(s, x)- q(s, x)
limv s,x d(s, x) \-d-v , q)(s, x)

According to Lemmas 4.2 and 5.1 the latter limit approaches 0 as e 0, uniformly
on A. This proves Lemma 5.2.

To prove convergence of q0 to .o at points of N c*Q we need a formula
expressing q, in terms of the processes u and . Let us writef(, ) fx(t, , u).
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Given s, define the fundamental matrices W" (Wj), i, j 1,..., n, for each
e>=0by

(5.4) dW= f(t, (t))W dr, We(s) identity.

Suppose that ieCl’Z(R"+1) for i= 1, ..., n, and let i(t)= (p(t,(t)). The
collection of processes , (, W satisfies the stochastic differential equations (1.1)
with u u, (5.4), and

(5.5) di (Aei + f(,))dt + (2e)/2(i) dw.

Hence, we may compute the stochastic differential d({W)by the Ito rule, obtaining

(5.6) d(,W,5 (d,)Wj + ,dWj.

The additional term which normally appears in the product rule for stochastic
differentials is missing since no noise term appears in (5.4).

LEMMA 5.3. Let z’ be any stopping time, s z’ ,, and let z’ (,’, (,’)).
Thenfor > 0 and (s, x) 6 ,
(5.7) e(s, x)= E LW dt + E{e(z’)W(r’)},

where L L(t, (t), u(t)).
Proof Let P , and differentiate (1.80 with respect to xi, obtaining

.8) ae, + n, + (e,)n O, i= ,..., n,

where H,H are evaluated at (s, x, P). As noted in 4(b), Pi is continuous on Q.
Using Lemma 2.3(b), we have that H, and (Pi)H are H61der continuous on any
compact subset of Q; hence so is APi. This implies that P Ci’Z(Q). See [11] or
[18]. Using (2.8) we rewrite (5.8) as

(5.8’) AP + f(P3x -(L, + Pf,).

For the moment suppose that z’ _< :D, where b Q. In (5.6) take e CI’Z(R"+ 1)
such that i P on . Then, for (s, x) D,

P,(s,x)Wj(s)- -E {[AP + f*(P),]W,dt + PdW,} + E{Pi(zt)Wi(T’)}.

Let us sum on i, and use (5.4), (5.8’), W(s) identity. We get (5.7), in case z’ =< :D.
By writing Q as the union of an expanding sequence D1, D2, and :’ as the limit
of the monotone sequence z’ A zoj, we then get Lemma 5.3.

LEMMA 5.4. Let N be a region of strong regularity, and N’ c N. Then there
exist positive C and o such that [q[ <= Cfor (s, x) N’ and 0 < e < o.

Proof First of all, let 1 < p < . The following crude bound holds"

(5.9) Iq] _-< Ce-, (s, x) e O*Q.

(This is rather similar to an estimate of Oleinik [21].) Clearly (5.9) holds on BT
since 0 0 there see 4(b) for notation. Suppose that Zo S. If v (Vo, v 1, "’", v,)
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is the interior unit normal to S at Zo, then v - 0 for some > 0. Let z Zo rv,
where r is chosen (simultaneously for all Zo) small enough that the sphere Iz z 1[ <= r
meets Q only at zo. Consider the function

0*(s, x) 1 exp [-e-O(lz Zll 2 r2)],
z r2co {-’ < Iz z, <

where > 0 is chosen small enough that x
An easy calculation shows that for small e,

A+f+L<0 in (9,

O= 1 e-1/2 on

Since

Aq+fq+ L=0 inQ,

A(cz$ o) + f(q q% < 0 in M,

for any => 1. On c0*Q, q9 0, 0; while on OM O*Q, * * 0 for
suitable . By the maximum principle, * $* in M for such . In Q, * 0;
while * $* 0 at Zo. Hence

< Cs-Ov
at zo. Since the derivatives of in directions tangent to S are 0 at Zo, this implies
(5.9).

Now let D, D2, D3 be regions of strong regularity with

N’ = D, D D2, D2 D3, D3 N.

Since z O*Q D3 implies to3 < v, we have by Lemma 4.4,

Pr {z O*Q 3} Pr {zb 0D3 O*Q} Ce/2

for (s, x) D2. By Lemma 4.2, is bounded on (O’Q) 3- Moreover, L and
W are bounded. By Lemma 5.3 with r’= r,

I1 C + CE{I(z)I z 0*Q },
I1 Ce-+ x/2

for (s, x) D2 and sufficiently small e. We now apply Lemmas 4.2 and 5.3 again,
with , and use the estimate just obtained when z’ ODz Q. Thus
I] Ce-+ when (s, x). Since p < another application of these lemmas
gives [l C, (s, x) N’.

LMMa 5.5. Let N, N’ be as in Lemma 5.4. Then as O, uniformly
O N’.

Proof Let (s, x) N’. For e 0 formula (5.7) becomes
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Let D be a region of strong regularity with N’ c D and D c N. Set z’= zb,
z’ z From Lemma 4.5, IIW W o z’ z. ,, Lx- Lx, and tend to 0 in
probability as e ---, 0, uniformly with respect to (s, x) N’. Moreover, L, W are
bounded, while q(z’) is bounded by Lemma 5.4. By Lemma 5.2,

e(z’)- (z): e(z’)- (z’) + e(z’)- e(z)
tends uniformly to 0 in probability. Similarly,

w(r’) wo(ro)l __< W WOl , + W(r’) wo(ro)l
tends uniformly to 0 in probability. Using (5.7), Cx tends uniformly on N’ to the
right side of (5.7) as e 0. This proves Lemma 5.5.

The optimal control policy Y is given by

(5.10) Y*(s, x) V(s, x, q)(s, x)).

By Lemma 2.3, V is locally Lipschitz; thus Lemma 5.5 has the following corollary.
COROLLARY 5.6. Y tends to yO uniformly on N’.
In 8 we shall see that Lemma 5.5 remains true in cases where Y may have

switching surfaces. However, Corollary 5.6 is not true in such cases.
From Corollary 5.6 there is a much sharper estimate than the one in Lemma 4.4

for the probability that the optimal stochastic trajectory leaves N before time
COROLLARY 5.7. There exist positive C, fl, eo such that

Pr {zv 6 cN c*Q} =< C, 1/2 exp (- fl/e)
for (s, x) N’ and 0 < e < eo.

Proof Let D be as in the proof of Lemma 5.5, and (9 open with D (9 f’l
By Corollary 5.6, tends to yo uniformly on . We can define Y outside Q
so that Y and Y tends to yo uniformly on -. In Lemma 4.1, let b f.
There exists e > 0 such that (s, x) N’, ]fo fl < e in (9, and ex/Zllwll < e imply

zo z z e *Q.
We apply (4.3).

6. Asymptotic formulas for , tp. We are now ready to state the main results,
Theorems 6.2, 6.4, 6.5. At the end of the section we indicate how the same methods
tell the goodness of the policy yo in the stochastic problem.

As in 4, 5 the control set K is assumed compact. We again assume (2.1),
(2.3). Theorem 6.2 is true assuming the convexity condition (2.2). However, in
Theorems 6.4, 6.5 we need the stronger condition (2.2’). The following observation
will be used several times.

LEMMA 6.1. Let G(s, x, p) be a real-valued function on N R", satisfying for
any v a Lipschitz condition on N {IPl <= v}. Let P, po be bounded, measurable
on N. Then:

(a) There exists a bounded Borel measurable b such that

G(s, x, P) G(s, x, po) b(s, x).(P po).
(b) If G is C in p, then we can take

b(s, x) Gp(s, x, po + 2(P po)) d2.
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Proof In (a) let
(

b(s, x) ) G(s, x, P) G(s, x, pO)
IP- P12

(p_po) if PC-P,

0 if P pO.

Part (b) is just the integral form of the mean value theorem.
We now consider formula (1.11) with 1. For brevity we set 01 0.
THEOREM 6.2. Let N be a region ofstrong regularity, and N’ such that N’ c N.

Let 0 be defined in N by

(6.1) O + fO + Axq 0

with 0 0 on N 1"1 c*Q. Then

(6.2) (pc qO + e0 + o(e),

where e- o(e) 0 as O, uniformly for (s, x) N’.
Proof Let us assume (2.2’); changes in the proof needed when merely (2.2)

A oholds will be indicated in 8. By (3.4) with g ,q

(6.3) O(s, x) Axq(t, (t)) dt.

Since (2.2’) holds, o C2(_) and 0 CI(N). Both q9 and 0 are in C(Nj) for
j 1, ..., m. For > 0 let

0 -((p q)o).

We need to show that 0 ---, 0 uniformly on N’ as e --, 0. Define b by Lemma 6.1(b)
with G H, P q, po qO. Now poe CI(N), while P, Px are continuous on
/V and Hp is Lipschitz on compact sets by Lemma 2.3(b). Hence b is continuous
on N and satisfies a uniform Lipschitz condition in x. We extend b outside N
to have these same properties. Then the Ito conditions hold, insuring that the
process satisfying (,s) x and

d b(t, (t)) dt + (23) 1/2 dw, s <= T,

is well-defined.
Let (9, D be as in the proof of Corollary 5.7. By Lemma 5.5, b - fo uniformly

on as e - 0. We may arrange the above extension of b outside 1 such that also
b fo uniformly on -. By definition of 0 and (1.8), (1.8),

(6.1) A0 + bO + A,cp 0 in N.

From (4.4) we get, writing zo, zo for the exit time and place for (t, (t)),

(6.3) O(s, x)= E Aq(t,,(t)) dt + EO(zo).

We apply Lemma 4.1 with b b. As 0, I1 o Io and o zo tend to 0
in probability, uniformly with respect to (s, x) N’. Moreover (as in the proof of
Corollary 5.7),

Pr {zo e cD c*Q} =< Ce 1/2 exp (- fl/e)
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for small e and (s, x) 6 N’. By (1.9), Ot(zD) 0 if z/ c3*Q. Since q9t, qO are bounded,

lOt(s, x)l < C-I (s x) t Q
As e --. 0, EOt(zo) 0; while the middle term in (6.3t) tends to the right side of
(6.3) uniformly on N’. This proves Theorem 6.2.

LEMMa 6.3. Using the above notation O 0, O 0 as e 0 uniformly on
any compact set A N f’) c3*Q.

Proof As in the proof of Lemma 5.2 it suffices to show that (o) l(0t 0)
is uniformly small on a relative neighborhood M’ of any z e A for small e. Choose
M, M’ as in the proof of Lemma 4.2. By Lemma 4.1 there exists e > 0 such that
zt e c3M c3*Q implies e 1/2 Iwll, >_- e whenever (s, x)e M’ and [b fl < e on
(9. Since b tends tofo uniformly on (9, we have (see proof of Lemma 4.2)

(6.4) Pr {zt eM O*Q} _< CE{%t s},
Let o9 0 0. By (6.1), (6.1t),

Ato9 + bog + (b- f)O + eAxO=O inN,

(s, x) e M’.

(6.5) cot(s, x)= E [(b- f).Ox + eA,0] dt + Ecot(zt),

the integrand being evaluated at (t, t(t)). On N O*Q, o) 0. By Theorem 6.2,
cot(zt) is uniformly small for small e; moreover, ogt(zt)= 0 if zt 6 c3*Q. Since
0 C(), Ox and A0 are bounded there. By (6.4) and (6.5) it suffices to obtain
for small e an estimate

(6.6) E{rt s} <= CO(s, x), (s, x)e M.

By (4.4), E{zt s} (s, x), where is the unique bounded solution in C 1’2(M)
of

At0 + btqt, + 1 0
-1with 0 on ?*M. Let o COo with C > Cl Cl as in (2.3). Then

At(rP ) + b(rP 0), + (fo bt)rpx eArp <= -c < 0,

where c Cca 1. For small e, ](fo bt)q, eAo] < c in M. Since o >= 0
on c3*M, the maximum principle implies qo _> in M for such e. This establishes
(6.6) and hence the lemma.

THEOREM 6.4. Let N, N’ be as in Theorem 6.2. Assume (2.2’). Then

(6.7) qg q%o + e0 + o(e),

where - lo(/3) 0 as/3 O, uniformly for (s, x) e N’.
Proof In the notation above, (6.7) is equivalent to the statement 0, ---, 0 as

e --. 0. For notational simplicity let

gi-’- Ot /3-l(qgt O)xi xi q’)xi

Recall (see proof of Lemma 5.3) that (p, C1’2(2) while from 3, q, CI(N) and
qo, Coo(R) for j 1,..., m. Using (5.8) we get

-1 -1(6.8t) Aegi-F Uep(Iri)x -t-/3 (H,,- H,) + e (Hp o oHp)q)xx nt- (AxtP)x-- O,

where Hx Hx(s, x, q)x), etc.
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From Lemmas 6.1(a) and 2.3(b),

e I(H-H)=riBs, e (Hp-Hp)= riBS,

where the matrices B(s, x) are bounded. Moreover, by Lemmas 6.1(b) and 2.3(c),
BI Hx, B Hpp uniformly on any compact subset of N (E2
Define fundamental matrices X by

0dX (B + B2)X dr, X(s) identity,

where B, are evaluated at (t, if(t)). Let D be as in the proof of Theorem 6.2
andr’ z’= =f.o, zo. By Lemma 2.3, Hp As in the proof of Lemma 5.3 we
get, from (6.8),

O(s, x (xex +

with (AO) evaluated at (t, if(t)).
From previous estimates,

Pr {z’ e D O*Q} N C/ exp (- /)

for (s, x) e N’. Since , are bounded on D, IO(z’)l Ce- . Using Lemma 4.1,
with b f, Lemma 6.3, and previous reasoning we find that uniformly on N’,

(6.9) lim O(s, x) (AO)X dt + O(z)X(),
0

where (AxO)x is now evaluated at (t, (t)) and

dXo
0 0 0

& (x + ex, s,

X(s) identity.

Let us differentiate (6.1) with respect to x, 1, ..., n, recalling thatf H.
We get the linear system of partial differential equations

0(Ox) + f(o) + Ox(x +) +(o o, i= ,...,
By the method of characteristics, O(s, x) equals the right side of (6.9). This proves
Theorem 6.4.

Using Theorem 6.4 we can sharpen Theorem 6.2 by including the second
order term in the expansion (1.11). For brevity we write
To 6.5. Keep the same hypotheses as Theorem 6.4. Let be d@ned in N

by
0(6.10) Z +fo + OHpO + AO 0

with Z 0 on N *Q. Then

(6.11) = o + e0 + e + o(e),
where -o() 0 as O, unormly for (s, x)e N’.

Proo Let

Z e-(0 0)= e-( o e0).
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Then (6.11) states that Z Z as e 0. Now

AZ + bz + e-I(N-f)O + AxO O.
Moreover,

e- l(b fo) e- (H’p Hp) d2,

Hv H,,(s, x, 2 + 2(q qO)).

Then e-(b fo) is bounded on D (using D as above), and by Theorem 6.4,

lime.- (b fo) O,Hppo
0

uniformly on any compact subset of N- (Z1 [--J (--j Zm)" By the same proof
as for Theorem 6.2 we find that

(6.12) lim Z(s x) o(-OxHppO + A,0)dt
0

uniformly on N’. By (6.10) and (3.4) the right side is Z(s, x). This proves Theorem 6.5.
One may ask about the validity offormula (1.11) for larger values of I. Consider

first the case when merely (2.2) holds, as in Theorem 6.2, and take 2. Then yO

may have switching surfaces. Across a switching surface, 0x and Hp fo are
generally discontinuous. It would seem that at a point of 7 on a switching surface,

0-OxHpvO + A,0 should be interpreted in (6.12) as contributing a kind of Dirac
delta function. (The author does not know which combination of right- and left-
hand values is correct.) It, therefore, appears that will be discontinuous across
a switching surface; see Example 10.4, where this occurs. Since ) is continuous,
it cannot happen that tends to )f uniformly on N’. Thus Theorem 6.5 is not true
without condition (2.2’).

Similarly, when (2.2’) holds consider 3. Then (1.11) is not correct in the
sense of uniform convergence on N’. Let " 03. The equation for ff corresponding
to (6.1), (6.10)is

(6.13)

where

0 1140 LI3s %- fx %- -OxHpp)(,x %- -.appp’x %- Ax 0,

0 3 Hp.pjp Ox.OxsOHpppOx "i,j,r

The difficulty now occurs across transition surfaces, where Zx, Hpp are discon-
tinuous.

In 7 we deal with a case where these difficulties do not arise.

Goodness of yo in the stochastic problem. Suppose that, instead of seeking
the optimal policy Y for the stochastic problem, one simply uses the optimal
deterministic policy yo. It is plausible that, for small , yo should give approxi-
mately the optimum in the stochastic problem. The theorems just obtained, and
their method of proof, put this rough statement on a quantitative basis.
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Since yO has been defined only in N ( 3) we first extend yo outside N so
that yo . However, the values Y(s,x) for (s,x) N have no effect on the
coefficients 0, 2 in formula (6.14) below. Let

O(s,x)=Y(Y’s x) (s x) e N

In particular, o qoo. For e > 0, (s,x)- q)(s,x) represents how much yo
fails to be optimal in the stochastic problem. The function satisfies the linear
parabolic equation

(6.14) A(I) + f(I) + L 0 in Q

with (I) 0 on *Q. The problem of expanding solutions of (6.14) in powers of
e is easier than for the nonlinear equation (1.8). Let us make the same assumptions
as in Theorem 6.5. Then

(6.15) (i)= 0 ..1_ 0 + 22 "- O(2)
uniformly for (s, x) N’. The first order coefficient 0 is the same as in (6.1). However,

satisfies, instead of (6.10), the equation

(6.16) , + fo, + A0 0 in N

with , 0 on N f"l O*Q.
Let us indicate a proof of (6.15). Let

0= e-(- o), 2= e-2(o- qo e0).

From (1.8), (6.1), (6.14),
o A, o-A@+f 0+Axo 0, +f z+AO=O.

Given (s, x)e N’ consider the process defined by

d f(t, (t)) dt + (2e) 1/z dw, s <_ <= T,

with (s) x. Corresponding to (6.3) we have

O(s, x)= E Ax(t, (t))dt + EO(ZD),

2.(s, x)= E AxO(t, (t)) dt + E2(ZD).

By a simplification of the arguments above ( 4-6) it can be shown that 0 0,
2 -, ) as e - 0, uniformly on N’. This gives (6.15).

By comparing (6.11) and (6.15) we find that

22 fs
c

0(6.17) (I)(s, x) q(s, x) - O,Hp,Odt + 0(22).

The integral is taken along the optimal trajectory 7(s, x) with initial endpoint
(s, x). Note that, from its definition (1.7), H is a concave function of p. Hence the
integrand is nonpositive. Formula (6.17) shows that yo gives within order the
square of the noise variance 22 of the optimum if the initial data (s, x) belong to a
region of strong regularity.
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If instead of (2.2’) we assume the weaker condition (2.2), then instead of (6.17)
we can show the weaker estimate 0 =< q9 <_ o(e). This follows from (6.2) and
the corresponding formula 090 + e0 + o(e).

An even simpler control choice than yo in the stochastic problem would be
the optimal open loop u corresponding to particular initial data (So, Xo). Since u
ignores the observations of the states (t) obtained during system operation, u
may be expected to behave more poorly than yo in the stochastic problem. To
put this in quantitative terms, let

e(s, x)= J(u" s x)"
then W(so, Xo) qg(So, Xo), although generally W(s, x) > q(s, x) when (s, x) is
not on the optimal trajectory (so Xo). By the same proof as for (6.15) we find that

(6.18) = W + eO + o(e)

uniformly for (s, x) in some neighborhood of (so, Xo), provided (So, Xo) N. The
function O is defined by

O + f(s, x, u(s))O + Ax 0

with O 0 on N *Q. (The second order coefficient in (6.18) can also be
calculated in the same way as 2, but is of no interest here.) Instead of (6.17) we get

(6.19) W(So, Xo) p(so, Xo) ff A(W qO)dt + o().

The integral is taken along (so, Xo). Thus u gives within order (rather than
order ) of the optimum in the stochastic problem.

We have considered the completely observable stochastic optimal control
problem. It is an interesting open question to obtain approximate formulas for
the optimal performance and control also for partially observable problems with
small noise. In particular, one might study the open loop stochastic problem and
the sampled data problem. For these problems necessary conditions for a minimum
are known. See [17], [8].

7. Higher order approximations; The Cauchy problem. Let us now consider
a situation where the approximations (1.11), (1.12) for q, qg, are valid for any finite
(Theorem 7.1). Later in the section this is interpreted as a result about the

Cauchy problem in the theory of first order partial differential equations (Theorem
7.2).

The following assumptions are made:

(7.1) K Rk (there are no control constraints);

(7.2) Q (To, T) R" (fixed stopping time r T);

(2.1’) f(s, x, y) A(s, x) + B(s)y

also (2.2’) and in addition to (2.3’)"
L >_ -co,

with A, bounded;

(2.3") L is bounded on Q x {lyl r} for any r;

ILI c’L + c" for suitable c’, c".
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By (7.1) the Pontryagin problem (e 0) is now of Lagrange type in calculus
of variations. Condition (7.2) means that the parabolic equation (1.89 is to be
considered in the strip (2 with Cauchy data (p(T, x) 0. Since the limits s and T
of integration in (1.4) are now fixed, the problem is unchanged if L is replaced by
L + Co. Thus we may assume that L >= 0.

By Lemma 2.4, H e C. We also have, if e > 0 and N is a region of strong
regularity,

qe C(Q), Ye C(Q), qo e C(R), yo e C(N).

(In the definition of 3 we now take m 1.)
Let us first verify the a priori bounds on Q’

(7.3) Ip’l =< c, Iq.l _-< c,
for suitable C. Let Y1 be some bounded control policy (for instance, Y(s, x) =- 0).
Since L >= 0 we have from (1.69,

o <= q(s, x) <= J(s, x; r),

and the right side is bounded. By Lemma 5.3 with z’ T,
T

qg(s, x) E LxW dr,

where 1 AW by (2.1’). Hence W(t) is bounded. From the bound on Lx in
(2.3") and on q we get a bound on qg. Thus (7.3) holds. (These estimates also appear
in [7, 7] and [9].) Now

(7.4) Y(s, x) V(s, x, q(s, x)).

From (2.3’) and (7.3) this implies a bound IYI =< r for some r. We get the same
minimum for Y(s, x; Y) using the compact control set K {lYl _<- r} instead of Rk.

THEOREM 7.1. Let N be a region of strong regularity, and N’ with N’ c N.
Assume (7.1), (7.2), (2.1’)-(2.3’), (2.3"). Then (1.11), (1.12) are valid for any l,
uniformlyfor (s, x) N’. The coefficients Ol, 1, 2, in (1.11) satisfy linear.first
order partial differential equations, obtained by differentiating (1.8) times with
respect to e and formally setting e O. The Cauchy data are OI(T, x) O.

This theorem can be proved by induction on I. If we let

0+ 5-1(0- Ol)= e -l- l((/ge q)0 sO lOl),
then one shows first that 0+ Ol+ and then (O+)x (Ol+l)x, in each case
uniformly on N’. The reasoning is like that in 6. The details are rather tedious,
and we omit them. Since we are dealing with the Cauchy problem, the analogue of
Lemma 6.3 is unnecessary. For all l,

O (0) 0 (Ol) 0 when s T.

Formula (1.11) gives the Taylor expansion with remainder of q9 about
e 0. One cannot let to obtain q9 as the sum of the corresponding power
series in e. The coefficients Ol(S, x) are obtained by integrating along the optimal
trajectory y(s, x) expressions computable from H and its partial derivatives. Thus
Ol(S, x) depends only on H(s’, x’, p) for (s’, x’) in a neighborhood of y(s, x). However,
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the solution q9 of the parabolic equation (1.8) depends on H(s’, x’, p) for (s’, x’)
arbitrarily far from y(s, x).

From (1.12) we can get an approximate formula for the optimal control
policy:

(7.5) y yO + /3Z1 +/32Z2 ..[_ .....1_ ,IZl .q_ 0(13l)

uniformly on N’. The coefficients ZI are obtained by repeatedly differentiating (7.4)
with respect to and then setting e 0. For instance,

0(7.6) Z1 -LyyOxB.

Example 7.1 (linear regulator). Letf A(s)x + B(s)y, and let L be quadratic in
(x, y) with L > 0 unless x y 0. Then qO is quadratic in x, 01 O(s), Ol 0
for >= 2. The optimal policy Y’ is a function linear in x, independent of e (in
particular, Y= yo).

In the more general problem considered in this section, the optimal policy yo
can be found approximately in a neighborhood of an optimal trajectory 7(s, x)
c N by solving a linear regulator-type problem. This is done by linearizing f and
expanding L to quadratic terms about (t, (t), u(t)). A solution to the secondary
minimum problem is needed for the computations. See [1].

In the linear regulator example the assumption L bounded on Q x {lyl < r}
in (2.3") is violated. The optimal policies Y(s, x) are linear in x, hence not bounded.
However, these minor difficulties are inessential. It canbe shown that Theorem 7.1
remains true if N’ is assumed bounded and the boundedness assumption on L in
question is replaced by certain polynomial-like growth assumptions [10, 2, 5].
Under these growth assumptions, which hold in particular for the linear regulator,
Y satisfies a linear growth condition Y(s, x)l <- C(1 + Ixl).

We conjecture that Theorem 7.1 is true without assumption (7.2). A crucial step
seems to be necessary to establish an a priori bound Iq%l _<- C in N, like the one in
Lemma 5.4 for the case of compact control set K.

A result about partial differential equations. Consider a Cauchy problem of the
type

(7.7o) q)O + F(s, x, q)O) O, TO < s < T,

(7.8) q(T, x) 0,

and the corresponding problem when e > 0,

(7.7) q0 + eA,q9 + F(s, x, q))= O, To < s < T,

(7.8) (pC(T, x) 0.

There is a considerable literature dealing with generalized solutions q9 of (7.70)
(7.8) and with the convergence of q to q9 as e 0. See references in [20], [9].
However, to the author’s knowledge, an expansion of the type (1.11) has not been
proved for nonlinear F. We now obtain such an expansion by inventing a control
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problem for which (7.7) is the Hamilton-Jacobi equation (1.8) and then applying
Theorem 7.1. The control problem will in fact be a simple problem in calculus of
variations.

Let us make the following assumptions about F (see [9, 2])"

(7.9a)

(7.9b)

(7.9c)

F C F(s x p) < C IF(s x 0)l < Co
F(s,x,p)

lim oo

lEvi - c’(F pFp) + c";

IFpl =< R(Ipl). For each r > 0 there exists v, such that IFpl =< r
implies IPl =< v,.

(7.9d) Cl(IPl)lvl 2 -vF,v C2(IPl)lvl 2 for all v e R",

where C l(v), C2(v) are positive and respectively nonincreasing, nondecreasing in v.
For a control problem, we take the simplest dynamical equations and no

control constraints"

d u(t),
dt

Let L be dual to F in the sense of the classical canonical transformation"

(7.10) L(s, x, y) max (F yp).
pR

Then

(7.11) F(s, x, p) min (L + yp)
yeR

and (7.7) becomes (1.8) with H F, for e >= 0.
Assumption (2.1’) holds with A 0, B identity. Now Lyy =-(Fpp) -1,

where y and p are related by the (classical) formulas y Fp, p -Ly according
to (7.10) and (7.11). By assumptions (c) and (d), (2.2’) is satisfied with c(r) C2(v,)- 1.
Finally, assumptions (a), (b), (c) imply (2.3’), (2.3").

We now take

(7.12)
T

q)(s, x) min L(t, (t), (t)) dt,

the minimum being taken among all Lipschitz on Is, T] with (s) x. It is known
that the unique bounded solution qo C1’2(Q.) of (7.7)-(7.8) tends uniformly to 99

o

as e --, 0 [9, p. 527]. Moreover, qO satisfies (7.7) almost everywhere [7, p. 271].
Consider N such that"

(7.13a) N (.90 f-) Q, Co open;

(7.13b) q9 C();

(7.13c) (s, x) 6 N 7(s, x) c N.
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Then N is a region of strong regularity. The uniqueness of the optimal tra-
jectory 7(s, x) was proved in [9, p. 520] using an argument of Kuznetzov and
Shishkin. The remaining conditions in the definition of 3 automatically hold with
m 1, N1 N, E1 the hypersurface {T) R".

A given optimal ,(s, x) is contained in some such N provided (s, x) is neither a
conjugate point nor an irregular point [9, p. 521]; also see the Appendix.

From Theorem 7.1 we then have the following theorem.
THEOREM 7.2. Let F satisfy (7.9), N satisfy (7.13), and N’ N. Then the con-

clusions of Theorem 7.1 hold (with H F).
In (7.13) we assumed that 7(s, x) gives an absolute minimum, not merely a

relative minimum. The method of characteristics is a classical method for con-
structing a smooth solution 0 of (7.7) in some N. (The characteristic ground curves
are solutions of Euler’s equation.) In this construction the characteristic ground
curve y(s, x) with initial point (s, x) gives a minimum among curves lying in N, but
not always an absolute minimum. If the minimum is not absolute, then q9 tends in
N not to 99 but rather to 0.

8. Discontinuous control policies. Let us now impose the convexity condition
(2.2) on L instead of the stronger condition (2.2’). For instance, (2.2) but not (2.2’)
is satisfied in the time-optimal problem (L 1). One can no longer expect an
optimal policy in the class defined in 4. Simple examples show that the optimal
Y may have discontinuities.

The purpose of this section is to give a correct formulation of the control
problem in this case, and to outline the modifications needed in the proof of
Theorem 6.2. (As noted at the end of the proof of Theorem 6.5, that theorem is
incorrect without assumption (2.2’).) As before we assume that the control set K
is compact. Let ’ consist of all Borel measurable Y from [To, T] R" into K.
For such Y, the standard (Ito) theory of stochastic differential equations no longer
guarantees a solution to the system equations

(1.1) d fY dt + (2e) 1/2 dw,

since the drift coefficient f Y is merely bounded and Borel measurable. However,
for e > 0 the noise coefficient matrix in (1.1) is nonsingular and we may use instead
of the standard theory the work of Stroock and Varadhan [24].

Let b be bounded, Borel measurable, with values in R"; and take f as in 4.
According to [24], a continuous nonanticipative process is a solution of the
stochastic differential equations

(8.1) d b(t, (t))dt + (23) 1/2 dw, s <= <__ T,

with (s) x if, for each

exple {(t) x b(r, {(r))dr

is a martingale with respect to the probability measure H on f associated with the
process . For any Y e o,, this process exists and is unique in the sense that H is
unique [24, 6]. Moreover, is a Markov process with the strong Feller property.
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The process

w(t) (2e)-1/2 (t) x b(r, (r)) dr

is a Brownian motion [24, Corollary 3.2]. Thus is a solution of(1.1)in the ordinary
sense. In particular, we may take b f r, f ’.

Any Y ’ can be approximated almost everywhere by a sequence Y1, Y2,
in . It follows using facts about parabolic partial differential equations that

lim Je(s, x; Yj) Je(s, x; Y).

See [8, esp. Appendix]. Hence the q in (1.6) also satisfies

qg(s, x) min J(s, x; Y).
Ye’

As before (p is a solution in C1’2(Q) of(1.8)-(1.9). An optimal Y ’ is determined,
for almost all (s, x) Q, by (1.10).

The following modifications in the proof of Theorem 6.2 are needed. First of
all, the only results in 4 and 5 which must be restated are Lemma 4.1 and
Corollary 5.6. For the latter, we can only assert that Y tends to y0 uniformly on
any compact subsets ofN Z, where E is the union ofthose Ej which are switching
surfaces ( 3). (It is an interesting open problem to prove statements about the
perturbation of the optimal switching surfaces.) In applying Lemma 4.1 to prove
Lemma 4.2, f0 COO(C). However, in the proof of Theorem 6.2, fo is discontinuous
at points of E. Lemma 4.1 must hence be modified to require If bl < e except
at those (s, x) with distance ((s, x), E) < e.

Let (D) denote the class of all ff such that , fix are continuous and bounded
on D while ffs, k,,,j, i, j 1, ..., n, are square integrable on compact subsets of D.
We need formula (4.4) when b is bounded, Borel measurable, q (D) and
Aq + bffx is bounded on D. As in 4(e), this can be reduced to (4.4’) with

(R,+I) and G A@ + bx bounded. By standard smoothing methods
there exist J C1’2 such that J, { tend uniformly to , as j --. oe, while

A@ + b G

is uniformly bounded and tends almost everywhere to A@ + b G. By the
Ito differential rule, (4.4’) is correct for each J [12, p. 390]. From the fact that the
random variable (r) has probability density absolutely continuous with respect
to Lebesgue measure [24], GJ(r, (r)) tends to G(r, (r)) with probability 1 for almost
all r Is, T]. It follows that (4.4’) holds for .

We applied (4.4’) in proving Lemma 5.1, also in Lemma 5.3 ( Pi) and
Theorem 6.2 ( 0). By differentiating (1.8) with respect to xi and using Lemma
2.2(a) together with results about parabolic equations [8, Appendix] or [18],
p o(Q). Moreover, q)O e o(N) since N is a region of strong regularity. Hence
each of these e -(N). In the first two instances, b f; in the third, b b is
defined using Lemma 6.1(a) rather than Lemma 6.1(b).
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9. Autonomous problems. Consider the autonomous system

(9.1) d f(, u) dt / (2/3) 1/2 dw, >= 0,

with initial data (0) x. We suppose that x B, where B R" is open, bounded,
and dB is a C manifold. Let be the class of Lipschitz functions Y from R" into
the control set K. Such Y are called autonomous control policies. Let

J(Y; x) E Lib(t), u(t)] dr,

u(t) Y[(t)],

(9.2) q(x) inf J(Y; x).

The autonomous version of (1.8) is the elliptic equation

(9.3) Aq9 + H(x, o)= 0 in B

with qg(x) 0 on
We are concerned with the analogues of the theorems in 6. By an autonomous

region of strong regularity we mean a set N B f) (9, where (9 is open,
and the autonomous versions of (a)-(g) in Definition 3.1 hold. Now El, ...,
are hypersurfaces in R",7(x)= {(t)" 0 =<t< z(x)} is the unique optimal
trajectory with initial point x for the problem J(u;x)= min. Here z r(x),
(r) are the exit time and place from B for 7(x).

Let Y , be a policy which agrees on N with yo, and let (x) J(Y;x). We
assume that Y can be chosen so that (x) =< C/3-1 for all x B. Then the auton-
omous versions of the theorems in 6 hold. For instance, let N be an autonomous
region of strong regularity, and assume (2.1), (2.2’), (2.3). Then

(9.4) qg(x) (DO(x) / /30(X) / /32(X) / 0(/32)

uniformly on N’, if N’ = N, where 0, Z are defined by the autonomous versions of
(6.1), (6.10). If we assume only (2.2), then the autonomous version of Theorem 6.2
holds. As in 8 the optimal policy Y in that case belongs to the class of bounded
measurable functions from R" into K.

In an autonomous problem no bound is imposed on the exit time rn. This
necessitates a few changes in the proofs. It may not be true that is bounded on B
independent of/3. However, let D = N. Then there is such a bound on D as follows.
Since q9 is continuous on the compact set/V, q9 is bounded there. By (2.3), z(x)
C l(p0(X). Take T large enough that

T>z(x)+ 1 for allxeN.

Let z’ A T, where is the exit time for satisfying d fr dt + (2/3) 1/2 dw,
(0) x. Then

(x) e L at + e[(’)], x

The first term on the right side is bounded. By assumption, =< C/3-1 in B. Since
0 on c3B,

E[(z’)] __< C/3 -1 Pr {(’) N F/c3B}.
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There exists e > 0 such that x eO and el/2llwl[ T < e imply r’= rN < T and
(’)e N cqB. From (4.3), E[(r’)] is then bounded, which implies =< C on .
Since 0 =< q __< , this also bounds q on .

After that few further changes are needed. For Q we take the cylinder

Q (0, T) B.

In Part 2 of the proof of Lemma 4.4 we now have

E L[(t), u(t) d <=
rather than equality. In all proofs in 5, 6 where some exit time zo appears we
now take z’ ro A T rather than r’ to. Thus all limiting arguments as e 0
are carried out for r’ and in the fixed interval [0, T].

10. Examples. We have found rather good approximate formulas for o(s, x)
in terms of integrals along the optimal trajectory 7(s, x), provided 7(s, x) lies in
some region of strong regularity N. It is an essentially classical result (stated in
the Appendix) that such an N exists if (s, x) is regular and nonconjugate. Let us now
show by examples that the approximate formulas (1.11); (1.12) are not generally
correct near points which .are .irregular or conjugate. From formula (A.9) in the
Appendix it is clear that Axq9 misbehaves at any conjugate point where c3p/c3 is
nonsingular. We consider first an example of the simplest type in calculus of
variations.

Example 10.1. Let
o

J t)2 dt + E(0)],

(x) --(x2 + 1) 1/2

This can be put in the form in 7 with n k 1, T 0, f(y) y, L 1/2y2 nt (D’(x)y.
The extremals are linear functions. Let

(t, ) t’().

Let s(00 _(2 + 1)1/2, which implies (s(), ) 0. The line segment

() {(t, (t, ))" s() _<_ -5 0}
is an optimal trajectory. For any 6 > 0 the set

N {(s,x)’s <_ 0, lxl > 6or -1 + 6 < s}
is a region of strong regularity.

The point (-1, 0) is the initial endpoint of the horizontal segment 7(0).
Since 7(0) is the unique optimal trajectory with this initial endpoint, (-1, 0) is a
regular point. Since c3/c3e 0 when 0 0, 1, (- 1, 0) is a conjugate point.
(For c 4= 0 the solution t(00 of the equation c{/3 0 also gives in the classical
terminology a conjugate point. However, t(a) < s(e) for e 4= 0. Since we use only
the part 7(e) of the line {(t, e) which minimizes (globally among all curves with
the same initial point) these other conjugate points are of no interest here.) Let

p(t, a) O’(a) O’((t, a)).
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From (A.9), for -1 < _<_ 0,

qxx(t, (t, )) eo"( o"((t, )),

qx(t,O -(1 + 0-1 + 1,

O(s, O) [-(1 + t)- + 1]dr=log(1 +s)-s,

(10.1) O(s, 0)= p(s, 0) + eO(s, O) + o(), -1 < s O,

the last equation being just (6.3). By (10.1) no estimate of the type I o N Ce
can hold uniformly in a neighborhood of (- 1, 0).

For s < -1, two minimizing trajectories 7(e), 7(-e) issue from the point
(s, 0). The partial derivative has a jump discontinuity across the half-line
consisting of such (s, 0). This introduces diculties with (1.11) and (1.12) which
Example 10.2 will illustrate.

Example 10.1 is of a type studied by E. Hopf [14] in a pioneering paper on the
small viscosity method for studying nonlinear conservation laws. The substitution
v in the present instance turns (7.7) into Burgers’ equation with Cauchy data
v ’ when s 0. The same substitution generally converts (7.7") when n 1
into

v + ev + F(s, x, v) O.

For various results on the behavior of v as e 0 see [20]. Formula (1.12) gives an
expansion of v valid in any N such that the limit v of v as 0 belongs to C(N)
and

v(s, x) | F dt + v(T, O(T)), (s, x) N,
(s,x)

where the characteristic 7(s, x) {(t, (t))" s _<_ <_ T} is contained in N.
Example 10.2. Consider the following very simple autonomous, 1-dimensional,

minimum time problem. Let

d u(t) dt + (2) 1/2 dw,

with (0)= x,

-1 <= x <= 1, -1 < u(t) <_ 1.

By straightforward calculations using (9.3), the minimum expected time q(x) to
reach 1 or from x is

q(x) q)(x) + e[exp (-lxl/e) exp(-

q)’(x) qg’(x) sgn x exp

where q)(x)-- 1 -Ixl is the minimum time for the deterministic problem. All
coefficients O(x) in (1.11) are 0 for x - 0. Formally, (q)o),, is a Dirac delta function,
which according to (6.3) suggeststhe value 0(0)= 1. This makes the formula
q)(0) qg(0) + e01(0) + o(e) correct. Of course, no formula q(x)= o(x)
+ e01(x) + o(e) holds uniformly in a neighborhood of 0.
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Example 10.2’. Let us extend Example 10.2 by taking x, (t), u(t) vectors in
R", n => 2, with I(t)] _-< 1, ]u(t)] __< 1. Then B is the spherical ball Ixl =< 1 in R".
It is easily seen that

Y(x) [x[-ax ifxva0,

o(x) g(lxl), all x B,

where g(r) is decreasing on 0 _<_ r _<_ 1, g’(1) 0, and by (9.3),

n-1
(10.2) eE(g) + (g)’] + (g)’ + 1 0.

r

Since qg is continuous at 0, (g)’(0) 0. For 0 < ro < 1, the set

N {x" ro < Ixl _-< 1}
is a region of strong regularity. The point 0 is both conjugate and irregular.
In N the expansion (1.11) holds with

q(x)-- g(lx])-- 1 -Ix[, Oj(x)- hj(Ixl),

n-1
hj+hj_a + h_a =0, h(1)=0,

ho(r g(r)= 1 r,

ha(r) (n 1)log r, he(r (n 1)(n 2)(r -a 1).

For r 0 we proceed differently. Using the integrating factor r e-r/e to solve
(10.2), we get

g(0) r -"e-r/ dr p,- ep/ dp.

By using integrations by parts on the inner integral we get the approximation

g(0) g(0) + (n 1)e log e + ce + o(e)

for suitable c.
Example 10.3. In this example Theorem 6.4 gives some information about

transition boundaries for the optimal control policy Y. Let n- k 1 (scalar
state and control), K [- 1, 1],

f= Ax +By, B>O, L 1/2Mx2 -1- 1/2y2.

Take Q (To, T) x R", the Cauchy problem. Except for the control constraint
[u(t)l N 1 this would be a linear regulator problem. For e 0 the solution is as
follows. There are transition curves x _+ G(s) such that"

Y(s,x) g(s)x

for x > G(s),
for -G(s) < x < G(s),

for x < G(s).
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In the central region -G(s) < x < G(s), q)(s, x) 1/2g(s)x2 with g(s) > 0 for
s < T. The solution coincides there with that of the linear regulator. Obviously
G(s) g(s)-1. The second order, but not third order, partial derivatives of q9
are continuous across the transition curves. There are no conjugate or irregular
points. The formulas (6.7), (6.11) hold everywhere in O.

In the stochastic problem,

Yt(s, x) sat [Bqg(s, x)],

where sat a a if [a[ __< 1, sat a ala[-1 if [a[ > 1. From linearity of f, strict
convexity of L in x, y and the optimality of yt among nonanticipative controls,
it can be seen that o is a strictly convex function of x. Thus qg is a strictly increasing
function of x; and cp tends uniformly to qg as e --, 0. Therefore

Yt(s,x)- -1 forx>

-1 < Y(s,x) < 1 for -Gt(s) < x < Gt(s),

Y(s, x)= 1 for x < -G(s),
where G(s) G(s) as e ---, O. Since q)(s, Gt(s)) qg(s, G(s)) B-1, we have

0 /-I[(49c(S at) (/gx(S, at)_ -t-

Using Theorem 6.4 we get as e ---, 0,

=0

0 Sat (s, G(s)). Since q)xx( G(s)) g(s) > 0, the derivative ?Gt/ce exists at e 0.
However, 0- O(s) in the central region (see linear regulator example in 7).
Since 0 is C across the transition curves, Ox(S, G(s)) 0. We have shown that in
this example,

=0 whene=0.

A multidimensional steady state version of this example was studied in [25],
where a computational method for generating reasonably good suboptimal
controls was found.

We do not know how to apply the method of Example 10.3 to study perturba-
tion of optimal switching surfaces. Both Ox and 4Oxx are discontinuous across a
switching surface for yo. It is not clear what combination of right- and left-hand
values is needed. A related problem is to determine when the switching surface for
Y perturbs toward the terminal surface Z; and when away from E1 (notation in
3).

In the following one-dimensional autonomous example, the optimal switching
point can be found by direct calculation. Some two-dimensional examples have
been studied in [4], [23].

Example 10.4. Consider the autonomous system

d u(t) dt + (23) 1/2 dw, (o) x,
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with 0 < a <= u(t) <= 1, -b < x < 0. The problem is to maximize (rather than
minimize)

IoJ E [(t) + l(u(t))] dr,

where z is the exit time from B (-b, 0) for (t). Let 1, l(a), 1 /(1). We choose
a, b, such that l(u) cu + ca is linear and

0 < al < lo, -(1 a)b < al lo.
Equation (9.3) becomes

e(o) + max [/(u) / (qg)’u] + x 0
a<u<l

with qg( b) q)(0) 0. (For e 0 no boundary condition is imposed at -b.)
Define x by

(1- a)x al la.
Then x is the optimal switching point in the deterministic problem"

l ifx < x
Y(x)

a ifx <x<0.

Any interval (xl, 0] with b < xl is a region of strong regularity. When e > 0 the
switching point x is determined from the equation

1, + (qg)’a 11 + (qge)’.

By straightforward calculations we find that

x= x + e + O (exp (-//e))

for some/3 > 0. In this example E {0}, Z2 {x}" and x perturbs toward

Appendix. We outline the method of characteristics for the Hamilton-Jacobi
equation (1.8), and how quantities needed in the asymptotic formulas (1.11),
(1.12) can be computed from it.

The characteristic equations for (1.8) form the following system of 2n ordinary
differential equations for functions (t), p(t)"

a p
dt Hp, dt

H,.

See [2, Chap. II]. Define the control function u(. by

(A.1) L(t, (t), y) + p(t)f(t, (t), y) min on K when y u(t).

By (2.8) the characteristic equations become

(A.2)
d f,

dp
dt dt

pf L,.

Equations (A.2) are the state and "costate" equations, and (A.1) the minimum
condition in Pontryagin’s principle [13], [22]. Suppose that (A.1), (A.2) hold for

_<_ __< with z (:, (:)) e Ea, whereas in 3, Z is a C hypersurface, 21 c c3Q.
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We impose the transversality condition"

(A.3) For z, (L + pf, -p) is a normal vector to 21 at z.

The trajectory 7 {(t, (t))" f" _<_ =< z} is called a characteristic ground curve.
Suppose now that a triple (t, ), p(t, ), u(t, ) has been constructed for each

vector (1, "’", ,) in the closure 11 of some open set 1I and for g() _< =< ().
Moreover, suppose functions zj(), j() have been found for j 2, ..., m, such
that the following hold"

A 1. z (o) ’[’(o), Zm + (Z) ’(0),

qTj((X) > qTj+ l((X), j 1, m, .
A2. Let {(t, a)" z+ (a) < < zi(a), a H}. Then u C(),j 1,..., m.

Moreover, (A.I(A.3) hold.
A3. If z+ l(a) < s < z(a), a H, then u(., a) is the unique optimal control

for the initial data (s, (s, a)).
A4. There exist C hypersurfaces Z2,’", Z such that the characteristic

ground curve V(a) meets Z nontangentially at the single point (z(a), (a)),
j= 1,..., m,a.

A5. The mapping (t, a) (t, (t,a)) is one-to-one and the matrices /a
are nonsingular for z+ (a) Zl(a), a H.

A6. For # z(a),j 2,..-, m"

(a) the minimum in (A.1) is attained only for y u(t, a);
(b) the function V in Lemma 2.3 belongs to C(F) for some open set F

containing (t, (t, ), p(t, )).
We allow u (and hence d/8t) to be discontinuous when z.i(a),

j 2, ..., m. However, and p are continuous there.
By the transversality condition (A.3) and (2.3), condition A4 holds when
Z l. If a is a set of local coordinates for El, then condition A5 holds when
z. Let

N {(t, (t, @’rm+ 1() < _--< 1(), Z a},

N {(t, (t, ))" (t, )},
Then N is a region of strong regularity (Definition 3.1). We have

()

(A.4) q)(t, (t, o0) L(r, (r, ), u(r, o0) dr,
t

(A.5) q)(t, (t, )) p(t, ),

(A.6) V(t, (t, ), p(t, a)) u(t, a).
The following result gives a sufficient condition that a given optimal trajectory lie
in some region of strong regularity N. Suppose that u is optimal for initial data
(s, x) with corresponding o, pO, 7o 7o(s, x) such that the necessary conditions
(A.1)-(A.3) for a minimum hold. Suppose also that a triple , p, u satisfying A1, A2,
A4, A6 has been constructed, coinciding with o, pO, uo for o and s _<_ _< zo

z (o). Here we suppose that (o) < s < z1(). Following classical terminology
we say that (t, (t)) is a conjugate point if the matrix 8/8a is singular at (t, o).
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Besides the general assumptions in 2, let us assume (as in previous sections)
either that K is compact or the conditions in 7 hold.

THEOREM A. 1. If (s, x) is regular and not conjugate, then there exists a region of
strong regularity N containing (s, x).

The proof uses classical reasoning in calculus of variations together with
Lemma 3.1. See [9, Theorem 2]. In fact, one can take

where *1 is some neighborhood of 5 and {(5) < z < s, z sufficiently near s.
Frequently, the required triple , p, u is constructed in a neighborhood of 5

as follows. Let 5 be a set of local coordinates for E1 near z (z, (z)); points of

1 near z are of the form (z1(5), 1(5)). By Lemma 2.2, (L + pfu)Vp 0. Using this
fact and the implicit function theorem, u(zl(5), 5), p(Zx(5), 5) are determined near
5 by (A.3), (A.6) and u(z). Equations (A.2), (A.6) then determine (t, 5), p(t, 5),
u(t, 5). Let A denote a set of (s,x,p) such that V C(R2n+1- A); recall the
examples in 2, 10. Let us suppose that (t, (t), p(t)) A for s,j 2, ..., m.
Moreover, suppose that, in a neighborhood of (s, (s), p(s)), A is described by
an equation U(s, x, p) 0 with Uj C and

d
-d-[Uj(t, (t),p(t)) 0 fort= s.

Then z(5) is determined for 5 near 5 by

Uj(t, (t, ), p(t, a)) 0 for ,j(a),

with s zj(5). Let

(A.7) (5) ((5), 5), j 2, ..., m.

Assume that c’)/95 is nonsingular for 5 5, s _< =< z (no conjugate points).
Then

This implies that the vectors (Oz/O5x, (9/t95), 2 1, ..., n, are linearly independ-
ent when 5 5. Hence, (rj(5), (5)) lies in a C manifold E.i of dimension n,
for 5 near 5; and the trajectory 7(5) is not tangent to Xj at (rj(5), j(5)).

According to (6.3) to find the coefficient O(s, x) in the approximation (6.2) we
need to calculate Axp along (s,x). Now AxO is the trace of the matrix (Pxx
By differentiating (A.5) with respect to 5 we get the matrix equation

(A.9) qgx --a/-a
To find Ox, which appears in the approximation (6.7), we can use (6.9). By dif-
ferentiating (A.5) again with respect to 5 we get

62 632pio 3
(qoi)x35z35 i2 l 1 n(A.10) (qx,)xx - ""
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from which (Axqg), is expressed using (A.9) in terms of first and second order e
partial derivatives of and p. These derivatives obey ordinary differential equations
obtained by taking c3/cex, 2/u in (A.2) and in the formula (A.6). From (6.3),
with x (s, e) and t l(e), we have the data

0 (Axe0) at "/S ().

Let pj(e) p(rj(e), e). Then

ep = Op

This, together with (A.2) and (A.8), gives a relation between right- and left-hand
values of c3/3e, p/Oe at r.j(e), j 2, ..., m, if Ej is a switching surface. If Xj is a
transition surface, then ,i0, c3/ce, Op/Oe are continuous at rj(e). Another dif-
ferentiation in e gives a relation between right- and left-hand values of2/c3exc3e,,
O2p/OexOeu at rj(e). If is taken as a set of local coordinates for 21, then data for all
of these quantities at time rl() are determined from (A.3) and (A.6).

To calculate the coefficient in (6.11) from (6.12), one needs Ax0 as well as

0 along y(s, x). However,

where
q(t, cz) Ox(t, .(t, z)),

and q/c3 can be found by using (6.9) and similar calculations to those above.
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WEAK SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION
OF DYNAMIC PROGRAMMING*

RAYMOND W. RISHEL’

Abstract. A formal dynamic programming argument relates the "value function of a stochastic
optimal control problem" with the solution of a nonlinear parabolic partial differential equation. In
cases in which the partial differential equation is degenerate, it may not have a classical solution but
may have a weak solution in the sense of the theory of Schwartz distributions. It has been an open
question as to whether a weak solution of the partial differential equation does equal the value function
of the stochastic optimal control problem.

This paper shows that, roughly, whenever an associated uncontrolled system has an appropriately
behaved density function, the equality holds. It is also shown that an optimal control law may be
determined by minimizing a Hamiltonian formed in terms of the partial derivatives of the weak
solution of the partial differential equation.

1. Introduction. In [3] Fleming studied the partial differential equation of
dynamic programming connected with a stochastic optimal control problem.
He showed, when the partial differential equation was uniformly parabolic, that
there was a smooth solution and this solution was the value function for the
stochastic optimal control problem. He called the case in which the partial differen-
tial equation was not uniformly parabolic, degenerate. Under mild assumptions
he showed in the degenerate case that the partial differential equation had a weak
solution. It was left as an open conjecture whether this weak solution equaled
the value function of the stochastic control problem. Since in most applications
the partial differential equation is degenerate, the degenerate case is especially
important. For instance, for any stochastic control system governed by a single
nth order differential equation with white noise input, the corresponding partial
differential equation is degenerate.

This paper studies the relationship between a weak solution of the degenerate
partial differential equation and the value function of the optimal control problem.
Theorem 3 shows, under assumptions similar to those of 3, that if the partial
derivatives of the weak solution are functions in appropriate L,-spaces and solu-
tions of an associated uncontrolled stochastic differential equation have a density
which is in an appropriate Lp-space, then the weak solution equals the value
function of the stochastic control problem. It also follows from Theorem 3 that
there is a control function which minimizes a Hamiltonian function formed in
terms of the partial derivatives of the weak solution, and this control is an optimal
control for the stochastic control problem.

The question of obtaining precise conditions under which solutions of stochas-
tic differential equations have densities is an interesting open question. It is known
[6, Lemma 8.6] that solutions of nondegenerate stochastic differential equations
have densities. Recent papers of Kushner [5] and Zakai [8] consider special cases
of degenerate stochastic differential equations whose solutions have densities.

The optimal control problem is formulated for a class of controls which are
merely bounded measurable functionals on the past of the processes involved.
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A technique of Girsanov [4] is used to assure there are processes corresponding
to this very general type of control. The author would like to express his apprecia-
tion to Dr. V. E. Bene for pointing out to him the importance of Girsanov’s
technique. Bene used this technique in [2] to obtain existence theorems for op-
timal stochastic controls.

2. The stochastic control problem.
2.1. Definition of notation. Let f(t, x, y) be a bounded continuous function

and g(t, x, y, u) a bounded Borel measurable function:

(1) f :E x E" x Em--- E", g E X E" x E X Ek Em.

Suppose thatf satisfies

(2) If(t,x, y)-f(t,x’, Y’)I gl[IX x’l + lY Y’I]

and that g(t, x, y, u) is continuous as a function of u for fixed (t, x, y). Let M,n be
the space of nonsingular tn x rn matrices with norm defined so that the square
of the norm equals the sum of the squares of elements of the matrix. Let a(t, y)
be a bounded continuous function,

(3) o:E x E" Mm,

such that

(4) la(t, y) a(t, Y’)I =< K2Iy Y’I.
Suppose, in addition, that the inverse matrix a(t, y)-a of a(t, y) is a bounded con-
tinuous function. Let C(t, x, y, u),

(5) C:E x E" x E X Ek Ea,
be a continuous real-valued function. Let (fL fi, P) denote a triple of a probability
space f, Borel field fl, and probability measure P. Let (t) denote an m-dimensional
Brownian motion process, with respect to (fL fi, P), whose covariance matrix
is given by

(6) E{(t). (s)} min (t, s)I,

where I is the identity matrix.
Let F[to, T] denote the space of all functions on the interval [to, T] to Em+".

Let/f denote the Borel field on F[to, T] generated by the cylinder sets. A function
r/,

(7) q:E x F[to, r3-E,
will be said to be nonanticipative if for each and xa(s), x2(s) F[to, T] such that
)ca(s) x2(s)if to _-< s __< t, then rl(t, xa(." ))= rl(t, x2(" )).

2.2. The optimal control problem. Let U be a compact subset ofEk. A function

(8) r/:Ea x F[to, T] U

will be called an admissible control if it is nonanticipative and Borel measurable.
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Let B be a bounded closed region in En+m whose boundary is a twice con-
tinuously differentiable manifold. Let o be an initial time and (x, y) an initial
state satisfying respectively 0 __< to _-< T; (x, y) B. Let trajectories of the control
system be defined by the equations

(9) x(t) x + f(s, x(s), y(s)) ds,

(0) y(t) y + g(s, x(s), y(s), u(s)) ds + (s, y(s)) d(s),

(1) u(s) (s, x( ), y( )).
The last integral in (10) is as a stochastic Ito integral. Let r denote the stopping
time for the process which is the first time (x(t), y(t)) hits the boundary of B. Let
rl min Jr, T].

The optimal control problem is to find a control r/in the class of admissible
controls so that

(12) E C(s, x(s), y(s), u(s)) ds

is a minimum.

3. Comments on the statement of the optimal control problem. Since the
controls are only assumed to be Borel measurable functionals on the past of the
process and the function g(t,x,y, u) is only assumed to be Borel measurable,
the question of whether solutions of (9)-(11) exist arises. The following procedure
of I. V. Girsanov [4 can be used to show that there are solutions of (9)-(11). Under
the assumptions above, classical theorems 7, p. 47] show that there is a unique
solution to the equations

(13) x(t) x + f(s, x(s), y(s)) ds,

(14) y(t) y + a(s, y(s)) d(s).

Define ’to(g) by

(15)

where u(s) rl(S, x(. ), y(. )) and x(t), y(t) are solutions of (13)-(14).
THEOREM (Girsanov 4, p. 287 and p. 296]). Define a measure P by

(16) P(&o) exp (o(g)]P(do)
and a stochastic process (t) for to <= <= T by

(17) (t) (t) a(s, y(s))- g(s, x(s), y(s), u(s)) ds.
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Then P is a probability measure on (f, ).1 The process (t, co) is a Brownian
motion process on (f, fl, P). The solution of(13)-(14), x(t, co), y(t, co), when considered
with respect to the probability triple (, fl, P), is a solution of(9)-(11) with the Brown-
ian motion (t) replacing (t).

It will always be assumed that the solutions of (9)-(11) which are involved
in the optimal control problem are constructed from solutions of (13)-(14) in the
manner stated in the theorem. The question of whether (9)-(11) has a unique
solution appears to be still open. In [6] Stroock and Varadhan prove in a more
restricted case analogous to (9)-(11) that solutions of the equations always induce
a unique probability measure on the space of continuous functions.

4. Intermediate results. The following lemma shows how densities of
solutions of (13)-(14) are related to densities of solutions of (9)-(11) constructed
according to Theorem 1. The proof of this lemma is nearly the same as that of
Lemma 8.6 of 6].

LEMMA l. Let o, T, h and be numbers such that o < o + h < T and > 1.

Iffor a solution x(t), y(t) of(13)-(14), the random vector x(t), y(t) has a probability
density p(t, x, y) such that

(18) p(t, x, y) dt dx dy <
o+h

then for the solution x(t), y(t) of(9)-(ll) constructed by Theorem 1, the random
vector x(t), y(t) has a density q(t, x, y) such that for < ’ < ,
(19) q(t, x, y)’ dt dx dy < oe

o+h

Since the solution of (9)-(11) will depend on which control ri(t, x(. ), y(. )) is
used, the density q(t, x, y) also will depend on which control r/is being used. To
save burdening the notation, this dependence will not be indicated in the formulas.
However, the reader is cautioned to recall that these quantities will always depend
on the control being considered.

The proof of Lemma 1 requires the following lemma of [4].
LEMMA 2 (Girsanov [4, p. 2913). Let denote the Borelfield generated by the

random vectors x(s), y(s) for o <= s <= t. Let (tto(g) be defined by (15). Then for any
Ft-measurable function l(co),

(20) rl(m)P(do) fa rt(o)exp [o(g)]P(dco).

ProofofLemma 1. For a real number p > 1 let

(21) exp [p to(g)]P(dco) No.
The previous assumptions imply that there is a number k such that

(22) Ig(s, x(s), y(s), u(s))r[r(s, y(s))r] ajar(s, y(s))l- lg(s, x(s), y(s), u(s))l </c.

This first conclusion of Theorem follows from the remark on p. 296 of [43. The remaining
conclusions are those of [4, Theorem 1, p. 287].



A PARTIAL DIFFERENTIAL EQUATION OF DYNAMIC PROGRAMMING 523

Using an abbreviated notation, we have

N, exp p gTa- a- dy -p gTo. TO.-- g ds P(do9)

(23) exp k(- to)p(p 1) exp ogrr - dy

2
pgr

exp k(t- to)p(p 1).

The last step follows because, by applying Lemma 2 with g replaced by pg, the
integral can be shown to equal one. By Lemma 2, if A is a set measurable with
respect to the Borel field generated by x(t), y(t),

(24) fA P(dm) fA E{exp [o(g)]lx(t), y(t)}P(dm)

hence solutions of (9)11) have a density q(t, x, y) given by

q(t, x y) E{exp

Denote E{exp tto(g)lx(t) x, y(t) y} more briefly by r(t, x, y) Since conditional
expectation does not increase the Lo-norm, definition (21) implies

(25) No.
Consequently,

(26) o+h

N (T- to)exp [k(T- to)p(p- 1)].

This implies

(27) (T- to)exp [k(T- to)p(p 1)].

If 1 < a’ < a and h, k, p and fl are chosen so that h > (a 1)(a a’)-, h- +
k- 1, p ha’, and fi h-(p 1), then an elementary argument shows that
1 < flk < a. Therefore, writing q’ q’p-apa, applying H61der’s inequality with
parameters h and k, and using (27) and (18) gives, if 1 < a’ < , that

(28) lq(t, x,
o+h

which is the conclusion of Lemma 1.
Define the matrix a(t, y) by a(t, y) (t, y)(t, y)r. For the stochastic optimal

control problem define a value function as follows. Consider the optimal control
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problem starting from a variable time a.nd point (x, y), where 0 =< =< T and
(x, y) B. Let V(t, x, y) be the value of the infimum of the performance index over
the class of admissible controls, given that the processes started at time from the
point (x, y). That is,

(29) V(t, x, y) inf E C(s, x(s), y(s), u(s)) ds x(t) x, y(t) y

where u(s) 1(s, x( ), y( )).
The method of dynamic programming gives a formal argument which con-

nects the value function V(t, x, y) with the solution qS(t, x, y) of

+ aij(t, y)c/), + f/(t, x,
i=l i=l

(30)

+ min g(, x, y, u)c/) + C(t, x, y, u) O,
ueU

which satisfies the boundary condition

(31) qS(t,x,y)=0 if(x,y) eboundaryB or t= T.

We shall say for fl > 1 that a function b is in class F if b(t, x, y) is continuous
on [0, T] x B, and the Schwartz distribution theory second partial derivatives
with respect to y variables and first partial derivatives with respect to and x
variables are functions which are in L([0, T] x B).

Define a norm on the functions of class F by

14[= sup 4(t,x, + GIdx&
0 T,(x,y)eB t,Xi,Yi

(32)

i,j=

A function b in F will be said to be a weak solution of (30) if (30) is satisfied almost
everywhere with respect to (m + n + 1)-dimensional Lebesgue measure on
[O,T] x B.

Denote by A(t, x, y, u) the partial differential operator for which

A(t, x, y, u)[4 4 + a(t, y)c/),, + fi(t, x, y)C/)x
() - =1

i=1

In cases in which the dependence ofA on the variables and functions involved
in its coefficients can be inferred from the context, the shortened notation
will be used for (33).

THEOREM 2. Let the hypothesis of Lemma 1 be satisfied. Let (t, x, y) be a
solution of(30) in Ft, where fl ’(’ l) -. Let x(t), y(t) be solutions of(9)-(ll)
corresponding to the control rl(t, x(. ), y(. )). Let z denote the first time x(t), y(t) hits
boundary B and z min (z, T), Th min (z, o + h). Let Z(t) be the characteristic
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function of the set {09" r(og) >= t}. Then

e{(, x(), y(l))} e{(, x(), y())}

(34) E{Z(s)A(s, x(s), y(s), q(s, x( ), y( ))) [4]lx(s) x, y(s) y}
to+h

q(s, x, y) dx dy ds.

Proof of Theorem 2. Let 4"(t, x, y) be a sequence of twice continuously differ-
entiable functions such that " converges to 4 in Fa. Since 4" is twice continuously
differentiable, Ito’s formula [7] gives

E{n(T1, X(T1),Y(T1))} E{n(Th, X(Th),Y(Th))}

e z(s)A(s, x(s), y(s), ,(s, x(. ), y(. )))[4"] s.
o+h

Now by Fubini’s theorem,

o+h o+h
(36)

E{Z(s)A4"Ix(s)= x, y(s)= y}q(s, x, y)dx dy dr.
o+h

Looking at definition (33) we see that the equality

e{z(s)g,(s, y(s), n(s, x(. ), y(. )))4,,(s, x(s), y(s))lx(s) x, y(s)
(37)

4;,(s, x, y)e{z(s)g,(, x(s), y(s), n(s, x(. )y(. )))lx() x, y(s) y}

is typical for the terms of E{z(s)A(s)[4"]lx(s) x, y(s) y}. A similar result holds
when 4 replaces 4" in (37). Therefore, the expression

(38) E{z(s)(A(s)[&]- A(s)[])lx(s)= x, y(s)= y}

can be written as a sum of bounded terms times terms which are converging to
zero in La([to, T] x B). Therefore, we conclude that (38) converges to zero in

By applying H61der’s inequality, involving (19) and (38), we see that the right
side of (36)converges to the right side of (34). Since Fa convergence implies uniform
convergence of 4, to 4, the left side of (35) converges to the left side of (34), which
completes the proof of Theorem 2.

If (t, x, y)is a weak solution of (30), an implicit function theorem of Bene
asserts there is a measurable function 7(t, x, y),

(39) 7"[to, r] x B U,
such that

2 (, , , (, ,4, + c(, x, , (, x,

(40) i=

min g(t, x, y, u)4r, + C(t, x, y, u
ueU
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almost everywhere with respect to Lebesgue measure on [to, T] x B. Extend ? in
an arbitrary way to a Borel measurable function on [to, T] x E"/" with values
in U.

This function induces a measurable function on [to, T] x F[to, T] by the
formula

(41) v(t, x(. ), y(. )) v(t, x(t), y(t)).

5. Fundamental theorem.
THEOREM 3. Let the solution of(13)-(14) have a density p(t,x, y) such that for

some e, e > 1,

(42) | p(t, x, yy dx dy dt < .
d to+h

Let 1 < ’ < , and let qS(t, x, y) be a solution of (30) which is in Fa for ’(’ 1)-
which satisfies the boundary condition (31). Let 7(t, x(. ), y(. )) be the control defined
in (40)--(41).

Then if x(t), y(t) is a solution of (9)-(11) corresponding to the control u(t)
,(t, x(. ), y(. )),

(43) dp(to, x, y) E C(s, x(s), y(s), u(s)) ds
kto

If x(t),y(t) is a solution of (9)-(11) corresponding, to an arbitrary control
u(t) r(, x(. ), y(. )),

(44) dp(to, x, y) <= E C(s, x(s), y(s), u(s)) ds
k to

Notice that to, x, y could be any variables for which 0 < to < T and (x, y) B.
Thus Theorem 3 implies that b(t, x, y) V(t, x, y) on [0, T] x B. That is, if there
is a solution of (30) with boundary condition (31), it agrees with the value function
of the stochastic control problem. Notice also that (43) and (44) imply that the
control ? constructed from (40)-(41) is an optimal control law for the stochastic
control problem.

Proof of Theorem 3. Since b is a weak solution of (30), the definition of /
implies that there is a set N of (m + n + 1)-dimensional Lebesgue measure zero
such that

(45) A(t, x, y, 7(t, x, y))[4)] C(t, x, y, 7(t, x, y))

on [to ,T] x B-N.
Let u(t)= 7(t,x(t), y(t)) and x(t), y(t) be corresponding solutions of (8)-(11).

Since x(t), y(t) has a density q(t, x, y), (45) and Fubini’s theorem imply that for
almost every t,

(46) -Z(t)A(t, x(t), y(t), u(t)) [c/) c(t, x(t), y(t), u())

with probability one and
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e{-z(t)A(t, x(t), y(t), u(t))]lx(t) x, y(t) y}
(47)

A(t, x, y, 7(t, x, y))[4] C(t, x, y, y(t, x, y))

except at a set of measure zero on B.
Substituting (47) in (34) gives

g{(Th, X(Th),Y(Th))} E{(T1,X(T1),
(48) T

E{z(t)C(t, x(t), y(t), u(t))} dt.
o+h

Since b satisfies the boundary condition (31), b(z x(zl), y(Zl)) 0. Since b
is bounded and continuous and x(t), y(t) has continuous paths, using Lebesgue’s
convergence theorem and passing to the limit as h approaches zero gives

qS(to, x, y) lim E{d/)(’Ch, X(Zh) y(’Ch))}
(49)

h-O

E C(t, x(t), y(t), u(t)) dt.

To establish (44) notice that since b is a weak solution of (30) that there is a
set N of (m + n + 1)-dimensional Lebesgue measure zero, which does not depend
on u, such that for all u U,

(50) A(t, x, y, u) [b] =< C(t, x, y, u)

on [to ,T] B-N.
For any control r/(t, x(. ), y(. )), let x(t), y(t) be a solution of (8)-(11) corre-

sponding to r/. Since x(t), y(t) has a density q(t, x, y), (50) implies

(51) (t, o)A(t, x(t, o), y(t, o), u)[dp] < Z(t, o)C(t, x(t, o)y(t, co), u)

for all u U and dt P almost every (t,o) in [to, T] . Letting u(t,o)
tl(t,x(., o), y(., o)), we have that inequality (51) implies

(52) Z(t, o)A(t, x(t, o), y(t, o), u(t, o)) [d?] <= Z(t, o)C(t, x(t, o), y(t, o), u(t, o)),

dt P almost everywhere on [to, T) ft.
By substituting (52) in (34) and proceeding in a manner similar to that of

(48)-(49), it follows that (44) holds.

6. Concluding remarks. By combining Theorem 3 with results of Fleming
[3], a fairly complete theory is available for the type of stochastic control problem
discussed in this paper. Fleming [3, Theorem 5.1, p. 269] proves that there exists
a weak solution of the partial differential equation (30) with boundary condition
(31) which is in F2. Then under the combined hypothesis of [3] and Theorem 3,
where the exponent a in Theorem 3 is larger than two, there exists an optimal
control, this optimal control minimizes the Hamiltonian as in (40), and the
optimal value of the performance starting at time from the point x, y is given by
the solution of (30). It also follows from Theorem 3, under the hypothesis of the
theorem, that a weak solution of the partial differential equation of dynamic
programming (30) in Ft with boundary condition (31) is unique.
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GENERALIZED CUTTING PLANE ALGORITHMS*

B. CURTIS EAVES’ AND W. I. ZANGWILL

Abstract. This paper introduces a master cutting plane algorithm for nonlinear programming
that isolates the points it generates from one another until a solution is achieved. The master algorithm
provides a foundation for the study of cutting plane algorithms and directs the way for development
of procedures which permit deletion of old cuts.

Introduction. Since Kelley [5], Cheney and Goldstein E2] introduced the first
cutting plane method for nonlinear programming over ten years ago, and through
the developments of the Veinott [8] supporting hyperplane method and the Dantzig
and Wolfe [3] dual cutting plane method, the following question has persisted.
Is it possible to drop previously generated cutting planes and still guarantee
convergence? All of the aforementioned methods require that every previous
cut be retained. Then, since the linear programming subproblem must on every
iteration increase in size, the subproblem soon becomes unwieldy and difficult,
if not impossible, to solve. To circumvent this complication in practical application,
one would simply drop old cuts and solve the resulting smaller subproblems.
It was not known whether or not this procedure would converge.

One of the authors recently suggested a unifying theory for cutting plane
algorithms [9, Chap. 14]. Although this theory did bring together the previous
methods, it still did not permit old cuts to be dropped. By extending and generaliz-
ing this theory, this paper presents precise methods on how to drop cuts and still
guarantee convergence.

The paper is divided into three parts. Section introduces the master cutting
plane algorithm (MCPA) and states important background material for conver-
gence of sequences. In 2 we derive four methods from the MCPA. One of these
four will in 3 further specialize into the Kelley, Cheney, Goldstein (KCG), the
Veinott (VN), and the Dantzig-Wolfe methods (DW), while the other three will
illustrate not only different approaches to cutting plane methods, but also how to
drop old cuts.

The authors have recently been informed that Algorithm IV for the unique
optimum case is similar to an approach developed independently and simul-
taneously by Professor Donald M. Topkis (see [6], [7]). Professor Topkis examined
the uniformly strictly concave case and used an entirely different method of proof.

1. Fundamentals. Following the approach in [9, Chap. 14]---cutting plane
methods generate a sequence of points zk, k 1, 2, 3, ..., in an effort to calculate
a point in a set G, termed the goal set. The set G will be closed in a metric space and
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specially selected so that when the MCPA calculates a point in it, the nonlinear
programming problem will be solved.

The points generated by the MCPA will be in a closed set X and satisfy the
special property that if zk q G, then z + is separated from the points z 1, z2, ..-, z
by at least a certain distance. This distance will be determined by a separator
function that we now define.

DEFINITION. Given the closed sets 4: G X in a metric space, an extended
real-valued function 6 on X G is a separator

(a) if it is nonnegative
and

(b) if Z -’+ Z and ((Zk) O, imply z e G.
An immediate consequence is that a separator is positive on X G. For,

suppose z* e X G and 6(z*) 0. Then, letting z z* for all k, we have

z z*, 6(?) - 0

and by (b),

z*G.

The contradiction is clear and 6 must be positive on X G.
The next lemma also follows immediately from the definition.
LEMMA 1. Let 6 be a real-valued function on X G. If 6 is positive and lower

semicontinuous, it is a separator.
An example of a separator is the distance d(z, G) between a point z e X and

the set G. It is easy to show that 6 is a separator if and only if 6 has a positive lower
bound on each compact set in X G. The minimum of a finite collection of
separators is also a separator as is any positive multiple of a separator. Moreover,
if 6 is a separator and 6’ => 6 then so is 6’. A condition which is frequently imposed
on a separator is 6 __< d(., G), or in other words, that 6(z) not exceed the distance
d(z, G) from z to G for all z X G.

We now pose the MCPA, a simple procedure that underlies the cutting
plane methods.

MASTER CUTTING PLANE ALGORITHM. Let 6 __< d(., G) be a separator on
X G and suppose the points z 1, ..., z in X have been generated. If z G, then
terminate; otherwise calculate z + X such that

zk+lqB(z 6(zi)) i= k

where B(z, 6(z)) is the open ball of radius (z) at z.
THEOREM 2. Given the closed sets G c X, let the sequence z 1, z2,

in X be generated by the MCPA. Then any cluster point is in G.
Proof Suppose for some subsequence

Zk Z

By construction of the algorithm, this could occur only if

6(?) 0.

Then from the definition of a separator, z G.
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Spaces of sets. To apply the MCPA we must first explore the suggestion in
9] that cutting plane algorithms operate by generating closed sets Zk contained
in X. Specifically, we must explore the space of all such sets Zk in X.

Assume that X is a compact metric space, that G X, and that G is compact.
Then define to be the collection of all closed sets Z for which

GZX.

can be topologized [4, pp. 166-172] to form a metric space. With this topology,
lim Z Z or equivalently Z --* Zoo if and only if both (a) and (b) hold.

(a) If z Z for k 1, 2,... and z z, then z Zoo.
(b) If z Zoo, then there exists z Z for k 1, 2, such that z z.

Intuitively, if Z ---, Zoo, then as k o the set Z becomes more and more like
Zoo. We summarize a key lemma [4] about this set space.

LEMMA 3. Suppose X is a compact metric space and G X is a compact subset.
Let

{ZIG Z X, Z closed}.
Then is compact (in the set topology).

The set space permits us to define cuts.
Cuts and maps. We know that cutting plane algorithms operate by taking

cuts, yet the MCPA was not stated in terms of a cut but was phrased in terms of a
separator. Now we must link the two concepts of a cut and a separator by defining
a cut map. Recall that a point-to-set map from X G to takes points of X G
into subsets of .

DEFINITION. A point-to-set map q:X G - e is a cut map if there is a
separator such that for each x X G and each Z p(x),

Z VI B(x, 6(x))= .
Note that any set Z can be a cut, but we shall only call Z a cut if

Z U 0(X G), that is, if Z q(z) for some z X G. Also notice that

G= r3 Uo(X~G)

which is to say that G is the intersection of all cuts. In particular, one can observe
that if all cuts are convex, then G must also be convex. (In the computational
procedures of 3, cuts will be of the form H f’l X, where H is a half-space of E",
n-dimensional Euclidean space, and X is a compact polyhedral convex set in E".)

In practice we may know that a map q is a cut map without knowing an
underlying separator. However, note that we can easily generate other separators
from any cut map. Simply define 6 on X G by setting 6(z) d(z, Z) for some
z (z).

LEMMA 4. Let q) be a cut map, z zoo G, C6 q)(z), and C Coo. Then
zC.

Proof Let 6 be a separator underlying q) and consider

lim sup 6(z) <= lim d(z, C) d(zoo, Coo).

If d(zoo, Coo) 0, then 6(zoo) 0 and by definition zoo G.
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Closed maps. In several connections we shall use the notion of a closed map.
Let U and V be metric spaces and let/3 U --. V be a point-to-set map (/(u) c V).
We say that/ is a closed map if

bl bloo, U -- UOO, ui (bl i) imply voo /(uoo)
for all such sequences and limit points.

The next lemma indicates a relationship between closed and cut maps.
LEMMA 5. Let =/: G c X be compact sets and let q) X G --. be a closed

map such that z Zfor Z q)(z). Then q) is a cut map.
Proof The result follows from the fact that

6(z) inf {d(z, Z)IZ q(z)}
is a separator. Assume zk --, z and 6(z) O. Using closedness, choose Z q)(z)
such that 6(z) d(z, Zk). There is a subsequence for which Z - Zoo and we have
z Zoo. If zoo G, by closedness Zoo q)(zoo) and. from the hypothesis zoo Zoo,
which is a contradiction.

Objective function. Our abstract algorithms of 2 solve the following non-
linear programming problem:

maximize r(y),
yG

where r is a real-valued continuous function on X.
What is interesting is that the objective function r and a separator 6 induce

another separator 6’.
LEMMA 6. Given a compact set X in a metric space, let 6 be a separator on

X G and r be a continuous function on X. Then the function 6’ defined on X G
by

6’(z) inf {d(z, x)lr(x) <= r(z) 6(z), x X}
is a separator.

Proof (We adopt the convention that inf + oe, and hence, 6’(z) + o
may occur.) If 6’(z)< +oe, then by compactness and continuity there is an
x e X such that 6’(z) d(z, x)and r(x) < r(z) 6(z).

Now suppose

Let

and

zzoo and 6’(z)0.

a’(z) a(z, x)

r(x) <= r(?)-
Then d(z, x) O, and it follows that 6(z) 0. As c5 is a separator, zoo e G. This
completes the proof.

Note that if z, k 1, 2, ..., is a sequence in X G such that z zoo and
r(z+ 1) < r(z) 6(z), then zoo e G. This fact follows from Lemma 6, but it also
has a trivial proof, namely, z---, zoo implies 6(z) <= r(z) -r(z+ 1)__, 0 which
implies zoo G.
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We now adopt a function and a map that depend upon the. nonlinear program-
ming problem which facilitates further discussion.

Let r* be the real-valued function on defined by

r*(Z) max r(z).
zZ

In words, r* is the optimal objective value as a function of the feasible region Z.
Next we define an "arg max" map on by

r(z) {x Zlr(x) r*(/)}.
The map F specifies all the optimal solution points to the nonlinear programming
problem.

The following lemma is proved in
LEMMA 7. Let r be a continuous real-valued fimction on X, a compact set in a

metric space. Then the function r*’ E is continuous and the point-to-set map
F’ --, X is a closed map.

2. Abstract cutting plane methods. In this section, we describe four abstract
cutting plane methods, Algorithms 1-IV, for solving the problem

(1) maximize r(y).
y6G

Each of the methods generates a sequence of sets Zk and points zk F(Z), such that
cluster points of the z sequence will be in F(G). Consequently, any cluster point
will solve the programming problem (1).

These four algorithms certainly do not exhaust the possibilities; nevertheless,
an effort has been made to pick a representative selection from those of which we
are aware.

The algorithms, I-IV, have been ordered so that, roughly, each succeeding
one relies more upon improvement in objective value. Algorithm I retains all
generated cuts. Algorithms II and III provide for the deletion of cuts, but just how
many cuts will be dropped is problem dependent and could vary from none to
numerous to almost all. Algorithm IV requires more stringent conditions than
I-III, but it achieves the ideal with regard to the deletion of cuts; namely, all
inactive cuts can be dropped (Z is inactive for z if z is interior to Z with respect
to the space X). Algorithm II will probably prove to be the most useful.

We shall always assume that C 4: G X are compact sets in a metric space.
Also

{ZIG Z X,Zclosed}
and r is continuous.

Algorithm 0 is the general algorithm that serves as a basis for the others.
It assumes that a separator is given either implicitly or explicitly.

ALGORITHM 0. Given a separator 6 _<_ d(., G), let the set Z e be selected
arbitrarily and choose z e F(Z). Assume that Z and zi, 1, ..., k, have been
generated. If z e G, terminate otherwise select Z + and zk + e F(Z + ) such that

7_,k+ B(zi, ((zi)) for 1,..., k.
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Clearly, Algorithm 0 operates as the MCPA so that any cluster point zoo of
the zk sequence is in G. Moreover, by specification of 5e, Zk = G, and consequently
r(zk) >_ r*(G). From the continuity of r, r(zoo) >_ r*(G), and we conclude that
z e F(G). In other words, zoo solves (1).

ALGORITHM I. This algorithm, as will be seen in 3 of the paper, is a generaliza-
tion of the KCG, VN, and DW methods. It retains all the old cuts (except perhaps
for the redundant ones). Given a cut map q’X G --, 5e, the algorithm is as
follows.

Assume that Z1, Zk and zl, zk have been generated. If zke G, ter-
minate; otherwise select Cke o(zk), form Ckf"1 Zk, and let Zk+ e be any
subset of Ck f-I Zk. Then calculate the point zk+l F(Zk+ 1).

To show that this operates as Algorithm 0, note that zk/l Zk/l since
zk+ F(Zk/ 1). This algorithm produces

Zk+l Zk [-) Ck Z Z [-) C for 1 __< =< k,

where C q)(zi). Thus

zk + C

and by definition of the cut map, a separator exists such that

Zk+l B(zi, 6(zi)), 1,..., k.

Consequently, the algorithm is a special case of Algorithm 0, and any cluster
point zoo solves (1).

ALGORITHM II. This algorithm drops cuts after r has made sufficient progress
as judged by a separator 6. Briefly, if cut C is introduced to cut off the point zi,
then C can be dropped later on iteration k + if

l(zk+ 1) r(zi) ((zi)

and if the cuts which remain "maintain objective value." Let 0 be a cut map and
let 6 be a separator on X G. At each iteration k an index set I will specify the
cuts that have not yet been dropped. The algorithm is as follows.

Initiate the algorithm with 11 and z F(X). Assume I 1, ...,
and z for 1, ..., k and C for 1, ..., k 1 have been generated. If zk e G,
terminate; otherwise select Ck qg(zk), let

and let yk+ F(zk+ 1). Then let

yk+l

Zk + -] C
ii

and zk + e F(Zk + 1), where Ik + is chosen so that"
(a) Ik+l = I U {k},
(b) {i 1,..., klr(yk+ 1) > r(zi) O(zi)} ik+ 1,
(c) r(z +) r(y +).

This specifies the algorithm.
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Let us clarify the selection of I + 1. From (a) the indices in Iu and the index k
are the only candidates. We may drop such a candidate index if from (b) there is
sufficient decrease in objective value, i.e.,

r(yU + 1) ?.(Zi) ((

and if from (c), dropping it does not cause the objective value to increase over its
value at yU+ 1. Note (b) and (c) must both be satisfied before can be eliminated.

To prove convergence, let 6’ be the separator corresponding to q and let
5" be the separator induced from 6 and r as in Lemma 6. We shall use the separator

6* min [6’, 6"]
to show that

zu+l q B(zi, 6.(zi)), 1,..., k.

Convergence will then follow from Algorithm 0.
If q Iu / 1, then by the definition of 6" in Lemma 6,

z + (z "(z)).

If Iu + 1, then since

where ci qg(zi),

zk+ zk+ Ci,

Z
u + B(Zi, ’(zi)).

Therefore, z + B(zi, 6.(zi)) and convergence is proved.
A.GORITI-IM III. This algorithm uses features of both I and II and drops cuts

en masse if sufficient improvement has been made in objective value. Let 6 be a
separator and q9 a cut map, both on X G.

To begin iteration (k,i) we have zl, zU= y],..., y, and Z/ where
y e F(Z). If y e G, terminate; otherwise"

(a) let C
(b) let y e F(Z f3 C)"

(i) if r(y) <= r(zk) 6(zU), then choose Z]+ such that r*(Z] + 1) < r(y) and
let y]+l zU+l F(Z]+I);

(ii) otherwise, let Z+ Yi+l Y"
Iteration (k, i) is complete.

If the sequence z1, z2, generated is infinite, then

r(?) <= r(z) ,(z)
for < k. Hence zk B(z, 6’(zi)), where 6’ is the separator of Lemma 6 induced by
r and 6, and convergence follows from Algorithm 0. If the generated sequence
y], y, is infinite, then the algorithm relapses into Algorithm and any cluster
point of y], y, solves (1).

ALGORITHM IV. Let c be a compact subset of which is closed under inter-
section and such that if Z c, then

(2) zF(Z), zCG imply F(Z)= {z}.
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Let q’X G --+ c be a cut map. The algorithm is"
Assume Zie 5ec and zie F(Zi) for i= 1,..., k have been generated. Let

Ck e q)(zk) and select Z + e e such that

r*(Z+ ) <__ r*(Z C).
Let z+ e F(Z+ ).

To prove convergence, suppose z z q} G on some subsequence K. Without
loss of generality and using Lemma 3, we can assume that Z --+ Zoo and C ---, Coo
on the same subsequence K. By Lemma 7 and (2), we have {zoo} F(Zoo). By
Lemma 4, z qCoo and we have r*(Zoof-I Coo)< r(zoo). But consider r(zoo)

lim r(z) lim r(z+ 1) =< lim r*(Z f-I C) < r*(Zoo f-I C) < r(zoo). This is a
contradiction.

Observe that the bonafide example which meets the conditions of Algorithm
IV is where G, X, and all cuts are convex and where r is strictly quasi-concave.

3. Computational procedures. The methods, Algorithms I-IV, of 2 will now
be further specialized into the specific computational algorithms KeG, VN, and
DW. In each of these procedures, X will be a compact polyhedral convex subset
of E", G will be a compact convex subset of X, and cuts will be of the form
X H G, where H is a half-space of E".

The cuts for the procedures are generated from a common form. In detail,
let us define the half-space

g(v)-- {xla(v) + b(v)x >= O} E"

for given functions a" Y --+ E 1, and b" Y E" where Y c Em. Then using the point
to set map e’X G --+ Y, specify the point to set map (p’X G --+ by mapping
zto

{H(v) xlv (z)}.
From a point z, after calculating v e e(z), we shall construct the cutting half space
H(v). The next proposition demonstrates that q will be a cut map if a and b are
continuous functions, the map e is closed, and if the half spaces "cut" off the point
Z.

LEMMA 8. Let 3 =/= G X be compact convex sets in E", Y c E be compact,
and define the map q) X G --+ by

where

(p(z) {H(v) I’-I XIv (z)}

H(v) {xla(v) + b(v)x >= 0}.
Suppose"
(i) the functions a" Y--+ E and b" Y--+ E are continuous and the map

X G --+ Y is closed;

(ii) z X G and H f-] X q)(z) imply z q H.
Then q) is a cut map.

Proof Define 6(z) for z e X G to be

inf d(z, Y)IY H(v) 0 X, v (z)}.
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We shall show 6 to be a separator and establish the result; assume that zk -+ z
and 6(zk) --, 0. By compactness of X and and by closedness of e we can select
v e(z) and y H(v) N X so that 6(z) d(z, y). Then, again, by compactness
and closedness, for appropriate subsequences v -, voo e(zoo) and y --+ y(R). By
continuity of a and b, yoo H(voo) N X. Since d(z, y) -+ O, yoo z H(voo) N X.
But if zoo q G, then by hypothesis, zoo H(voo), which is a contradiction, thus com-
pleting the proof.

The map e and functions a and b will differ for the various procedures KCG,
VN, and DW. The sets Z will always have the form

x N (NH’),
il

where H n X is a cut. The objective function r will be linear for Algorithms I,
II, and III, and consequently, finding za F(Z) will be a linear program. In
Algorithm IV we shall let c be the set of convex sets in Y’; however, a linear
function would not necessarily meet the condition (2). Here, in general, r will not
be linear.

To specify KCG, VN, and DW and their variants in terms of Algorithms
I-IV, we need to define the goal set G, the polyhedral set X which encloses G,
a cut map q, an objective function r, and a separator 6. Algorithm I for KCG, VN,
and DW corresponds to the original statements of these algorithms. Algorithms
II and III are variants which permit deletion of cuts, but again the number of cuts
which will be dropped is problem dependent, and at this time, is essentially un-
predictable. These procedures, II and III, will probably be very useful for some
problems and worthless for others, but in any case the effort to implement them
seems comparatively small. Algorithm IV requires more conditions than the
others, namely (2), but offers the advantage that all inactive cuts can be dropped.

The Kelley, Cheney, Goldstein concave cutting plane method (KCG). KCG is
designed to solve the program

maximize qx qixi
(3)

subject to g(x) >= 0,

where g is real-valued, continuous, and concave. That the problem is equivalent
to the general concave programming problem is discussed in [9]. We define G
as the feasible set

G {xlg(x)> O}
and assume that G is contained in the compact set X, where

X {xlAx > b}.
Let U(z) be the set of vectors u such that

g(x) <= g(z) + u(x z)

for all x e X. We assume that U(z) 3 for z e X and that

U U(z)
zX
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is bounded. To define the cut map q let e be the closed map

and let

where

0(z) {n(z, u) fq X I(z, u) e (z)},

H(z, u)- {xlg(z) + u(x z)>= 0}.

Since e is closed, using Lemma 8 we see that q is a cut map.
For Algorithms I, II, and III we let r(x) qx. For Algorithm IV we assume

that we have a continuous function p on X such that r(x) qx + p(x) satisfies (2)
(where e is the collection of convex sets in e) and that r(x) qx for x G (for the
procedure to be practicable, we would probably also need r to be quasi-concave
on X). Possible candidates for p would be functions of type rain (0, g(z)) or
-(min (0, g(z)))2.

For separators for Algorithms II and III one could use, for example,
6(z) g2(z) or g(z).

Each method, of course, generates sequences z whose cluster points solve (3).
We now discuss the individual algorithms in detail.

Algorithm I for the KCG cut map. Algorithm I is the original KCG method.
Let Z X; then given Zk,

Z + Zk (--)Hk,

where H q)(zk) and z F(zk).
Explicitly, Zk will have the form

Zk {xlAx >- b,g(z’) + u’(x z’) > O, i= 1,..., k 1}.

Then, given Zk, solve the problem

maximize qx
xZ

for the optimal point zk. If g(zk) >= O, so that zk e G, terminate. Otherwise, obtain
u e U(z), set

and let

H-- {x Xlg(z) + u(x- z) 0},

Zk+l Zk Hk.

Observe that the dimension of the linear programming subproblem in-
creases by one each iteration.

Algorithm II with the KCG cut map. Use any separator 6. The set Z will be of
the form

Z X ["] (iel Hi) { x Ax>=bg(zi) +ui(x-zi) >= O,itIk
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and z F(Zk) will be given. Calculate

z + e F(Z (q H),
where H e qg(z). Define J c {k} f) I to be the set of indices such that both

g(z) + u(? + z) > 0

and

Then let

r(z + 5- r(z) (z).

i+1 =IkU {k} J.

Algorithm III with the KCG cut map. Given z1, z= y], y, and
Z, we iterate.

(a) Let H e qo(y).
(b) Let y e F(Z f-) H).

(i) If

r(y) __< r(?)-
set y]+l z/ y and let Z+1 be the intersection of X with the
active cuts at z + 1.

(ii) Otherwise, let Z+ Z/ f-) H and k
Yi+l Y"

The iteration is complete and the next step is (a).
Briefly, at Zk add cuts until the optimal objective function value of the sub-

problem drops by 6(zk). Determine the active constraints at the corresponding
optimal point and intersect these with X to form Z / 1.

Algorithm IV and KCG. Assuming that r(z) qz + p(z) satisfies (2) and that
r(z) qz for z G, the specifics of Algorithm IV are straightforward. Given Z
and z F(Z), compute z + F(Zk f-) H), where H q(z). Then drop the
inactive cuts at z / so that Zk / will be X intersected with the active half-spaces
at zk+l.

Observe that at most n (the dimension of the space) cuts need to be retained
(although it might be necessary to drop some active but redundant cuts). Ofcourse,
this procedure could also be applied to solve

maximize r(x)

subject to g(x) >= O,

where r is strictly quasi-concave on X.
The Veinott supporting hyperplane method (VN). VN is designed to solve

maximize qx
(4)

subject to gi(x) >= O, 1,..., m,

where the gi are quasi-concave and continuously differentiable. As in KCG, we
let

G {xlgi(x) >= O,i= 1,..., m}
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and assume that

x= {xlAx >= b}
is given and that G c X are compact. It is assumed that gi(a) > 0 for 1, -.., m
for some a and that gi(u) 0 implies Vg(u) 0 for 1, ..., m for each boundary
point u of G.

Given any point z X G, let u(z) be the point on the boundary of G that is
on the line segment between z and a. Note that u is continuous on X G. Let
e(z) be the set

{(u,j)lgj(u) O,j 1,..., m}.
We define the cut map p by assigning to z the cuts H fq X, where

H {xlVgj(u)t(x u) >= 0},
where (u, j) e e(z); see Lemma 8.

The objective r for Algorithms I, II, III, and IV are chosen exactly as in KCG.
Here a candidate for the function p is

(min (0, gi(z)))2.

For a separator, Algorithms II and III can use

a() y (g,(z)).
Algorithm I for these G, X, q0, r is the original VN. Again, Algorithms II and III

provide a vehicle for dropping cuts. Algorithm IV, if p is available, only requires
that at most n constraints be retained; the subproblems, nevertheless, are nonlinear.
Each of these procedures solves (4).

The Algorithm IV version of VN can also be used to solve the problem

maximize r(x)

subject to g(x)_>_0, i= 1,...,m,

where r is strictly quasi-concave.
Dantzig-Wolfe method (DW). The DW method solves the concave program-

ming problem

maximize f(t)
(5)

subject to g(t) __> 0, e T,

where g (g, ..., g,), the functions f and g are concave and continuous, and
the set T is convex and compact. It is further assumed that there is a given point
e T for which g() > 0.

As in [9] we shall deviate slightly from the Dantzig and Wolfe attitude in [3]
by treating the dual of the problem, which is

minimize u
(6)

subject to (2, u) e H(t) for all T
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and

=>0,

where 2 (21, .’., 2z) Ez, u E 1, and H(t) {(2, u)lf(t) + 2g(t) =< u}. Here
the constraints range over the entire set T.

Observe that we can adjoin the additional constraint

u<,

where

max {f(t)lt T}
without altering the solution set. Moreover, because g()> 0, this additional
constraint produces a compact feasible region, as is shown in [3] or [9].

We identify the dual problem with (1) by letting

X {(2, u)lf(f) / Rg(0 _-< u, u < ,2 _>_ 0},
G {(2, u)l(2, u) H(t) for all T} UI X

and r(2, u) -u. Consequently, determining z* F(G) will solve the dual problem.
For each of the algorithms, the Zk sets will be of the form X (f’l it H(ti)),

where I is an appropriate index set. Thus, if we let o and always maintain
0 I for k 0, 1, 2, ..., then the subproblems, max {r(z)" z Z}, are the linear
programs

maximize -u

subject to f(ti) + 2g(t) =< u, i Ik, 2 __> 0.

Note we have dropped the constraint u __< as it clearly does not alter the solution.
Given (2, u) X G the map e(2, u) determines the set of all t* T that solve

maximize f(t) + 2g(t).
teT

Then for t* e(2, u), we specify H, where H f"l X e q)(2, u), by

H- {(A, u)l f(t*) / Rg(t*) <= u}
This calculation of H determines the cut map 0 for DW.

It follows easily that the procedures converge to a solution of the dual problem
(6).

For the separator of Algorithms II and llI use the one induced by the cut map
that is, for each (2, u) e X G let

6(2, u)= e(f(t*)- 2g(t*)- u)

for some t* e (2, u), where 0 < e < is fixed (here a small e seems best). Specifica-
tions of Algorithms I, II and Ill are precisely analogous to the KCG method except
for the different cut map (p and separator 6. Algorithm I is the original DW method.

Although Algorithms I, II and III solve the dual problems, these procedures
simultaneously solve the primal problem (5) as observed in [3 or more directly
in [9].
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Remark. This paper has developed cutting plane methods from the underlying
principle of separators. However, it is evident that this principle is applicable not
just to cutting plane methods but to nonlinear programming in general.
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A NOTE ON COMPLETE CONTROLLABILITY*

INGE TROCH-

Abstract. For linear autonomous multivariable control systems the conditions are studied under
which the system is always--that is, for every control matrix of appropriate rank--completely
controllable, which means that for every initial state one can construct a control which steers the system
to any given final state in finite time. The resultant necessary and sufficient condition says that the
number of independent controls either must equal the system’s dimension or must be smaller by one.

In the latter case no eigenvalue of the system matrix may be real. These results are valid for continuous
systems as well as for sampled-data systems and are derived by means of well-known criteria for

complete controllability and some theorems of matrix theory. Analogous results which are valid for the
question of complete observability are formulated too. As a special case, previous results of Hsin Chu
are covered.

1. Introduction. In a previous work [1] Hsin Chu has shown that linear
continuous multivariable control systems, which can be steered by a single control,
are always completely controllable if and only if the dimension of the control
system equals two and the eigenvalues of the system matrix are not real. In this
work, for control systems of dimension n with m independent controls, conditions
will be studied which guarantee that the control system is always completely
controllable. By the principle ofduality similar theorems for complete observability
can be formulated. For the concepts mentioned above and terminology the reader
is referred to 5] or 7].

2. Notation and formulation of the problem. In the following, linear multi-
variable control systems will be studied, which can be described by

(1) it= Ax + Bu, y= Cx + Du,

where x denotes the n-dimensional state vector (x R"), u R the control, and
y R the output vector A, B, C, D are constant matrices of appropriate dimension.
Moreover, 2 denotes an eigenvalue of the matrix A, that is, a solution of the
equation (I diag (1,1, .-., 1), unity matrix)

(2) det (A 21)= 0;

(.,.) denotes the scalar product of two vectors; Ar denotes the transpose of the
matrix A; and aik denotes the elements of the matrix A. As has been said, the
system has m independent controls, which means that the matrix B is of rank m.
Without loss of generality we may restrict ourselves to matrices B with m linearly
independent column vectors b l, b2, bin. There is now the problem of deriving
conditions on A and m so that for every matrix B with

(3) rank B m,

the system (1) is completely controllable in the sense introduced by Kalman [5.
We note that, speaking intuitively, the system (1) is called completely controllable
if, knowing the matrices A and B and the initial state, one can construct a control u
which will bring the state to the zero state in finite time.

* Received by the editors November 3, 1970, and in revised form March 15, 1971.

t Institut ffir Mathematik der Technischen Hochschule in Wien, Vienna, Austria.
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3. The condition on A. As is well known 7] a necessary and sufficient condition
for complete controllability of (1) is

(4) rank Q := rank (B, AB,..., A,’-1B)= n.

As the formulated problem is quite trivial for m n, this case will be omitted at
first.

Assume now, that A has at least one real eigenvalue 21. Then there exists a
matrix T over the real field, so that

A (1) TAT-

has only one nonzero element in its last line"

al) 0 k= 2 n-nk

(5) a’.) 2,.

Now let B be chosen in such a way that for the elements of the corresponding
matrix B(1) TB the equations

b) 0 fork= 2 mnk

hold Then the last line of Q (built with A 1) and B(1)) has no nonzero element, and
therefore Q cannot be of rank n. We have the first necessary condition.

FIRST NECESSARY CONDITION. The system (1) can be completely controllable
for every matrix B of rank m < n only if no eigenvalue of the matrix A is real.

4. The condition on the rank B. Note first that there exists a regular matrix
T1 over the real field such that A is similar to a generalized diagonal matrix

A(2) TIAT- diag (P1, Pg),

where Pj, j 1, 2,... k, corresponds to the jth elementary divisor (over the real
field !) of A. If #j _+ ivj(v 0 because of{} 3) denotes the corresponding eigenvalues,
then Pj is of the form

Dj I 0 0

(6)
0 Dj I

0 Dj
with

For the proof consult [2, p. 1061.

j 12j

];j ]-/j
j-- 1,...,k.

Assume now that m =< n 2, and take a matrix B of rank m with (/(2) T1B)
h(2! 0 forj 2 m.(7) b{,2)- 1,j vn,j

It then follows that the last two lines of the matrix A2)B2)--and also of
A(Z)ZB(2), A(2)n- 1B{Z)--have no nonzero elements, and therefore the rank of Q
(built with A2) and B2)) is less than or equal to n 2. This gives the second neces-
sary condition.
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SECOND NECESSARY CONDITION. The system (1) can be completely controllable
jbr every matrix B of rank m only if m >= n 1.

5. Necessary and sufficient condition. It shall now be shown that the two
necessary conditions together are sufficient too, that is, the validity of the following
theorem is shown.

THEOREM 1. For every matrix B of rank m system (1) is completely controllable
if and only if () or (fi) holds"

(z) m n;
(fi) m n 1, and no eigenvalue of A is real.
Proof. Necessity follows from 3 and 4.
The proof of sufficiency is still left" Condition (4) is trivially fulfilled if ()

holds. Now let condition (fi) hold and assume that there exists a matrix B of
rank n- such that

(8) rank Q n 1.

Note first that there exists a vector c e R", which is orthogonal to every vector bj
of B"

(9) (c, bj)- 0 forj= 1,2,...,n- 1,

and which is unique except for multiplication by a scalar. From (8) it follows that
every vector Abj, j 1,2, ..., n- 1, is linearly dependent on the vectors
b l, ..., b,_ 1. But from this, (9) and the properties of the scalar product, we have
also

(10) (c, Abj)=O for everyj= 1,2,...,n- 1.

Now let S,_ be the (n 1)-dimensional subspace of R" spanned by the vectors
b l, ..., b,_ 1. Then R" can be written as the direct sum (see e.g. [4])

R"= S,_ @ C.

Conditions (9) and (10) can be written as

(9’) Brc 0

and

(10’) (AB)Tc O,

and the last equation is equivalent to

(1 l) (BVA’)c BV(AVc) O.

From (9’), (1 l) and the uniqueness of c (in the defined sense) it follows that

Arc= 2c for some2eR,

which means that A possesses c as a left eigenvector belonging to the real eigenvalue
2, in contradiction to assumption (fi). This completes the proof.

6. The dual statement. We shall now make use of the second equation in (1)
and state a theorem--dual to Theorem 1--which gives necessary and sufficient
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conditions for the system (1) to be completely observable for every matrix C with
appropriate rank. We just remind the reader that complete observability means
that the knowledge of (1) and the output y(t) over a finite interval is sufficient to
determine uniquely the initial state of the system for every initial state. The precise
definition can again be found for example in [7]. By the principle of duality we
have the following theorem.

THEOREM 2. System (1) is completely observable jbr every matrix C of rank s

if and only if (7) or (6) holds:
(7) s n;
(6) s n 1, and no eigenvalue ofA is real.

7. Sampled-data systems. As is well known, for the discrete sampled-data
system

(12)
x((k + 1)T)= Ax(kT) + Bu(kT),

y(kT) Cx(kT) + Du(kT), k= 0,1,2,..-

with regular matrix A, equation (4) is a necessary and sufficient condition for
complete controllability too. This means that Theorems 1 and 2 remain valid and
unchanged for the multivariable control system described by (12).
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ABSTRACT MODELS FOR THE SYNTHESIS
OF OPTIMIZATION ALGORITHMS*

GERARD G. L. MEYER AND E. POLAK]"

Abstract. In this paper, we present a systematic approach to the problem of synthesis of optimiza-
tion algorithms. First, we develop abstract models for algorithms. These models guide the inventive
process toward "conceptual" algorithms, namely, algorithms which may consist of operations that are
inadmissible in a practical method (for example, a conceptual algorithm may require us to find the limit
of an infinite sequence at each iteration). Once the abstract models are established, we present a set of
methods for converting "conceptual" algorithms falling into the class defined by the abstract models,
into "implementable" iterative procedures.

Introduction. The convergence of optimization algorithms has been studied
extensively in recent years (see [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]).
The approach generally adopted in these studies consisted of defining a class of
algorithms and then giving convergence theorems which applied to every algorithm
in this class. This approach has resulted in the development of general procedures
which have considerably simplified the task of establishing whether an algorithm
is convergent. However, the emphasis so far has been on analysis. Very few of the
existing results provide guidelines for the synthesis of algorithms.

In this paper we present a systematic approach to the problem of synthesis of
optimization algorithms. The development of an algorithm usually evolves
through three phases. The first is a heuristic, or invention phase in which intuition
plays an extremely important part. In the second phase one transforms one’s
intuitive ideas into a "conceptual" algorithm, i.e., an algorithm which may consist
of operations that are inadmissible in a practi6al method. (For example, a con-
ceptual algorithm may require us to find the limit of an infinite sequence at each
iteration.) The last phase consists of converting the "conceptual" algorithm into
an "implementable" algorithm. Our approach to the problem of synthesis consists
of two parts. First we develop abstract models for algorithms. These models guide
the inventive process towards "conceptual" algorithms which will later be easily
made implementable. Once the abstract models are established, we present a set
of methods for converting "conceptual" algorithms, falling into the class defined
by the abstract models, into "implementable" iterative procedures.

One of the most frequently occurring difficulties in the implementation of a
conceptual algorithm is the requirement that an implicit relation be solved at each
iteration, e.g., minimize a function along a line, maximize a linear function in a
convex set, etc. Generally, we only have methods for constructing a sequence
whose limit point satisfies such an implicit relation. Now it is well known that no
limit point of an infinite sequence can be determined on a digital computer in a
finite time. Consequently, the task most frequently encountered in the design of a
transition from a "conceptual" algorithm to an "implementable" one is that of
finding methods for avoiding the need to construct limit points.

* Received by the editors January 19, 1970, and in final revised form February 12, 1971.
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In this paper, we propose two methods for obviating the need for constructing
infinite sequences in subprocedures. The first is a truncation procedure and is
presented in 2, the second is an e-approximation procedure which is presented in
4.

The scope, to which a paper must be held, does not permit us to copiously
illustrate the applicability of the ideas presented. It is our hope, however, that the
two examples given in 3 will convince the reader of the great usefulness of the
approach described.

1. Abstract models for a class of iterative procedures. Throughout this paper,
we shall assume that we are given a closed and bounded subset T of R" in which we
wish to find points with a specific property r. We shall call points in T With the
property t desirable.

The simplest algorithms for finding desirable points in T are composed of a
map (. from Tinto R and of a map A(. from T into all the subsets of T, having
the following form.

ALGORITHM 1.
Step O. Compute a point z0 in T and set 0.
Step 1. Compute a point zi+ in A(zi).
Step 2. If (zi/ 1) < (zi), set + and go to Step otherwise stop.
DEFINITION 1. We shall say that an iterative procedure of the form of

Algorithm is convergent if any sequence of points {zi}, generated by it, satisfies
one of the following conditions"

(i) If the sequence {zi} is finite, i.e., {zi} {Zo,Zl,..., Zk}, then Zk-1 is
desirable.

(ii) If the sequence {zi} is infinite, then any of its cluster points is desirable.
It is quite easy to show that Algorithm is convergent under the following

assumption (see [11]).
HYPOTHESIS [Zangwill].

(i) z in T is desirable if there exists at least one point a in A(z) such that
(a)- (z) 0 "1,

(ii) (. is continuous on T;
(iii) A(. is upper semicontinuous on T. z

Hypothesis is not the only assumption which ensures that Algorithm is
convergent. We now state another assumption which ensures that Algorithm
is convergent (see [9]).

HYPOTHESIS 2 [Polak].
(i) z in T is desirable if there exists at least one point a in A(z) such that

(a)- (z) >__ 0.
(ii) (. is bounded from below on T.
(iii) If z in T satisfies (a)- (z) < 0 for all a in A(z), then there exist an

e > 0 and a 6 > 0 such that (a’) (z’) =< -6 < 0 for all z’ in T such that
[[z’ z[[ _<_ , for all a’ in A(z’).

Note" Part (i) of Hypothesis simply states that the set of points z in T, for which there exists at
least one point a in A(z) satisfying (a) (z) > 0, is a subset of the set of desirable points.

Note" Let A(. be a map from T into all the subsets of T. If for any sequence {y} converging to

y* and for any sequence {ai} converging to a*, with a in A(y), a* belongs to A(y*), then we say that
the map A(. is upper semicontinuous on T.
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Remark. It can be shown that Hypothesis 2 is weaker than Hypothesis
(see [1 ]).

In this paper we differentiate between explicit and implicit algorithms. This
differentiation is largely heuristic but is extremely important in the construction
of computationally efficient algorithms.

By an explicit algorithm we shall mean an algorithm ofthe form ofAlgorithm
in which the computation of a point y in A(z) for z in T can be carried out in a
reasonably straightforward manner.

Explicit algorithms do not lead to computational difficulties and therefore
we shall say no more about them. Implicit algorithms on the other hand cannot be
readily implemented on a digital computer, as we shall shortly show, and must
therefore be regarded as "conceptual" rather than as "practical" algorithms.
The following sections of this paper will be devoted to developing methods for
modifying convergent implicit algorithms in such a way as to produce convergent
algorithms in explicit form.

We shall consider two abstract models of implicit algorithms. The first one,
which is defined below, uses a map A(. such that to compute a point z in A(z),
we must solve an implicit equation. To obtain some motivation for the specific
decomposition of A(.) in Definition 2, below, the reader should digress for a
moment and examine Problem 1, the steepest descent Algorithm 8 and Definition
5, in 3.1.

DEFINITION 2. Let U(. be a map from T into all the subsets of T and let
(. and 7(" be maps from T into R1. Then, for every z in T, we define the set
A(z) as consisting of all y in U(z) such that 7(Y) (z).

The following assumption ensures that the set A(z) is not empty.
HVlOTI-IESIS 3. Given any point z in T, there exists a point y in U(z) such that

(z) (y).
In this case, Algorithm takes on the following expanded form.
AIGORITHM 2.
Step O. Compute a point z0 in T and set 0.
Step 1. Compute a point zi+ in U(zi), satisfying 7(zi+ 1) (zi).
Step 2. If (zi+ 1) < (zi), set + and go to Step otherwise stop.
HYPOTHESIS 4.

(i) A point z in T is desirable if there exists at least one point y in U(z) such
that (z) 7(Y) and (y) (z) >= 0.

(ii) The maps (. ), 7(" and (-) are continuous on T.
(iii) The map U(. is upper semicontinuous on T.
The proof of the following proposition is easy and has been omitted.
PRO’OSITIOrq 1. /f the maps z(.), 7(’), (’), and U(. satisfy Hypotheses

3 and 4, then the map A(. given by Definition 2 is upper semicontinuous on T and
Algorithm 2 is convergent.

We now present the second specific form of the map A(. that we wish to
consider. This form is characterized by the fact that, to find points in A(z), we
must compute intermediate points. To obtain some motivation for the specific
decomposition of the map A(. in Definition 3, below, the reader should digress
for a moment and examine Problem 2, the Frank and Wolfe algorithm (Algorithm
11) and Definition 7, in 3.2.
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DEFINITION 3. Let U be a closed and bounded subset of R", let/3(.,. be a

map from T U into R, let b(.,.) be a map from T U into T and let (.)
be a map from T into R. Then for every z in T, we define the set A(z) as follows"

A(z) {yly b(z, w), w U such that/(z, w) e(z)}.

The following assumption ensures that for every z in T the set A(z) is non-
empty.

HYPOTHESIS 5. Given any z in T, there exists a point w in U such that/](z, w)
(z).
With the map A(. defined as above, Algorithm expands as follows.
AIORITHrvI 3.
Step O. Compute a point z0 in T and set 0.
Step 1. Compute a point wi in U, satisfying (zi) [3(zi, wi).
Step 2. Set Zi+l b(zi, wi).
Step 3. If (z+ 1) < (zg), set + and go to Step otherwise stop.
HYPOTHESIS 6.
(i) A point z in Tis desirable if there exists at least one point w in U satisfying

(z) :/(z, w) such that (b(z, w)) (z) >_ O.
(ii) The maps (. and (. are continuous on T.
(iii) The maps/(.,. and b(.,. are jointly continuous on T U.
PRO’OSITION 2. /f the maps (. ), fl(.,. ), b(.,. and (. satisfy Hypotheses

5 and 6, then the map A(. given by Definition 3 is upper semicontinuous on T and
Algorithm 3 is convergent.

The transformation of an implicit algorithm into an explicit one usually
depends upon the specific conceptual method one has in mind for finding points
in the set A(z). We shall now introduce two infinite subprocedures for calculating
points in A(z), and in the next section we shall show how these subprocedures can
be truncated to produce convergent explicit algorithms.

We begin by considering a subprocedure for computing points in the set
A(z) when the map A(-) is defined as in Definition 2 (we suppose, of course, that
we are unaware of a more straightforward method for calculating points in A(z)).
Let us denote by N the set of positive integers and suppose that we have a mapping
m(., .,. from T T N into T which satisfies the following assumption.

HYPOTHESIS 7.
(i) m(z, y, j) belongs to U(z) for all z in T, y in U(z) and j in N.

(ii) The sequence {7(m(z, y,j))}: 0 converges to (z) for all z in T and y in
U(Z) .3

Clearly, for any z in T and y in U(z), every cluster point of the sequence
{m(z, Y,J)}j-o is in A(z) given by Definition 2. When the map m(.,.,. is intro-
duced, Algorithm 2 assumes the following specific form.

ALGORITHM 4.
Step O. Compute a point Zo in T and set 0.
Step 1. Compute a point yg in U(zi) and let Z/l be any cluster point of the

sequence {m(zi, Yi,J)};=o.

Note that part (ii) of Hypothesis 7 does not imply that the sequence m(z, y,j) converges.
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Step 2. If (Zg+ 1) < (Zi), set + and go to Step otherwise stop.
In view of Proposition 1, the following proposition is obvious.
PROPOSITION 3. /f the maps (. ), 3:(" ), (" ), U(. satisfy Hypotheses 3 and 4,

and the map m( .,. satisfies Hypothesis 7, then Algorithm 4 is convergent.
Remark. Obviously, Algorithm 4 cannot be implemented on a digital computer

since it would inevitably jam up in Step 1.
We now consider a subprocedure for computing points in A(z) when the map

A(. is defined as in Definition 3. Thus, suppose that we have a map m(., .,.
from T x U N into T which satisfies the following assumption.

HYPOTHESIS 8.
(i) re(z, y, j) belongs to U for all z in T, y in U and j in N.

(ii) The sequence {(z,m(z,y,j))}j__o converges to (z) for all z in T and
yin U.

When such a map is introduced, Algorithm 3 assumes the following specific
form.

ALGORITHM 5.
Step O. Compute a point Zo in T and set 0.
Step 1. Compute a point yg in U and let wg be any cluster point of the sequence

{m(zi, Yi,J))j%o.
Step 2. Set zi+ b(zi, wi).
Step 3. If (zi/ 1) < (zi), set + and go to Step otherwise stop.
In view of Proposition 2, the following proposition is obvious.
PROPOSITION 4. /f the maps (. ), fl(.,. ), (. and b(.,. satisfy Hypotheses

5 and 6 and the map m(., .,. satisfies Hypothesis 8, then Algorithm 5 is convergent.
Again it is clear that if implemented on a digital computer, Algorithm 5

would inevitably jam up in Step 1.

2. Truncation methods. As we have just seen, Algorithms 4 and 5 will inev-
itably jam up in Step since it is impossible to compute cluster points of infinite
sequences in a finite time by means of a digital computer. Even if one relies on the
finite word length of a digital computer to stop calculations after a finite time, this
finite time will usually be prohibitively long. Consequently, some sort oftruncation
procedure must be used in converting these algorithms into a more realistic form.

We begin by defining a class of maps from N into N (the set of all positive
integers) which will be called truncation functions.

DEFINITION 4. We shall say that a map (. ), from N into N, is a truncation
jinction if #(i) _>_ for all in N, and given any m in N, there exists a k in N such
that e(i) __> m for all __> k, in N.

We first use truncation functions in Algorithm 4 which then takes on the
following form.

ALGORITHM 6. Let #(. be a given truncation function.
Step O. Compute a point Zo in T and set 0.
Step 1. Compute a point Yi in U(zi) and set z + m(zi, Yi, re(i))
Step 2. If (zi+ 1) < (zi), set + and go to Step otherwise stop.
Remark. In Step of Algorithm 6, it is required that a point yg be found in

U(zi). We suppose that this task is easy. In fact, in almost all applications, z belongs
to U(z), and a natural choice for yg in U(zg) consists in letting Yi zi" In order to
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ensure that cluster points of infinite sequences generated by Algorithm 6 are
desirable the following assumption must be made.

HYPOTHESIS 9.
(i) The sequence {2(m(z, y, J))}a%o is monotonically decreasing for all z in

T and y in U(z).
(ii) Given any z in T, y in U(z), and 6 > 0, there exists an e > 0 and a k in N,

depending on z, y and 6, such that 7(m(z’, y’,j))- y(m(z, y, j)) <= 6 for all z’ in T
such that z’ z[[ _< e, for all y’ in U(z’) such that Ily’ yll _-< e and for allj >_ k.

(iii) If (m(z, y, j)) >_ (z) for some y in U(z) and for some j > 1, then z is
desirable.

PROPOSITIOI 5. If the maps (. ), 7(" ), (" ), U(. satisfy Hypotheses 3 and 4,
the map m(., .,. satisfies Hypotheses 7 and 9 and the map (. is a truncation

junction, then Algorithm 6 is convergent.

Proof. Because of part (iii) of Hypothesis 9, the case of finite sequences is
trivial.

Now consider an infinite sequence {zi} generated by Algorithm 6, and let z*
be a cluster point of this sequence, i.e., let K2 be a subset of the integers such that
the subsequence {Zi}Kz converges to z*. Consider the sequences {Zi+l}K2 and
{Yi}u2 in T. The compactness of T implies that there exists K1, a subset of
such that the subsequence {zi+ x}K1 converges to z** in T, and the subsequence
{Yi}Kl converges to y* in T. The property of convergent sequences implies that
the subsequence {Zi}Kx also converges to z*.

In order to show that z* is desirable it is enough to establish the three following
facts

(i) z** belongs to U(z*);
(ii) (z*) y(z**);
(iii) (z**)- (z*)>_ 0.

By construction, zi+l m(zi, yi,{(i)) and y is in U(zi). It now follows from (i)
of Hypothesis 7 that zi+l is in U(zi). Next, since the map U(. is upper semi-
continuous, we must have z** and y* in U(z*).

Let 6 > 0; then part (ii) of Hypothesis 7 implies that there exists k4 in N such
that 7(m(z*, y*, j)) 6/2 <= z(z*) for all j >= k4. From Hypothesis 9 it follows that
there exist an e > 0 and k3 such that 7(m(z’, y’, j)) 7(re(z*, y*, j)) =< /2 for all
z’ in T such that [Iz’ z*ll =< e, for all y’ in U(z’) such that IlY’ Y*II =< e and for
all j > k3. Let h2 max (k3, k); then there exists kl in N such that y(m(zi, y, k2)

6 =< (z*) for all >__ k l, in K a. Since the map (. is a truncation function,
there exists a ko in N such that #(i) > ]2 for all >__ ko, in K1. It follows from part
(i) of Hypothesis 9 that 7(m(zg, yi,#(i))) fi < z(z*) for all => k, in K, where
k max (ko, kx). But ,(. is continuous and therefore 7(z**) 6 =< (z*). Since
this is true for any 3 > 0, it follows that 7(z**) _-< (z*).

Now, given any zg and y in U(zg), part (i) of Hypothesis 9 implies that
7(m(zi,yi,j)) >-_ (zi) for all j in N, i.e., 7(m(zg,yg,(i)))>-(zi). It follows that
7(z**) >_- (z*), and therefore, 7(z**) (z*).

Now suppose that (z**)- (z*)< 0. The continuity of (.)implies that
there exist a 6 > 0 and an e > 0 such that

(z")- (z’) __< -6 < 0
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for all z" in T such that [Iz" z**ll e, for all z’ in T such that IIz’ z*ll -<_ e.
It follows that there exists a k such that (zi/ 1) (zi) -< -6 for all k, in K1.
The sequence {(zi)} is monotonically decreasing, the set T is bounded, and
therefore {(zi)} converges to *, which contradicts the fact that (Zi+l)- (zi)
=< -6 for all >= k,/in K1. It follows that (z**) (z*) >_ 0 and z* is desirable.

We now use truncation functions in Algorithm 5 to construct the following
form.

ALGOgITHM 7. Let ((.) be a given truncation function.
Step O. Compute a point Zo in T and set 0.
Step 1. Compute a point Yi in U and set wi m(zi, Yi, ((i)).
Step 2. Set Zi+l b(zi, wi).
Step 3. If (zi/ 1) < (zi), set + and go to Step otherwise stop.
Remark. In Step of Algorithm 7, it is required that a point Yi be found in the

set U. We suppose that this task is easy. In fact, in almost all applications, z belongs
to U, and a natural choice for Yi consists in letting Yi zi.

In order to ensure that cluster points of infinite sequences generated by
Algorithm 7 are desirable, the following assumption must be made.

HYPOTHESIS 10.
(i) The sequence {fl(z,m(z,y,j))}__o is monotonically decreasing for all z

in T and y in U.
(ii) Given any z in T, y in U and > 0, there exist an e > 0 and a k in N,

possibly depending on z, y, and 6, such that

fl(z’, m(z’, y’, j)) fl(z, m(z, y, j)) <= (

for allz’in Tsuchthat z’-z __<e, forally’in Usuchthat y’-y __<eand
for all j __> k.

(iii) If (b(z, m(z, y, j))) >= (z) for some y in U and for some j >_ 1, then z is
desirable.

The following proposition can be proved easily, following the same type of
argument as in the proof of Proposition 5.

PROPOSITION 6. If the maps (. ), fl(.,. ), (. ), b(.,. satisfy Hypotheses 5
and 6, the map m(., .,. satisfies Hypotheses 8 and 10 and the map e( is a truncation

function, then Algorithm 7 is convergent.

3. Applications. In order to clarify the concepts and methods exposed in the
preceding sections we are now going to examine two specific problems and the
algorithms usually used to solve them.

3.1. Unconstrained minimization problems. In this subsection we shall
examine the following classical problem.

PROBLEM 1. Find a . in R" such that

f() <= f(z) for all z in R",

where f(. ), a convex map from R" into R 1, is continuously differentiable, with the
property that the set {zlf(z) N e} is bounded for every e in R1.

Suppose that we have a point z0 in R". We define T as

T {y R"lf(y) <= f(zo)}.
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In this case, a point in T is desirable if and only if it minimizes f(z) over T,
i.e., j’() =< f(z) for all z in T. Since f(. is convex and continuously differentiable,
we recognize to be desirable if and only if Vf() O.

We propose to use the steepest descent method for solving Problem 1, i.e.,
the following algorithm.

ALGORITHM 8.
Step O. Let Zo be a point in R" and set 0.
Step 1. Let zi+ be any point satisfying:

(i) zi + belongs to U(zi)
(ii)

where

f(zi+ 1) min {f(Y)IY U(zi)},

O(zi) {y e R"Iy zi + vV(z,), v e [- 1,03}.

Step 2. If f(zi+ 1) < f(z), set + 1 and go to Step 1 otherwise stop.
Algorithm 8 can be seen to be of the form of Algorithm 2, with the maps

(" ), 7(" ), (" ), U(. in Algorithm 2 defined as follows.
DEFINITION 5. Let the maps (.), 7(’), (’) from T into R and the map

U(. from T into all the subsets of T be defined as:
(i) U(z) {y e TIy z + vVf(z), v e [- 1, 0]}
(ii) (z) min {f(Y)IY e U(z)}
(iii) 7(z) f(z);
(iv) (z)= f(z).
Since by inspection the maps (. ), 7(" ), (" and U(. satisfy Hypotheses 3

and 4, Algorithm 8 is convergent when applied to Problem 1.
At this point, we see the first advantage of using abstract models of algorithms

as a tool for proving convergence of algorithms. On the one hand they provide
us with a pattern to follow, while on the other, we find that the proof of convergence
of a specific algorithm becomes decomposed into fairly simple and independent
parts.

In Algorithm 8, the computation of z+ from z is not explicit. We therefore
proceed as indicated in 2 in order to produce truncations in the calculation of
zi + from zi.

Making use of Proposition 3, we now define a subalgorithm which we shall
use in order to modify Algorithm 8.

For every z in R", y in R" and j a positive integer, consider the following
subprocedure.

ALGORITHM 9. Let (0, 1) be given.
Step O. Setyo=y,i=0andv=0.
Step 1. If (Vf(z), Vf(yi)) 0, go to Step 6; otherwise set

v sgn (Vf(z), Vf(yi))

and go to Step 2.
Step 2. Set yi + vVf(z).
Step 3. Compute 0 defined by 0 f(y) f(yg) v(Vf(z), Vf(yi)).
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Step 4. If 0 =< 0, set Yi+ 97 and go to Step 5; otherwise set v v/2 and go
to Step 2.

Step 5. If < j, set + and go to Step otherwise go to Step 6.
Step 6. Set sat v,4 set yj Yo + Vf(z) and stop.
Remark. We choose this subalgorithm because it has a nontrivial amount of

structure rather than because it is the best computationally. The structure of this
subalgorithm should serve the purpose of illustrating the complexity that can be
found in a subalgorithm for computing the values of the map m(., .,. ).

DEFINITION 6. Let m(.,.,.) be the map from T x T x N into T defined
by m(z, y, j) yj, where yj is given by Algorithm 9.

It can be verified (see Appendix), that the map m(., .,. ), given by Definition
6, satisfies Hypotheses 7 and 9. Using the map m(., .,. and a truncation function
(-), we obtain from Algorithm 8 the following "explicit" algorithm.

ALGORITHM 10. Let e(. be a given truncation function.
Step O. Compute a Zo in R" and set 0.
Step 1. Set zi + m(zi, zi, ((i)).
Step 2. If f(zi+ 1) < f(zi), set + and go to Step 1; otherwise stop.
In view of Proposition 5, the following is obvious.
PROPOSITION 7. Algorithm 10 is convergent for Problem 1.

3.2. Constrained minimization problem. In this subsection we shall examine
the following classical problem.

PROBLEM 2. Given T a closed, bounded convex subset of R", and t, a point in
R" but not in T, find in T such that

II < IIz for all z in T.

We shall suppose that T is of the form

T {zR"lfi(z)<_ O, i= 1,2,..., m},
where the maps fi(. from R" into R are continuously differentiable.

Suppose that we try to solve Problem 2 by means of the Frank-Wolfe
algorithm.

ALGORITHM 11 (Frank-Wolfe).
Step O. Compute a point zo in T and set 0.
Step 1. Compute a point We in T satisfying (z t, wi) <_ (z t, w) for all

win T.
Step 2. Let Zi+ be the point in EZi, WiJ satisfying Ilzi/ -tll =< I[z- tll for

all z in [zi, wi].5
Step 3. If [Iz/ -tll < IIz- ill, set i= + and go to Step 1; otherwise

stop.

4 Note" The function sat (.)" R R is defined by

iflvl < 1,

sat(v)= if v> 1,

-1 ifv < -1.

Note" Given two points xl and x2 in R", the set {ye R"ly vx + (1 v)x2,0 <= v < 1} is
denoted by [x, x2].
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Algorithm 11 can be seen to be of the form of Algorithm 3 by defining the
following maps.

DEFINITION 7. Let the set U T and the maps (. ), (.) from T into R1,
fl(.,. from T U into R1, b(.,. from T U into T, be defined as follows:

(i) (z) min {l (z t, w), w T};
(ii) (z)= IIz- tll;

(iii) fl(z, w) (z t, w)
(iv) b(z, w) is defined by:

(a) b(z, w) belongs to [z, w];
(b) lib(z, w) tll _-< Ily -tll for all y in [z, w].

In order to show that Algorithm 11 is convergent for Problem 2, it suffices
to show that the mappings (. ), (. ), fl(.,. and b(.,. satisfy Hypotheses 5 and 6,
It is easily verified that this is indeed so and we therefore conclude that Algorithm 11
is convergent for Problem 2.

Once again we see the advantage of using an abstract model in proving the
convergence of a specific algorithm.

In Algorithm 11, both the point wi and the point b(zi, wi) are defined by
implicit relations. However, since the computation of b(zi, wi) from zi and wi is
extremely simple, we shall consider that zi/ b(zi, wi) is an "explicit" function
of zi and wi. Thus we shall consider that the only real difficulty lies in the computa-
tion of wi.

To obtain from Algorithm 11 an "explicit" algorithm of the form of Algorithm
7, we must introduce a map m(., .,. satisfying Hypotheses 8 and 10. For example,
one can use a method of feasible directions to define such a map.

We now state a method of feasible directions in the required truncated form.
For every z in T, y in Tand positive integerj, consider the following algorithm.
ALGORITHM 12. Suppose that S, a compact neighborhood of the origin in

R", and e, a positive scalar, are given. Let fo(.) be the map from R" into R defined
by f(x) (z t, x) for all x in

Step O. Set Yo Y and 0.
Step 1. Set ei e.
Step 2. Compute be, and he, by solving the following:

be, min max (VfJ(yi), h).
hc=S j-Jei

he, is any vector in S such that

b, max (VfJ(yi),
j.Jei

where

Je, {J 6 {1,2, ..., m}lfJ(y3 + ei >= 0} 0 {0}.
Step 3. If qSe, < -ei, set hi he, and go to Step 5; otherwise, compute qSo

defined by

q5o min max (VfJ(yi), h),
hS jJo

where

J0 {J {1,2,..., m}lfi(yi) 0} I,,J {0},
and go to Step 4.
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Step 4. If Oo 0, set Yi+l Yi and go to Step 7; otherwise, set ei ei/2
and go to Step 2.

Step 5. Compute 2i >_- 0 such that

i max {1fJ(yi ’-+- 2hi) 0 for all j 1,2, m}.

Step 6. Set Yi+ Yi nt- 2ihi"
Step 7. If < j, set + and go to Step otherwise stop.
DEFINITION 8. Let m(., .,. be the map from T x T x N into T defined by

re(z, y,j) yj, where yj is given by Algorithm 12.
It can be verified that the map m(.,.,.) given by Definition 8 satisfies

Hypotheses 8 and 10 (see [9]). Using the map m(., .,. and a truncation function
((.) in Algorithm 11, we obtain the following "explicit" method.

ALGORITHM 13. Let ((.) be a given truncation function.
Step O. Compute a point z0 in T, and set 0.
Step 1. Set wi m(zi, zi, ((i)).
Step 2. Let zi+ be the point in [zi, wi] satisfying

Ilzi+- t[I <- Ilz- tl for allzin[zi,

Step 3. If Ilzg+ tll < Ilzg -tll, set + 1, and go to Step otherwise
stop.

In view of Proposition 6, the following is obvious.
PROPOSITION 8. Algorithm 13 is convergent for Problem 2.
The use of the approach defined in this paper may show relations between

different well-known algorithms. For example, if a function (. from N into N
defined by #(i) 1 for all is used in Algorithm 13 instead of a truncation function,
then Algorithm 13 is a method of feasible directions. On the other hand, if a
"function" (. from N into N "defined" by e(i) v for all/is used in Algorithm
13 instead of a truncation function, then Algorithm 13 is the Frank-Wolfe
algorithm. The use of a truncation function in Algorithm 13 thus produces
algorithms which are "between" a method of feasible directions and the Frank-
Wolfe algorithm.

4. e-approximations for a class of iterative procedures. The approach to the
synthesis ofalgorithms described in and 2 is by no means the only one possible.
In this section we shall show that an alternative approach exists and gives extremely
interesting results.

Throughout this section we shall consider maps A(.) and (.) satisfying
Hypothesis in and we shall suppose that it is impossible to use them in
iterative procedures of the form of Algorithm due to the fact that the computation
of points zi + in A(zi) is impossible (or that we are not aware of ways of doing it).

The main idea developed in this section consists in using a map B(.,. from
R+ T into all the subsets of T such that the set B(0, z) is identical to the set
A(z) for all z.

We shall suppose that the task of finding a y in B(e, z) for > 0 and z in T is
relatively easy.

Consider the following algorithm.
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ALGORITHM 14. Let i > 0 be given.
Step O. Compute Zo in T and set 0.
Step 1. Set e g.
Step 2. Find a point y in B(e, zi).
Step 3. If (y) (zi) <= -e, set ei e, zi + Y, + and go to Step

otherwise set e e/2 and go to Step 2.
We remark that if we let g 0, then Algorithm 14 is almost of the form of

Algorithm 1. The following assumption on B(.,. ensures that cluster points of
infinite sequences generated by Algorithm 14 are desirable.

HYPOTHESIS 11.
(i) B(0, z) A(z) for all z in T.

(ii) B(.,. is jointly upper semicontinuous on T; i.e., for any sequence {ei}
converging to e*, for any sequence {zi} converging to z*, for any sequence {Yi}
converging to y*, with Yi in B(ei, zi), y* belongs to fl(e*, z*).

THEOREM 1. /f the maps A(. and (. satisfy parts (i) and (ii) of Hypothesis 1,
and the map B(.,. satisfies Hypothesis 11, then every cluster point of an infinite
sequence generated by Algorithm 14 is desirable.

Proof Let {zi} be an infinite sequence generated by Algorithm 14, and let z*
be a cluster point of this sequence. Thus, for some subset K1 of the integers, the
subsequence {zi}K, converges to z*. Consider the sequence {zi+ 1}i+1/, in T and
the sequence {ei}il, in [0, g]. The boundedness of T and of the interval [0, ]
ensures that there exists K, an infinite subset of K such that the subsequences
{zi+ 1}i+ 1/ and {ei}l converge to points z** and e* in T and [0, ], respectively.
The properties of convergent sequences ensure that the subsequence {zi}i also
converges to z.

Now suppose that e* > 0; then the form of Algorithm 14 implies that there
exists an integer k such that (z+ 1) (zi) =< e*/2 for all __> k, in K, and this
contradicts part (ii) of Hypotheses 1. Consequently e* 0.

The map B(.,. is jointly upper semicontinuous on T, and zi+ belongs to
B(ei, zi) for all i. It follows that z** is in B(e*, z*), i.e., in A(z*). Consequently z* is
desirable.

HYPOTHESIS 12.
(i) B(0, z) A(z) for all z in T.

(ii) If (a)- (z) < 0 for all a in A(z), then there exist e > 0, 6 > 0 and

7 > 0, possibly depending on z, such that

(b’)- (z’) __< -7 < 0

for all z’ in T such that z’-z <eandforallb’inB(v,z’),0__< v<6.
The proof of the following theorem can be carried out by using the same types

of arguments as were used to prove Theorem 1, and it is therefore omitted.
THEOREM 2. If the maps A( and ( satisfy parts (i) and (ii) of Hypothesis 2,

and the map B(.,. satisfies Hypothesis 12, then every cluster point of an infinite
sequence generated by Algorithm 14 is desirable.

Remark. It can be shown that ifmaps A(. ), (. and B(.,. satisfy Hypotheses
1 and 11, they satisfy Hypotheses 2 and 12 (see [1]).

For examples of how the z-procedure is used in the synthesis of algorithms,
see E. Polak [141.
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5. Conclusion. To conclude, we would like to highlight the two most im-
portant aspects of the theory we have presented in this paper. The first is that
by using models one can separate out the essential properties of an algorithm
from the nonessential ones. Thus, for example, in a gradient method one need not
specify in advance exactly which procedure one will use to search along the direction
of steepest descent, one only has to specify that the search procedure will have
certain properties. The second point that we wish to emphasize is that given a
"conceptual" algorithm in which one has to perform in sequence several operations
each of which requires an infinite number of iterations, one can obtain an "imple-
mentable" algorithm by "shuttling" between these infinite operations, combin-
ing them into a single infinite operation. Thus, our method of obtaining an
"implementable" algorithm from a plurally infinitely iterative "conceptual"
algorithm consists in "parallelizing" the infinite operations of the conceptual
algorithm.

Obviously, this paper does not exhaust the study of models for computational
methods or of the possibilities of constructing "implementable" algorithms from
"conceptual" ones. We hope that this paper will lead to further work, in particular
in the study of algorithms with infinite memory.

Appendix. We shall assume, throughout this Appendix, that the maps
f( ), ( ), 7( ), (’), m(.,.,.) and U(.), and the set T, are as defined in 3.1.
The fact that the map m(., .,. satisfies part (i) of Hypothesis 7 and part (i) of
Hypothesis 9 is an obvious consequence of its definition, and the fact that the
map m(., .,. satisfies part (ii) of Hypothesis 7 and part (ii) of Hypothesis 9 is a
direct consequence of the following theorem.

THEOREM A. Given any z in T and 6 > O, there exist > 0 and k in N, depending
on z and 6, such that f(m(z’, y’,j)) < (z’) + c5, for all z’ in T, satisfying llz’ zll _-< ,
for all y’ in U(z’), for all j > k.

The proof of Theorem A consists of several steps which we shall
state as lemmas. These lemmas being quasi-trivial, their proofs have been
deleted.

LEMMA A.1. Given any z in T, satisfying IlVf(z)ll > 0, and 6 > 0, there exist

> 0 and p > O, depending on z and fi, such that ](Vf(z’), Vf(y’))] >= p > 0, for
all z’ in T such that IIz’ zll _<- , for all y’ in U(z’) such that f(y’) >= a(z’) + .

LMMA A.2. Given any z in T, y in U(z),j in N and p > 0 satisfying [Vf(m(z, y,j)),
Vf(z)[ > p > 0, then there exists v > 0, depending on p only, such that

f(m(z, y, j + 1)) f(m(z, y, j)) <__ v.
LEMMA A.3. Given any z in T, satisfying IlVf(z)ll > 0, and di > 0, there exist

e >0, p >0 and v>0, depending on z and 6, such that f(m(z’,y’,j+ 1))
--f(m(z’, y’, j)) <= -v, for all z’ in T, such that IIz’ zll <_- , for all y’ in U(z’) such
that f(m(z’, y’,j)) _>_ a(z’) + 6.

LZMMA A.4. Given any z in T, satisfying IlVf(z)ll > 0, and 6 > O, there exist

> 0 and k in N, depending on z and 6, such that f(m(z’, y’, j)) a(z’) + 6, for all
z’ in T, such that IIz’- z _-< , for all y’ in U(z’).

LZMMA A.5. Given any z in T, satisfying IlVf(z)ll 0, and 6 > 0, there exists
e > O, depending on 6 only, such that f(m(z’, y’, j)) <_ a(z’) + 6, for all z’ in Tsatisfying
IIz’ zll _-< , for all y’ in U(z’), for all j in N.
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A GENERALIZED LAGRANGE MULTIPLIER RULE
FOR EQUALITY CONSTRAINTS IN NORMED LINEAR SPACES*

D. O. NORRIS’

Abstract. It is shown that a necessary and sufficient condition for a differentiable function to have a

critical point on an affine constraint set is that a Lagrange multiplier rule hold. The rule applies to

problems which are not covered by the standard multiplier theorem. The results are extended to the
determination of necessary conditions for a convex function to have a minimum on a nonaffine
constraint set.

1. Introduction. Let X and Y denote B-spaces and letf:X - R and g: X ---> Y
denote Frech6t differentiable functions. Consider the problem of minimizing f on
the set of points for which g(x) 0. The problem was apparently first treated in this
form by H. H. Goldstine 5] in 1940. He obtained the classical multiplier rule under
the hypothesis that the range of Dg(x0), the derivative of g at Xo, be closed, f and
g have continuous derivatives, and any one of four other conditions be satisfied.
A proof of the Lagrange multiplier rule which requires that the range of Dg(xo) be
closed and thatfand g have continuous derivatives may be found in I9, p. 3801 or
[8, pp. 243-244]. Specifically, we have the following theorem.

THEOIFM 1.1. Let X and Y denote B-spaces. Let f: X R and g:X Y each
have a continuous Frechkt derivative in a neighborhood of Xo. Let f have a local
minimum on the set N(g) {x :g(x) 0} at Xo and suppose that the range ofDg(xo)
is closed. Then there is a nonzero (rl*, y*) R x Y* such that

rl*Df(xo)h + y*Dg(xo)h 0

for all h e X.
If Dg(xo) is surjective, then both r/* and y* may be chosen to be nonzero,

whereas if Dg(xo) is not surjective, then r/* 0* and y* nonzero (for some y*) is
always a possible solution. The latter, however, is often unsatisfactory since a
solution for which both r/* and y* are nonzero may exist. In fact, such will be the
case if Df(xo)e R(Dg(xo)*), the range of the adjoint of Dg(xo).

In this paper the question of relaxing the requirement that the range of Dg(xo)
be closed will be considered. It will be shown that for certain classes of problems,
necessary and sufficient conditions for the existence of a Lagrange multiplier can
be obtained without assuming that the range of Dg(x0) is closed. Before proceeding
with the development of the theory we present an example for which Theorem 1.1
does not apply, yet a nonzero Lagrange multiplier exists.

The problem of minimizing a function subject to constraints (set constraints,
inequality constraints, and equality constraints) has been treated extensively and
the question arises as to how some of these other treatments relate to the work
considered here. Varaiya [13 and Guignard [6 treat the problem: minimize
f:X--,R on A g-l(B), where g:X y AcX and Bc Y If B= {0} and
A X, then their problem reduces to the one considered here. If Varaiya’s weak
constraint qualification is substituted for the requirement that f and g have
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continuous derivatives, then his major result reduces to Theorem 1.1 for the
problem under discussion. However, the weak constraint qualification may be
difficult to verify, and in order to get the multiplier rule in terms of Df(xo) and
Dg(xo) he must assume Dg(xo) has a closed range. Similarly, Guignard’s major
result for the problem treated here requires that Dg(xo) have a closed range.
Russell [12], Pshenichniy 11], Dubovitski and Milyutin [1], and Neustadt [10]
have treated problems where the inequality constraints and equality constraints
are more explicitly apparent. For example, Russell treats the problem ofminimizing
a function f subject to an arbitrary number of inequalities and equality constraints
given by real-valued functions. His definition of "linearly approximable" is a
regularity condition (see Definition 4.3 of this paper) and his multiplier rule is
given in set theoretic terms rather than the differential form given in Theorem 1.1.
For the problem treated in this paper, Russell’s necessary condition for a minimum
is that Df(xo) be a member of the weak* closure of the range of Dg(xo)*. Thus,
unless Df(xo) is actually a member of the range of Dg(xo)*, Russell’s result does
not apply to the question of solving the equation Df(xo) + Dg(xo)*y* 0", and
therefore characterization of x0 may be difficult. Neustadt has developed a very
general theory of extremals which accounts for equality constraints, inequality
constraints, and set constraints. For the problem discussed here (i.e., equality
constraints only, together with differentiability), it is usually possible to recast
Neustadt’s canonical optimization problem into a problem in which the function
g defining the equality constraints has its range in a finite-dimensional space.
In this case, Theorem 1.1 always holds since the range of Dg(x0) is closed, being
a finite-dimensional subspace. The work of Pshenichniy and Dubovitskii and
Milyutin bear a good deal of similarity. Dubovitskii and Milyutin base their
treatment of optimization problems on a result they refer to as Euler’s equation
(Theorem 2.1). For the problem treated in this paper, in which there are no
inequality constraints, their result may be stated as follows"

Let if2o c X denote an open convex cone with vertex at zero and let if2 c X
denote a closed convex cone with vertex at zero. f-] if2o if and only if
there are x ff2o* (the dual cone of if2) and x* * such that x] + x* 0.

For a differentiable f: X R, f20 {h" Df(xo)h < 0}, where Xo is the desired
minimum. If g’X Y is affine or satisfies a regularity condition, {h’Dg(xo)h

0}. For this situation Euler’s equation may be expressed as -Df(xo) + x* 0
for some x* *. For the problems treated by Dubovitskii and Milyutin it is
usually possible to show that the range of Dg(x0)* is closed in which case x* can be
chosen in the range of Dg(xo)* i.e., Theorem 1.1 holds.

Thus, for the papers discussed above and except for i 3 and [63, the multiplier
rules are not given in the form of Theorem 1.1 and the question of characterizing
the range of Dg(x0) does not arise until applications are made.

2. Example. Represent an element x v as x (1, 2,’" "). Define

f:lzR by f(x)= [Ix[[ 2 and let g:/211 such that g(x)=(2-12-2 -2

3-13 3 -2, ). Clearly, fand g have continuous derivatives. Denote the range
and null set of g by R(g) and N(g), respectively. (Henceforth, this notation will be
used for all functions.) We assert the following facts:

(i) x N(g) if and only if x ( 1,1/2, , "), where is arbitrary.
(ii) Df(x) 2x.
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(iii) Dg(x) may be represented by

o o
o

Og(x)
0.1/4

0

(iv) R(Dg(xo)):/: 11 since, for example, there is no h e 12 such that Dg(xo)h
(2- 3/2, 3- 3/2, ...) e 11.

(v) R(Dg(xo)) is not closed and R(Dg(xo))= 11. For, given (r/1,r/2, ...)e 11
define ,

+ (n + 1)q,, h, (0, 2, "’", ,- 1,0, ...). Thus, lim,_. Dg(xo)h,,
(/ 1’ /2’ ")"

(vi) All the hypotheses of Theorem 1.1 are satisfied except that R(Dg(xo)) is
not closed. Hence, the theorem does not apply. However, it is easy to check that
with r/* 1 and y* represented by (- 2, 2, ...) e oo, (r/*, y*) is the desired non-
zero Lagrange multiplier. It is worth noting that had the range of g been chosen
as 12, then since (-2, -2,...) 12 the existence of a continuous linear functional
as a multiplier could not have been asserted. However, the multiplier exists as a
linear functional (not continuous).

3. Problems with attine constraints. We now propose to present results which
make it possible to assert the existence of Lagrange multipliers in cases illustrated
by the example in 2. That is, the problem of minimizing a differentiable function
subject to an affine constraint will be treated.

First, however, a characterization of the range of the adjoint ofa linear operator
will be given. This result is needed in the sequel and is less restrictive than the
well-known result that if R(T) is closed, where T is a linear operator, then R(T*)

{x* "N(T) N(x*)} (e.g., see [2, p. 487]).
THFORFM 3.1. Let X and Y denote normed linear spaces and let T’X--. Y

denote a continuous linear function. For each nonzero b*e X*, where X* is the
topological dual of X, the equation T’y* b* has a solution in Y* if and only if
there is an ho X such that

(i) ho q N(b*),
(ii) Tho T(N(b*)).
Prooj: To show the necessity, assume that T’y* b* has a solution y e Y*.

b* 4: 0", so N(b*) has codimension equal to one and consequently there is an

ho N(b*) such that X span {ho, N(b*)}. Now suppose for every ho q N(b*)
it happens that Tho T(N(b*)). Since X span {h0, N(b*)}, every h e X may be
written as h aho + n for some real a and some n e N(b*). By hypothesis,
b*h y Th 0 for all h e X, so b*aho y’ T(aho + n) 0 for all real a and all
heN(b*). For a 1, it follows that b*ho- yTho yTn for all heN(b*).
Thus, yTn 0 for all n N(b*). Now, note that if Tho e T(N(b*)), then there is a
sequence T(x,)} = T(N(b*)) such that Tx, - Tho. y is continuous so y Tho O.
Therefore, b*ho 0 contrary to the assumption that ho q N(b*).

Conversely, if (i) and (ii) hold, then Tho :/: O, and by the Hahn-Banach
theorem there is a nonzero y e Y* such that Y*oY 0 for all y T(N(b*)) and
ydTho b*ho. Then b*h b*(aho + n) aydTho y(T(aho + n)) yTh for
all h e X, and thus T*yd b*.
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COROLLARY 3.1.1. Let X and Y denote linear spaces and let T’X Y denote
a linear function. For each nonzero b’ X’, where X’ is the algebraic dual of X, the
equation T’y’ b’ has a solution in Y’ if and only !f there is an ho X such that

(i) ho N(b’),
(ii) Tho q T(N(b’)).
Proof. The proof is almost the same as that given in Theorem 3.1.
Theorem 3.1 and its corollary will now be connected with the existence of a

critical point of f on an affine subspace. It is a well-known result that if f has an
extremum at Xo on an affine subspace A, then Df(xo)h 0 for all h A Xo,
i.e., f has a critical point on A at x0. To be precise we have the following definition.

DEFINITION 3.2. Let X denote a normed linear space and suppose that A
is an affine subspace in X (i.e., the translate of a subspace). Let f’X - R denote a
differentiable function, f has a critical point at Xo 6 A if and only if Df(xo)h 0
for allhA- Xo.

THEOREM 3.3. Let g" X--+ Y denote a continuous affine transformation,
(x) T(x x 1), where T is linear and continuous. Letfhave a nonzero derivative
at Xo.

(a) /f there is an ho X such that
(i) o NtDf(xo)) ad
(ii) Tho T(N(Df(xo))),

then f has a critical point on N(g) at Xo.
(b) Conversely, iff has a critical point on N(g) at Xo, then there is an ho X

such that
(iii) ho N(Df(xo)) and
(iv) Tho q T(N(Df(xo))).
Proof. Part (a). If Xo is not a critical point, then there is an h N(T) such that

Df(xo)hl :/: O. Then Df(xo)hl + y*Thl :/: 0 for all y*6 Y*. In view of conditions
(i) and (ii), this contradicts Theorem 3.1.

Part (b). If for every ho q N(Df(xo)) it happens that Tho T(N(Df(xo))), then
T(X) c W(N(Df(xo))) and we have T(X) T(N(Df(xo))). Since Df(xo) :/: 0",
there is an hzqN(Df(xo)) such that X span{h2,N(Df(xo))}. But, T(X)

T(N(Df(xo))) so that there is an h3 N(Df(xo)) such that Th3 Th2. Then,
T(h h2) 0 and since Xo is a critical point it follows that Df(xo)(h h2) 0.
But, Df(xo)h 0, so Df(xo)h2 0 contrary to the assumption.

The connection with Lagrange multipliers is now easily established.
THEOREM 3.4. Let g’X Y denote a continuous affine transformation,

g(x) T(x x), where T is linear and continuous. Let f have a nonzero derivative
at Xo.

(a) If f has a critical point on N(g) at Xo, then there is a nonzero y’ Y’ such
that

Df(xo)h + y’Dg(xo)h 0

for all h X.
(b) /f there is a nonzero y* Y* such that

Df(xo)h + y*Dg(xo)h 0

for all h X, then f has a critical point on N(g) at Xo.
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Proof. Part (a). If f has a critical point on N(g) at Xo, then the conclusion of
Theorem 3.3(b) holds. But Dg(xo) T so from Corollary 3.1.1 it can be concluded
that there is a nonzero y’ e Y’ such that Dg(xo)’y’ -Df(xo) which is equivalent
to the desired result.

Part (b) follows by a similar argument with the aid of Theorem 3.3(a) and
Theorem 3.1.

It can readily be seen that the example of 2 is covered by Theorem 3.4.
Furthermore, the conclusion of part (a) cannot be strengthened to make y’
continuous without the addition of more hypotheses. This is illustrated by the
example of 2 when the range of g is taken to be 12 instead of 11 (see (vi) in 2).

Theorem 3.4 may be applied to linear distributed parameter control problems.
For example, suppose a system is described by the differential equation

x’(t) Ax(t) + u(t), x(O) xo,

where A is the infinitesimal generator of a strongly continuous semigroup of
operators, T(t). Suppose it is desired to find u which transfers Xo to 0 at time t
such that f: U - R is minimized, where f is a differentiable function. If u(t) X,
X a B-space, and if I [0, J, then it may be desirable to choose U as L2(I, X),
where

u u(t) x clt

Define g:U X such that

;ig(u) r(tl)Xo + r(tl s)u(s) ds.

The problem may now be reformulated as follows:

minimize f
subject to the affine equality constraint

g(u) 0.

Theorem 3.4 clearly applies. Furthermore, in distributed parameter control
problems, X is not finite-dimensional, and consequently g may not have a closed
range. In such cases, the classical Lagrange multiplier theorem (Theorem 1.1) will
not apply.

4. Convex functions and nonatfine constraints. We now propose to extend
some of the results of the last section to cover the problem of minimizing a convex,
differentiable function subject to a nonaffine equality constraint.

DvIyIVIOy 4.1. Let X denote a normed linear space and suppose A X.
Let Xo e A. The tangent cone, TC(A, Xo), for A at Xo is the set of vectors x e X such
that:

(i) there exists a sequence {y,} A for which y, - xo, and
(ii) there exists a sequence {2, :2n => 0} for which 2,(y, Xo) --’ x.
Varaiya [13] gives an equivalent definition and calls TC(A, Xo) the local

closed cone of A at Xo. Other authors (e.g., see [3], [7]) define the unit vectors of
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the tangent cone and require, accordingly, that 2, IIY,- Xoll-1. The tangent
cone is the cone generated by these unit vectors. It is easy to see that these definitions
are equivalent.

In the next theorem it is established that when f is a continuous, convex
function and has a minimum on A c X at Xo, then f has a minimum on

Xo + TC(A, Xo) at Xo. A similar result where A N(g) has been proved by
Flett [4, Theorem 1]. If, in addition, Xo satisfies a regularity condition such as
N(Dg(xo)) TC(N(g), Xo), then the problem of minimizing the convex function

f subject to a differentiable equality constraint can be reduced to the problem of
minimizingfsubject to an affane constraint. Whenf is differentiable the results of
the last section apply.

THEOREM 4.2. Let X denote a normed linear space. Let A X and suppose
that f :X R is a convex, continuous function. If f has a minimum on A at Xo,
then f has a minimum on xo + TC(A, Xo) at xo.

Proof If TC(A, xo)= {0}, the result is trivially true. Thus, assume that
TC(A, xo) {0}. Suppose there is an element xl e Xo + TC(A, xo) such that
f(xl) < f(xo). Then there is a sequence {y,} A and a sequence {2,:2, _>_ 0}
such that y, --, Xo and 2,(y, Xo) X Xo. f is continuous, so for n sufficiently
large

() f(2,(y, Xo) + Xo) < f(xo).

Now 2. o as n o so for 2. > 1 note that

y. ( ,2 )Xo + /-(Xo + ,.(y.- Xo)).

Use (1) and the convexity off to conclude that

f(y,) <= (1 2-)f(xo) + 2-lf(xo + 2,(y, Xo))

< (1 221)f(xo) + 22 lf(xo)= f(xo).

This contradicts the assumption thatfachieves its minimum on A to Xo.
COROLLARY 4.2.1. Under the hypothesis of Theorem 4.2, let Y denote a vector

space, g’X Y, and A N(g). Then f has a minimum on Xo + TC(N(g), Xo).
DEFINITION 4.3. Let X and Y denote normed linear spaces and let g’X Y

denote a differentiable function. Xo e N(g) is a regular point ifand only ifTC(N(g), Xo)
N(Dg(xo)).
Some authors (e.g., see [5], [8], [9]) define regularity by the requirement that

Dg(xo) be surjective. However, Flett [3, Theorem 3] has shown that if g has a
continuous derivative and Dg(xo) is surjective, then TC(N(g), Xo)= N(Dg(xo)).
Definition 4.3 has been given by Hestenes [7, p. 29] in the case that g has a finite-
dimensional range.

THEOREM 4.4. Let X and Y denote normed linear spaces. Suppose f’X R is
a convex differentiable function and g’X Y is differentiable. Iff has a minimum
on N(g) at Xo and Xo is a regular point, then there is a nonzero y’ Y’ such that

Df(xo)h + y’Dg(xo)h 0

for all h X.
Proof. By Corollary 4.2.1 it follows thatfhas a minimum on Xo + TC(N(g), Xo)

at Xo, and from regularity it follows that f has a minimum on Xo + N(Dg(xo)) at
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Xo, i.e., an affine subspace. But, then f has a critical point on Xo + N(Dg(xo)) at
x0, and by Theorem 3.4(a) the desired conclusion follows.
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JUSTIFICATION OF THE DESCRIBING FUNCTION METHOD*

A. R. BERGEN," AND R. L. FRANKS{

Abstract. Explicit conditions are given under which the use of the describing function method to
investigate the nature of oscillations in autonomous nonlinear feedback systems is justified. When
these conditions are satisfied, bounds are given for the frequency, fundamental magnitude, and higher
harmonics of the oscillation based on the describing function approximation.

The feedback systems considered are those which can be decomposed into a linear time-invariant
subsystem, not necessarily causal, stable, or finite-dimensional, and a nonlinear frequency independent
subsystem, possibly containing hysteresis.

The approach taken is to consider the describing function equation as an approximation to a
determining equation for periodic solutions of the autonomous system’s operator equation, and to
use local degree theory to guarantee the existence of a solution to the determining equation.

1. Introduction. The describing function method was introduced in this
country by R. J. Kochenburger [6] in 1950. It is used by engineers to investigate the
nature of oscillations in nonlinear feedback systems. Frequently it is used as an
aid in design to avoid or attenuate such periodic responses. This paper is concerned
with justifying the use of the describing function method to investigate periodic
responses in autonomous nonlinear feedback systems, and gives error bounds for
those responses.

Many authors have discussed the use of the describing function. A good
discussion is given in Gelb and Vander Velde [4]. The general approach is as
follows:

Consider the autonomous feedback system in Fig. 1. A/" is usually a frequency
independent nonlinear subsystem whose characteristic has odd symmetry and
is a time-invariant linear subsystem. The input to A# is taken to be x Re (reit).
The steady state output of A and the input to ff is then

y=Re( Z A,eJ"’)
1,odd

The system connection requires x -z; i.e., r -G(jco)A and G(jn)A, 0
for n greater than or equal to 3. The coefficient A1 ordinarily depends only on r
so it is usually written as A1 rN(r). N(r) is called the describing function for
and is its steady state first harmonic gain. The first harmonic equation can then
be written as

(1) + G(jco)N(r) 0

and is called the describing function equation. This equation is usually solved
graphically by plotting the Nyquist locus G(jco):co e + and the critical locus,
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FIG. 1. System (S)

1/N(r) :r +. An intersection of these loci gives values of co and r which satisfy
the describing function equation. The basic appeal of the method is the simplicity
of this graphical solution.

The condition that G(jnco)A, 0 for n greater than or equal to 3 can never
be satisfied, but it is ignored. If there is a pair (co, r) which satisfies the describing
function equation, then it is felt that the system has a periodic solution near
x(t) r sin cot; the heuristic justification is that if t is not too nonlinear and
is a good low-pass filter, then the higher harmonics G(jnco)A, are approximately
zero and can be ignored. Notice the importance of the assumption of an odd
nonlinearity in this connection.

Clearly this approach requires mathematical justification, and error bounds
for the describing function approximation would be desirable. Bass [1] considered
the problem of justifying the describing function method and gave conditions
under which the method was justified. Unfortunately, as he points out, one cannot
tell whether or not the conditions are satisfied except in very simple cases.

2. Outline of method. The system of interest is shown in Fig. 1, where ,/U

is a frequency-independent nonlinear subsystem and (# is a linear time-invariant
subsystem. The problem is to show that under certain conditions related to the
describing function method, there is a periodic function 22:E R such that

The approach, motivated by Cesari [3], is first to time scale the problem and
then to separate it into two, more tractable problems.

Using time scaling, it is sufficient to consider functions of period 2re. If 22 is a
periodic solution of period T, define the time-scaled function x by x(cot) 22(0,
where coT 2re. Then x has period 2r. The operator N is not invariant under time
scaling, that is, [2](t)- [Cx](cot). This means that time scaling requires the
introduction of new operators, o, :co [co,, co*], such that [22] (t) [,,,x](cot).

In terms of time-scaled functions and operators, the problem is to find a
function x of period 2rc and an co > 0 such that

(3) x

Note that if f were not frequency independent, an appropriate operator
would be required.

With the paper virtually complete the authors learned of a similar effort by Kudrewicz [7]
reported in the 1969 IFAC Conference in Warsaw. The system considered by us includes hysteresis
nonlinearities, and the criterion for justification is easier to apply and somewhat less restrictive.
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To separate the problem into two, more tractable problems, let x be the
projection of a 2r periodic function x onto its first M harmonics and a*x be the
projection of x onto its remaining harmonics, so that x ax + a*x. Then
x No,Ax if and only if both

(4) a*x -a*N,A/’x,

(5) x -%/x.
Under certain conditions, for any co e [co,, co*] and any set r of Fourier coefficients
for the first M harmonics of x, there is a function 2(r) with those first M harmonics
which satisfies (4). Substituting 2(r) into (5) gives

(6) (r)

Equation (6) is a determining equation for (3) in the sense that if there are an co
and a set r of Fourier coefficients such that (6) is satisfied, then x 2(r) is a solution
to (3) for that co. Defining 2(0 x(cot) implies 2 is the required periodic response
of the system.

IfM 1, equation (6) corresponds to an operator V: [R2 --, N2. The describing
function equation corresponds to an operator U :N2 N2. U is an approximation
of V and has local degree one on a particular set. Under certain conditions V is
homotopically equivalent to U on that set, so V has degree one on that set. There-
fore (6) has a solution for some (co, r) in that set. This means that (3) has a periodic
solution.

This approach is carried out in the next three sections. It is recommended
that the reader who is unfamiliar with local degree refer to Appendix II at this
time. Theorems II.2 and II.3 in that appendix are fundamental to the motivation
of this paper.

3. Basic result. We are interested in the solution of (2) in a space of periodic
functions (more precisely periodic functions with only odd harmonics). This will
be done by solving (3) in the space

2 {x’[R [[x has period 2re and only odd harmonics},

5%2 is a Hilbert space with the inner product

1 fo(x, y) x(O)3,(o) ao.

The corresponding norm will be referred to as xl[. The elements of 5%2 are half-
wave symmetric periodic functions. We shall refer to them as r-symmetric functions.

In order to avoid proving some later theorems twice we shall introduce new
operators , and and new equations

(7) x

(8) *x

(9) gax -a’,,x.

In 5, do, will be related to ff,, and will be related to V.
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The basic result of this section is Theorem 1 which gives sufficient conditions
for the existence of a solution to (8) and (9) in the space (’Ort.2

Let

sin kO, k odd,
Ck(0)=

cos(k-I)0, keven;

then {k} is a complete orthonormal basis for 2. For a fixed positive integer
define"

1. .&a2 __, 5o2 such that x __a (x, ),
k=l

2. *’52 2 such that *x x x,

3. y’R-1 2 such that y(r) ___a rkk, where
k=l

r (rl, r2, ,r 1)e-1

4. the usual Lipschitz norm

___a sup II-x yll
11 x, ye5%2, x y}.

For the remainder of this section the following hypothesis is required.
HYPOTHESIS A.
1. There is an co, and co* such that for each co e [co,, co*], s,"2 5o2 is

a bounded linear operator such that I1o vll - 0 as co --* v for all v e [co,, co*].
2. "2 &e2 is a bounded continuous operator with
3. There exists a function p’[co,, co*] such that II-II II*sell _-< p for

all co e [co,, co*] and sup {P,o "co e [co,, co*]} < 1.
Theorem 1 can most conveniently be stated and proved by first proving two

lemmas. Lemma 1 gives conditions under which an equation similar to (6) has a
solution, and gives important properties of that solution.

LEMMA 1. Given Hypothesis A, for each co [co,, co*] and each r [R the
equation x -*oo[y(r)+ x] has a unique solution x*(co, r). Define x(co, r)

y(r) + x*(co, r). Then"
a. x’[co,, co*] x R . , 2zt iS continuous,
b. x(co, r) y(r),
c. *x(co, r) *so,-x(co, r),

d. II*x(co, r) __<
1 po

The proofs of all lemmas and theorems are given in Appendix I.
Before giving conditions under which (6) has a solution it is necessary to

define functions U’[co,, co*] x R- R and V’[co,, co*] x - R whose
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components k 1, 2, ..., x satisfy

(10) U(0, r)= r + (/oy(r),

(11) V(o9, r) rk + <,X(O9, r), k),

where rk is the kth component of r e RK-1 for k =< tc 1 and rK 0.
In Theorem 2, the condition U(o9, r) 0 will be identified with the describing

function problem. U is an approximation for V in the sense of the following lemma.
LEMMA 2. Given Hypothesis A, U and V are continuous and

IIll, IIll II*oy(r)ll
U(o, r) V(o, r)12

1 -po
([" [2 is the Euclidean norm in R.)

The main result of this section can now be given in terms of U, V, and
d[U, 0, ff2], the local degree of U with respect to 0 and the set if2. For the reader’s
convenience, Appendix II contains a definition of local degree and two related
theorems.

THEOREM 1. Given Hypothesis A, if there exists an open bounded set f gU

such that"
1. (o9,, co*)
2. d[U, 0, f] 4:0,
3. [U(o9, r) V(o9, r) 2 < [U(o9, r)[ 2 for each (o9, r) cf, then there exists a

point (o9, r) 6 f such that"
a. x(o, r) x(09, r),
b. *x(o9, r) -*/-x(o9, r),

*Wy(r)
c. I*x(o, r) =<

4. Application to autonomous systems. In order to use Theorem to investi-
gate the periodic oscillations of the autonomous feedback system in Fig. 1, it is
necessary to make some assumptions about Y and

HYPOTHESIS B1. The system (S) shown in Fig. satisfies"

2. If x 52 and 2(0 x(o9t) for all t and some o9 > 0, then (Yx)(o9t)
(/2)(t) for all .

3. ( is a linear time-invariant system with frequency response function G(jo9).
4. For any odd integer k, G(jo9k) is continuous at each o9 [o9,, o9".

odd
5. [G(jo9k)[ 0 as k , uniformly in o9 [o9,,
Hypothesis BI.1 means rt-symmetric inputs to result in u-symmetric

outputs. Hypothesis B1.2 means A/ is frequency independent for half-wave sym-
metric periodic inputs. Hypotheses B1.3, B1.4 and B1.5 imply c is a low-pass
filter, at least for half-wave symmetric periodic inputs which have their funda-
mental frequencies in a given band.

Rather than consider the operation of on periodic functions of all periods,
we shall restrict our attention to an equivalent operation on functions of period
The response to ( is frequency-dependent so it is necessary to consider a con-
tinuum of operators, {c5 "o9 [o9,, co*]}, to obtain this equivalent operation.
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DEFINITION (the operator fqo). For each co e [co,, co*q, fqo’2 2 is such
that if the Fourier series of z is =-oo c,eJ", then the Fourier series of aoZ is

c,G(jnco)e".

The equivalence of the operation of the linear time-invariant system ( and the
operators (#o is given by the following lemma.

LEMMA 3. If X e 2 iS such that x =-(ffoUx, then 2 =-fqg’2, where
x(t) =

Properties of the operators ,o are given in the next lemma.
LEMMA 4. Given the system (S) and an even positive integer
a, II%ll max {IG(jcok)l :k an odd integer} <
b. IIaNol[ max {[N(jcok)[ :k an odd integer, k < } < ,
c. I1*%11 max {IG(jcok)l :k an odd integer, k > to} <
d. I1*(% 011 _-< I1% 11 --’ 0 as co v for all v [co,, co*].
In the most straightforward application ofTheorem 1, So

In this case the components of the function U :[co,, co*] x R [ are given
by the following lemma.

LEMMA 5. Given Hypothesis B1, ij’s’ Cffo, A, and U is defined as in
(10), then

where

Re [rk + G(jcok)rlk
Uk(co, )

r + Im G[jco(k- 1)]/k-,

k odd,

k even,

U[y(r)] (0)e- jk0 dO.r/k
t 0

If [ll#ll < , then parts 1 and 2 of Hypothesis A are satisfied with ’o o
and - a A. Defining Po IIll max {IG(jcok)l:k an odd integer, k > :} for
some even positive integer x gives po >__ II,/1111*%11 for all co e[co,,co*].
Hypothesis A will be completely satisfied if sup {Po :co e [co,, co*]} < 1, and this
can always be accomplished by choosing tc large enough since IG(jcok)l 0 as
k oo, uniformly in co e [co,, co*].

Therefore Theorem can be applied to any system (S) which satisfies the
relatively weak requirements of Hypothesis B1, if i1,11 < oo, and if a set f can
be found satisfying the theorem’s hypothesis.

Searching for an appropriate set f is greatly simplified if it is possible to take
c 2. In this case all computations are in R2 and can be performed conveniently
in the complex plane. In fact, the conditions are closely related to the loci used
in the describing function method. The case x 2 will be considered exclusively
henceforth.

5. Justification and error bounds for the describing function method.
Hypothesis B2 and Lemma 6 give conditions such that d[co, 0, f]-= 0 for a
function W which will later be identified with the function U in Theorem 1. The
function W is introduced to allow application of Theorem 1 to systems which do
not satisfy IIA/II < oc. With x 2, r is a scalar and will henceforth be written as r.
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HYPOTHESIS B2.
1. N has a continuous derivative on It,, r*], where 0 < r, < r* and

N(r) J f /’(rl)(O)e -jO dO.

2. G has a continuous derivative on [co,, co*I, where 0 < co, < co* and G is
abbreviated notation for G[j(. )].

3. 1 + N(r)a(jco) 0 with (co, r)e [co,, co*] x Jr,, r*] has a unique solution
(coo, ro) and

a. (coo, ro) e (co,, co*) x (r,, r*),
b. dN/drlo: O,
c. dG/dcolo, g= O,
d. the loci of 1/N and G are not tangent at (coo, ro).

Usually inspection of N, G and the loci of -1/N and G is enough to check
this hypothesis.

LEMMA 6. Given Hypotheses B1 and B2, define W: [co,, co*] x Jr,, r*] [22 by

W(co, r)__a (Re [r + rU(r)G(jco)], Im [r + rN(r)G(jco)]);

thend[W, O, ] 4= Oforanyopenboundedsetfin2 suchthat(coo, ro) e f (co,, co*)
x (r,, r*).

Hypotheses B3 and B3’ are given below in order to facilitate the statement of
Theorem 2, the main result of this paper. Hypothesis B3 covers the case where

HYPOTHESIS B3.
1. There is a real number M such that [lVll =< M.
2. Po, M max {[G(jcok)[ :k 3, 5,... } < 1 for all co e [co,, co*].
A large class of nonlinear systems which exhibit hysteresis do not satisfy

IIV[I < oe. This case is dealt with in Hypothesis B3’. To state it we need another
definition.

DEFINITION (the space o(’).

5 {x : - lx is continuous, x(O) -x(O + n)},

where Ilxll max0R Ix(0)l,
Notice that any function in is also in 2.
HYPOTHESIS B3’.
1. There is a real number M’ such that IIx- yll _-< M’llx- YlI for

all x, y e ff.
odd

2. klG(jcok)l --, 0 as k oe, uniformly in co e [co,, co*].
3. p’ (M’n/x) rnax {klG(jcok)l" k 3, 5,"" } < 1 for all co e [co,, co*].
The main result of this paper can now be stated.
THEOREM 2. Given Hypotheses B1, B2, and either B3 or B3’, if there exists an

open bounded set f [2 2 such that:
1. (coo, ro) e (co,, co*) x (r,, r*),
2. for all (co, r) e ,

1
B(co)T(r) < -v--, + G(jco)

ltr)
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where

and

T(r)
II(rl)ll 2

IrN(r)l 2 -1
1/2

IG(jco)lp,
/f B3 is satisfied,

1 P,o
B(co)

JG(jco)lP’o,
if B3’ is satisfied"1 p

then for some (co, r) f there exists an x 5’2 such that"
a. x /’x,
b. (x)(O)= r{l(O)= r sin O,
c. II*xll =< IrN(r)lr(r)S(co),

where

s(co)

Po if B3 is satisfied,
(1 p,)M

Po,
/f B3’ is satisfied;

(1-p,)M’ re

i.e., there exists a periodic function Yc with fundamental harmonic h(t)= r sin cot
such that Yc -(dV2 for some initial state of and

co f0
/(2rt)

2re
I(t)- h(t)l dt <= IrN(r)lT(r)S(co).

Theorem 2 gives not only sufficient conditions for the existence of a periodic
response of system (S) but gives error bounds for that response in terms of error
bounds on both its fundamental frequency and amplitude, and also on the 2’2-norm
of its higher harmonics.

The heuristic justification of the describing function method stated in 1
may now be rendered more precise. The statement " is not too nonlinear" is
replaced by the requirement of a small T(r) in Theorem 2; notice that T(r) 0
if g is linear. The statement "f# is a sufficiently good low-pass filter" is replaced
by Hypotheses B1.5, B3.2 (or B3.3’), and the requirement of a small B(co) in
Theorem 2. Hypothesis B2 specifies the nature of the intersection of the loci of

1IN and G and makes precise the notion that the intersection should be "solid."
As a further connection with the describing function method we note that the

key inequality in Theorem 2 has as its right-hand side a quantity which may be
obtained immediately from the graphs of G(jco) and 1IN(r).

6. Examples. Theorem 2 can be applied to the autonomous nonlinear
feedback system shown in Fig. 1 whether or not it contains hysteresis. This section
contains an example of the use of Theorem 2 in either case.

The approach taken here is to use a computer to calculate 1/N(r), G(jco),
and I1/N(r) + G(jco)l/(B(co)T(r)) as functions of co and r. Plotting the loci of 1IN
and G gives the values of coo and ro at their intersection. With the printout of
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I1/N(r) + G(jco)l/(B(co)T(r)) in a rectangular array, it is a simple matter to find a
rectangle in that array with sides co co,, co co*, r r,, and r r* such that

1<
I1/N(r) + G(jco)l

on its sides, and which contains (COo, ro).
After finding such a rectangle it is a simple matter to check the remaining

hypotheses of Theorem 2.

6.1. Without hysteresis. Consider the system shown in Fig. with ( having
the transfer function

1000(s2 -F 3s + 2)
G(s) s5 + 31s4 + 259s3 + 1319s2 + 1289s + 990

and A such that

16 if x(O) > 1,

(x)(0) 16x(0) if Ix(0)[ <= 1,

-16 if x(0)< -1.

For this the describing function is [4, p. 59]

N(r) [sin 11 /-+ 1--
t*

16,

r> 1,

0<r_<l.

Hypothesis B1 is clearly satisfied for this system.
N is continuously differentiable for r > 1 and G is continuously differentiable

on the imaginary axis. The loci -1/N(r) and G(jco) are shown in Fig. 2. They
intersect at (coo, ro) (13.5, 4.6) and are clearly not tangent there. A simple com-
putation, or closer examination of the loci, shows that both dN/dr and dG/dco
are not zero at the intersection. Therefore Hypothesis B2 is satisfied.

Hypothesis B3 is satisfied with M 16, co, 10 and co* 21.
Table gives [1/N(r) + G(jco)l/(B(co)T(r)) for several values of co and r. This

ratio is greater than one for the points tabulated on the boundary of the set

f {(co, r): 10.5 < co < 14.5, 3.5 < r < 7.5}.

It is in fact greater than one for every point on the boundary of this set. Therefore
the system has a periodic response with fundamental frequency co e(10.5, 14.5)
and with fundamental magnitude r e (3.5, 7.5).

6.2. With hysteresis. Consider the system shown in Fig. with N having
the transfer function

G(s) 15,000e-S/3/(s nt- 1)4
and with . the backlash nonlinearity shown in Fig. 3. For this ,A/" the describing
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N(r)

FIG. 2. Loci for the example in 6.1 (not to scale)

FIG. 3. Backlash nonlinearity for the example in 6.2
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TABLE
[1/N(r) + G(jco)[/B(co)T(r) versus (co, r) used to find the set jbr the example in 6.1

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

.95 1.00 1.08 1.37 1.99 3.01 4.45 6.35

.99 1.01 1.01 1.14 1.59 2.45 3.74 5.47
1.04 1.06 1.00 .98 1.22 1.90 3.02 4.57 6.59
1.11 1.14 1.07 .94 .92 1.35 2.28 3.66 5.48
1.21 1.27 1.21 1.04 .81 .85 1.54 2.73 4.36
1.32 1.42 1.41 1.26 .97 .60 .80 1.78 3.20
1.46 1.60 1.65 1.57 1.33 .90 .32 .79 2.03
1.61 1.87 1.94 1.94 1.80 1.49 .98 .26 .90
1.80 2.08 2.28 2.38 2.36 2.20 1.87 1.36 .85
2.03 2.39 2.68 2.90 3.02 3.02 2.88 2.59 2.22
2.33 2.79 3.19 3.55 3.83 4.01 4.07 4.01 3.82

8.77 11.78 15.46 19.91 25.21
7.69 10.47 13.88 18.01 22.95

9.14 12.29 16.11 20.69
7.80 10.68 14.19 18.41
6.45
5.07
3.68
2.30
1.23
1.79
3.54

9.05 12.25 16.12
7.41 10.30 13.80
5.76 8.34 11.47
4.10 6.37 9.14
2.59 4.47 .6.86
1.96 3.03 4.84
3.27 3.29 3.97

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

(% ,ro)

FIG. 4. Loci for the example in 6.2 (not to scale)

function is [4, p. 69]

sin-N(r)
2 c 4(!

Hypothesis B1 is clearly satisfied for this system.
N is continuously differentiable for r > 1 and G is continuously differentiable

on the imaginary axis. The loci of G(jco) and 1/N(r) are shown in Fig. 4. They
intersect at (COo, ro) (1.35, 8.2) and are clearly not tangent there. Both dN/dr
and dG/dCO are not zero at the intersection. Therefore Hypothesis B2 is satisfied.

Hypothesis B3’ is satisfied with M’ xf, CO, 7.5 and CO* 11.
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Finally the set

f {(co, r):8.0 < co < 8.4, 1.3 < r < 1.4}
satisfies the remaining hypothesis of Theorem 2. Therefore the system has a
periodic response with fundamental frequency co(8.0, 8.4) and fundamental
magnitude r (1.3, 1.4).

7. Conclusion. Sufficient conditions for the existence of half-wave symmetric
oscillations are given and error bounds for the approximate solution found by the
use of the describing function method are provided. The heuristic justifications
concerning the describing function method are validated and rendered more
precise.

Appendix I. This appendix consists of the proofs of all theorems and lemmas in
this paper. Appendix II contains the definition of local degree and statements of
theorems which are used in the proofs here.

Proof ofLemma 1. Let
F(co, r)x & -*se’o,-[y(r)+ x

for (co, r) [co., co*] - 1.
Given (co, r) [co., co*] - and x and z *2f’2, the linearity of &o, and

the bounds on the operator norms assumed in Hypothesis A yield

Ilf(co,r)x F(co,r)zll II*sCo-[y(r)+ x]- *sCo[y(r) +
II*,[[y(r)+ x]- -[y(r)+ z]ll

=< pllx

F(co, r)’* ,2 is a contraction for each (co, r) [co,, co,]
since p < 1 for each o9 09,,

By the contraction theorem, Theorem II.1 in Appendix II, there is a unique
x*(co, r) s* such that

(I.1) x*(co, r) -*sCo-[y(r) + x*(co, r)]

and

(1.2) x*(co, r)ll _-<
1 -/9,0

x’[og,, co*] - is continuous by Theorem II.1, since F(co, r) is con-
tinuous.

The remainder of the lemma may be established by noting that x(og, r) y(r)
+ x*(og, r) implies x(og, r) y(r), which is part b.

It also implies

*x(co, r) x*(co, r)

(I.3) -N*[y(r) + x*(co, r)] (by (I.1))

*se’o-x(co, r).
This completes part c.
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Equations (1.2) and (1.3) imply

Ilga*x(co, r)ll _-<
1

Proof of Lemma 2. (i) By Lemma 1, g,x(o9,r) is continuous in (o9, r).
Therefore (ox(og, r), k) is continuous in (o9, r), and as a result of (11), V is
continuous. Similarly U is continuous.

(ii)

Therefore,

Therefore,

U(o9, r) V(og, r)122 (o[y(r) x(o, r)], )2
k=l

IIo[-y(r) x(og, r)] 2.

U(co, r) V(co, r)12 o)[y(r) x(og,

IIll" II Ily(r) x(, r)

*dy(r)

Proof of Theorem 1. (i) In light of Theorem 11.2 in Appendix II, define

(m,r,)= U(m,r)-[U(m,r)- V(m,r)] forpe[0,1] and (m,r) eO.

Then’ x [0, 1] is continuous since U and V are continuous.
If (, r) ,

I(, r, )1 Iu(, r) [u(, r) v(,

U(, r)12 1U(, r) V(, r)12

u(, r)l u(, r) v(,

> 0 (by assumption 3 of Theorem 1).

Therefore (, r) # implies (, r, ) 0 for all [0, 1].
By Theorem II.2, d[(.,., 1),0, ] d[(.,., 0), 0, . Now (.,., 1)= V

and (.,., 0) U so by assumption 2 of Theorem 1,

a 0, [U, 0, ] # 0.

Therefore, by Theorem II.3 there is a point (, r) such that V(, r) 0; i.e.,
using (11), we have

-r= (ox(,r),) fork= 1,2,...,x.
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Therefore,

(ii) By Lemma 1,

aa/,x(co, r) r
k=l

y(r) x(co, r).

*/x(og, r) *x(co, r).

(iii) Also by Lemma 1,

which proves the theorem.
1 Po

Proof of Lemma 3. Suppose xe2#2,x -N,.A/x, toe [co,,o9"],co > 0, and
2(0 x(cot) for all e N. Then

(t) x(cot) [%x]

a(jcok)

’, G(jcok)rh,ej’t,

where r/k is the kth complex Fourier coefficient of Yx; i.e.,

[Yx](O)e- dO

T
[Ux] (cot)e-’ dt.

Therefore r/ is the kth complex Fourier coefficient of 2 as well. For the
input .A/x" R R the output of N is

[.A#2](t) G(jook)rlkej’k’, e .
Therefore

Proof ofLemma 4. To prove parts a, b and c, pick any xeS2, expand it in a
Fourier series, and use the usual manipulations. This same approach gives

N,o cNv max {IG(jcok)- G(jvk)l’k odd}.

By Hypotheses B1.4 and B1.5, No, fqv 0 as co v.

Proof of Lemma 5.

Uk(Co, r r + (,Uy(r), {k).

The complex Fourier coefficients of A/y(r) for 1, + 3, 5, are

1 f 1

2zt
dV[y(r)](O)e -jl dO jrlt.
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Therefore c#oYy(r has Fourier series (1/(2j))g_oo G(jcol)rlleJl. Now for
n _1, __+3,...,

-l f G(jol)qleJl] e+j" dO =1_
J
G(jn)q_,.

Therefore if k is odd, (0) sin kO and

(Noy(r, )
l f; [ .][.elO=--g G(jl)leJl -2je dO

-(-jmk)n_ + 6(j).
[(jok)O +
Re G(jok)q

since

rl-k
rC

dV(y(r))(O)eJk dO Ok,

the conjugate of -/k" Therefore

Uk(O) r)= rk d- (cffy(r),

Re Irk + G(jcok)Ik],

If k is even, k(O) COS (k 1)0 and

(oy(r), )=1_ fj" [

_
G(jl)eJl] [eJ(- + e-J-

1 1
2jG(-j(k 1))q_(k_ 1) + G(j(k 1))qk_

1
2j[-G(j(k- 1))Ok_ + G(j(k- 1))qk_]

2j
[2j Im G(j(k 1))qk-1]

Im G(j(k 1))qk-1.
Therefore,

k odd.

U(o,r) r + (%A:y(r),

rk + Im [G(jco(k 1))r/k_ 1], k even.

Proof of Lemma 6. From assumption 3 of Hypothesis B2, for all (co, r)e f
Eoo,, co*3 Er,,

W(co, r) _4_ (Re [r + rN(r)G(jco)], Im [r + rN(r)G(jco)]) (0, O)

if and only if (co, r)= (coo, to)e f. By assumptions 1 and 2 of Hypothesis B2,
W(co, r) is C(1) on . Using the analytic definition in Appendix II, we may therefore
calculate the local degree of the map W relative to the point 0 and the set fL

d[W, O, f] sgn det Jw(coo, ro),
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where

(?co
Jw(Oo, to) w w

o --; Alo,o
We next use the remaining assumptions of Hypothesis B2 to show that

det Jw(o, to) 0 and therefore d[W, 0, fl] 0. By direct calculation,

Re N(ro)G’(jo) Re N’(ro)G(jmo)
J(o, to) ro

kmf(ro)a’(jo) m N’(ro)a(jo)l’
where the prime indicates the derivative and use has been made of the assumption
in B2 that 1 + N(ro)G(jo) O.

Now if the columns of Jw are linearly independent, det [J(o, ro) 0.
It is natural to reintroduce the complex plane; det [Jw(mo, ro) 0 if the complex
numbers z N(ro)G’(jo) and z N’(ro)G(jo) are linearly independent.
Now N(ro)G(jo)=- 1 implies N(ro) and G(jo) O. Assumption 3 of B2
specifies G’(jo) and N’(ro) 0. Therefore neither of the complex numbers z
or z is zero.

We now use the relation

d lJ _N’(ro)- Io (ro)
and find

z ’(o(JOo (o Io
It is clear that the two (nonzero) complex numbers z and za are linearly independent
if G’(joo) and (d/dr)[-1/N(r)][ are linearly independent. Geometrically, G’(jmo)
is a vector tangent to the Nyquist locus at the point mo while (d/dr)[-1/N(r)][
is a vector tangent to the critical locus at to. Since by assumption neither vector is
zero, the linear independence is assured if the two tangents to the loci at their
point of intersection (o, to) differ. This is assured by part d in assumption 3 of
Hypothesis B 2.

Therefore dim, 0, 0.
Proofof Theorem 2. It is useful first to derive expressions (I.4)and (I.5) below,

and then to consider cases B and B’ separately. Set x 2 for defining and *.
Then:

(i

rN(r)
j

[’(r)](O)e- dO
o

[,/4fl’(/"I)](O)[cos 0 j sin O] dO
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SO

sin 0 -+- <,/lff(rl), 2> COS 0,

[/V’(r)](0) [rN(r)l sin [0 + /__N(r)] for r > 0.

(ii)

IoA/’(rgx) 2 irN(r)12

so

f(rl) 2 / oA(r,)l 2 IrN(r)l 2
T(r) irl 1=

irN(r)12

rN(r)l

Therefore B(co)T(r) < I1/N(r) + G(jco)l implies

B(co) Ja*o./U(rl < Ir q- rN(r)G(jco)l IW(co, r)12.

Case B3. (i) Hypothesis A is satisfied with se’, & ,, & oA/’, m & 2 and
y(r) r

Prooj’. Clearly part is satisfied by Hypothesis B and Lemma 4. Parts 2 and 3
are satisfied by Hypothesis B3 and Lemma 4.

(ii)

IG(jco)l IrN(r)l sin (0 + /__N + /__ G) sin 0 dO

IG(jog)l. Irf(r)l cos (/__f + /__ G)

Re [rN(r)G(jco)],

Similarly,

Therefore by (7),

<%Jl/’(rl), 2> Im [rN(r)G(jco)].

U(co, r) (r + Re [rN(r)G(jco)], Im [rN(r)G(jco)])

(Re [r + rN(r)G(jco)], Im [r + rN(r)G(jco)])

W(co, r).
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So d[U, O, ft] # 0 by Lemma 4.
(iii)

U((D, r) V(co, r)l 2
/9o)

1 /90)

[G(jco)lpo
*(rl)ll

-p,

by (I.5) for all (co, r) e Oft. Therefore,

U(o. r) V((.. r)12 < U(. r)l for all (co, r)

By Theorem 1, there is an (co, r)e ft such that x -fq,oAZx, where x x(co, r).
c 2Also for x

X rl and II*xll- Ilx*(co, r)ll _-<
1

<
1

Po IrN(r)lz(r)"
1 p,,, M

Case B3’: The proof in this case is very similar to the preceding one. The
essential difference is that hypothesis B3.1 is not satisfied. This problem is avoided
by defining an operator o’S2 -- 2’2 such that y is the derivative of gy, and by
defining an operator @’,2’2= - 2’2 such that @y is the derivative of y, i.e.,
y y.

The proof now proceeds in essentially the same way as before but with
sg, , and

(i) Define cg. o5,a2 a such that

Note 1.

Jo sgn(O-r)x(r)dz, 0<=0<,
(x)(0)

-( Cgx)(O 7), <= 0 < 2.

(Cdx)(O) x(’c) d’c x(r,) d’c, O_<O<rc,
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so ((dx)(O) -((dx)(n) ((dx)(2n) and (dx is continuous for all x e 2.
Note 2.

Note 3.

Cg[ej,,(.)] _1
jn

n odd.

I( x)(o)l 5 sgn (0 r)x(r) dr

=2

<- 12 d Ix()l 2 dz=2

(0 __< 0 < 2re)

1/2

Therefore,

xil <= 2,, IIx for all x e 52.

Now

< M’ IIx yll for all x, y e 2)2,
2,/

so I, (gll _-< rcM’/(2x).
(ii) Define such that [eJ"() jne"’ and

k=l k=l

Now does not map into , but% does. [%] [d"(’)] jnG(jno)
eJ"(, and [jnG(jnm)] satisfies Hypothesis B1, by Hypothesis B3’, so by Lemma 4,

% max {nlG(jno)l’n odd},

I1*% max {kl G(jko)] k 3, 5,... },

*(ff=) < .- 0 for alle[,,*].

(iii)

max {klG(jkco)l k 3, 5,...}

for all co e [co,, co*]
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by Hypothesis B3’. Therefore Hypothesis A is satisfied with so@o, A cd,
and x 2.

(iv) Hypothesis A is independent of the basis chosen for 2’2 so define a new
orthonormal basis for 2’2, {zk} ]o, such that

and

Therefore,

Z1 2, Z2 --1, Zk for k > 2.

Notice that 1 zl,2 Z2, (Z1 1 and z2 2.

([(y, )z + (y,

=(Y,i) (i= land2) for allyeLf,2,

<%/(rl), i> (i and 2).

U(co, r) a__ (r + (,c’/A# Cgy(r), zl) (@%A/ Cgy(r), z2)

(r -t- (Qh/’(rl), 1>, (%4#(r1), 2>)

W(co, r)

as in Case B3. Therefore d[u, 0, f] # 0 by Lemma 4.
(v)

,ll" cd */(rl)l[
U(o, r) V(og, r)12 =< 1

so

(by Lemma 2).

< IG(jco)lpo
a,U(rl

1--p

B(co) *(rl)

IU(co, r) V(co, r)[ 2 < B(co) *Y(rl) for all (co, r) e f.

By assumption 2 of Theorem 2, (co, r)e c3f implies B(co)T(r) <ll/N(r) + G(jco)l,
and that implies

B(co)ll@*V(rl)[I < IW(co, r)12 IU(co, r)12

by the comments at the beginning of the proof. Therefore

U(co, r) V(co, r)[2 < U(co, r)12 for all (co, r)
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Therefore the hypotheses of Theorem 1 are satisfied, so there exists (co, r) e f
such that

x(co, r) %U Cgx(co, r), 5fx(co, r) %4 C6x(co, r).

Let z ___a Cgx(co r). Then z -fqolz, which proves part a.
Also

z gx(co, r)= cgSx(co,r)= Cgy(r)= rzl rl,

which proves part b.

llS*z]l * Cgx(co, r)]] cg*x(co, r)]] =< ]]5*x(co, r)[]

_< (by Theorem 1)

(1 p)M’

p; (rcM’)l] V(r 1)]

Appendix II. This appendix is included for the reader’s convenience. It
contains a statement of the contraction theorem, a definition of local degree, and
two theorems related to local degree which are used in the proof of Theorem 1.
The material related to contraction is taken from 53 and material related to local
degree is taken from [2].

TIaEOREM II. (fixed points by contraction). Let &’ be a Banach space, let S
be a set [", and for each s e S, let T’ be continuous and such that
Tx Ty <= Ps x y jbr all x, y e , where ps < 1. Then"

a. There exists a unique x* 2’ such that Tsx* x*
b. x* xll _-< Zsx x /(1 Ps) for all x

In particular x* <-_ TO I/(1 Ps), where 0 is the zero of
c. If in addition, s So implies Ts Tsol 0, then s So implies xs Xsol

---0.
DEFINITION (local degree for a special case). Let"
1. f be an open bounded set in
2. f’f N" have continuous first partial derivatives,
3. f(x) ,/: p for all x e c3f, the boundary of
4. det Js(x) det (cf/cxj) 0 for all x e f- a(p).

Then the degree off relative to p and is

d[f, p, f2] sgn [det Js(x)].
f- l(p) f

Berger and Berger continue the definition to the case where f is continuous but
not differentiable. This part of the definition has been omitted as it is not needed
here.

THEOREM II.2 (homotopic invariance of d). If ’f x [0, 1 R" is continuous
and d(x, l) : P/[’or all x e c3U2 and all l e [0, 1], then d[(., #), p, f] is the same

for all t [0, 1].
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THEOREM I1.3 (existence of preimages). If d[f, p,f O, then there is an
x such that f(x) p.
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AN EXISTENCE THEOREM FOR LAGRANGE PROBLEMS
WITH UNBOUNDED CONTROLS AND A SLENDER

SET OF EXCEPTIONAL POINTS*

L. CESARI,+ J. R. LA PALM{ AND D. A. SANCHEZ

Abstract. In a number of existence theorems for Lagrange problems with unbounded controls
certain growth conditions are required, which generally can be omitted for bounded controls. In the
present paper the authors show that even for unbounded controls the growth conditions can be dis-
pensed with in an arbitrary subset in the tx-space E provided such a subset is "slender" according to

suitable definitions. Any set contained in finitely many or countably many smooth curves x b(t),
a < < b, is certainly slender. Many examples are given.

1. We deal here with Lagrange problems of control concerning the minimum
of an integral of the form

(1) I[x, u] fo(t, x(t), u(t)) dt

in classes f of admissible pairs x(t) (xl, x"), u(t) (ul, u’), t <= <= t2,
x absolutely continuous (AC), u measurable, satisfying a system of ordinary
differential equations

(2) dx/dt f(t, x(t), u(t)), Its, t2] a.e.,

f (f, ..., f,), constraints of the forms

(3) (t, x(t)) A c E,+a, [tl, t2]

(4) u(t) U(t, x(t)) c E, It1, t2] a.e.,

and boundary conditions usually written in the McShane form

(5) (t, x(t), t2, x(t2))e 8 = e.+ ,
where A, B are given fixed sets and U(t, x) is a given set which may depend on
and x.

We do not exclude that A may coincide with the whole space E,+ and that
U may coincide with the space E. For m n, f u, U Em these problems
reduce to free problems of the calculus of variations, that is, problems concerning
the minimum of a functional

(6 [x fo(t, x(O, x’(O t
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in classes f of AC vector-valued functions x(t)--(X 1, "’’, xn), <= <= t2,
satisfying constraint and boundary conditions

(7) (t, x(t)) A E, +,, Eta,

(8) (t,, x(t,), t2, x(t2) B E2n+ 1.

In previous papers Cesari [lab] has given existence theorems for optimal solutions
with unbounded controls, based on convexity properties of the relevant sets,
Helly’s selection theorem, recent Filippov’s type implicit function theorems, and
ensuing lower closure theorems. In such an analysis Ascoli’s selection theorem is
still used on the trajectories. When the sets U(t, x) are unbounded, or are not
uniformly bounded, in order to guarantee the compactness of a minimizing
sequence of trajectories, growth conditions concerning fo and f are usually re-
quested. Cesari [lb] and Cesari, La Palm and Nishiura [2] proposed the following
growth condition (e)" Given e > 0 there is some locally L-integrable scalar func-
tion q(t) >= 0 such that If(t, x, u)l ff(t) + efo(t, x, u) for all t, x, u. As shown by
Cesari [lb] and La Palm [3b] this condition is quite general, and contains growth
conditions previously proposed, in particular, those of Tonelli [8] and McShane
[4ab] for free problems.

Tonelli [Sab], McShane I4abd], and Turner 9] proved that for free problems
growth conditions can be dispensed with in an arbitrary set G of points (t, x) in
A, for which the only requirement is to be "slender" in the terminology of
Turner [9]. For instance, Tonelli [Sab] and McShane [4ab] required G to be
either finite, or countable, or contained in a countable set of straight lines parallel
to the t-axis, or of curves each of the type F’x x(t), t’ < < t", x being AC on
It’, t"], and other analogous cases. McShane [4d] and Turner [9] proposed
general definitions of "slender" sets, which contain all these cases.

The purpose of this paper is to show that also for general Lagrange problems
growth conditions can be dispensed with in arbitrary slender subsets of A. We
shall use the same definition of "slender" sets that Turner used for free problems.
In 2 we state an existence theorem for Lagrange problems (1)-(5) with a slender
set G A of exceptional sets. In 3 we prove the theorem, and in 4 we state and
prove a slight variant of the same existence theorem. In 5 we summarize a number
of points concerning the detailed conditions which we are using (upper semi-
continuity of sets, property (Q), growth conditions). In 6 we derive a number of
existence theorems for free problems (6)-(8) as corollaries of Cesari’s previous
existence theorem, the present existence theorem, and the previous analysis
concerning growth conditions. In particular, we prove that Tonelli’s existence
theorems I-V of [8a] can be obtained as corollaries of analogous results for
Lagrange problems. In 7 we list a few examples of Lagrange and free problems
satisfying the main hypotheses of the present existence theorem.

2. Statement of the theorem. In the formulation of the Lagrange problem
(1)-(5) above we assume that A and B are given subsets of the tx-space E,+ and of
the tlxt2x2-space E2,+ respectively, and that for every (t, x)e A a given subset
U(t,x) of E is given (control space). We denote by M the set of all
(t,X,u)eEn+m+ with(t,x)eA,u U(t,x),andweassumethatfoandf (f, ..., f,)
are given real functions on M. A pair x(t)= (x, x"), u(t)= (ul, u),
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--< t2, X AC, u measurable, is said to be admissible provided (2), (3), (4), (5)
hold, and, in addition, fo(t, x(t), u(t)) is L-integrable in It1, t2].

Let G be a fixed subset of A in the tx-space E,+ 1, G A E,+ 1. For every
set S of the t-axis and 1, ..., n, we shall denote by Gi(S) the set of all real
such that for some (t, x) we have (t, x) G, S, xi= . We shall say that G(S)
is the "image" of S on the xi-axis by means of the set G. Note that, when G is the
graph of a curve x g(t), <-_ <= t2, in the tx-space, or x gi(t), <= <= t2,

1, -.., n, then Gi(S) g(S) is exactly the image of S on the xi-axis by means
of the component gg of g. A set of G c A is said to be "slender" if the following
property holds"

(s) For every set S of measure zero on the t-axis, the sets G(S) also have
measure zero on the x-axis, 1, n.

In other words, G is slender provided IS[ 0 implies [Gi(S)[ O, 1,..., n.
As usual we denote by M the subset of all (t,x, u) E,+,,+I with (t, x) A,

u U(t, x) (graph of U(t, x)). For every (, )e A and 6 > 0 we denote by N6([, ),
or 6-neighborhood of (, if) in A, the set of all (t, x)e A at a distance __< 6 from
(, if). Also, we denote by U(, if; ) the union of all U(t, x) with (t, x) N6([, ),
and then the usual Kuratowski upper semicontinuity property of the sets U(t, x)
at ([, ) is expressed by the following requirement, or property (U) at ([, )"

c(, x) Cl c c(, x; 6).

It is well known that, if A is closed, then U(t, x) has property (U) at every point
(t, x) of A if and only if M is closed.

As usual, we denote by ((t, x) the set of all (, z) E, + with z > fo(t, x, u),
z f(t, x, u), u U(t, x). We then say that the sets Q(t, x) satisfy property (Q) at a
point (, ) of A provided:

Q(f, x) i"l a cl co Q(f, 2; 6).

Cesari showed in [lc] that this condition can be thought of as an extension for
Lagrange problems of Tonelli’s and McShane’s property of seminormality for
free problems, and we shall summarize the main concepts in 4 below. Property
(Q) has been used extensively by Cesari, Olech, Lasota, La Palm, Baum, Angell,
and others. (For the comparison with a different interpretation of this property in
Olech [7ab] see Cesari [ld.)

EXXS:FNCE TIEORZM 2.1 (For Lagrange problems (1)-(5) with unbounded
controls and an exceptional slender set). Let A be compact, and B and M closed.
Let fo(t, x.u), f(t, x, u) (fl, f,) be continuous on M, and let us assume that
the sets Q(t,x) are all convex, closed, and satisfy property (Q) at all points
(t, x) A with exception perhaps ofa set ofpoints whose t-coordinate lies on a set of
measure zero on the t-axis.

Let us assume that" (A) For every point (, ) A there are a neighborhood
No(,2), real constants r, b (bl, ..., b,), and v > 0 such that (t,x)6No(,),
u U(t,x) implies fo(t, x, u) > r + b .f(t,x, u) + vlf(t, x, u)l. Let us assume that a
closed set G A is given satisfying property (s)’[Gi(S)[ O, 1,... n, for every
set S ofmeasure zero on the t-axis. Let us assume that thefollowing growth condition
holds" (e) For every point ([, ) A G there is a neighborhood N(t, x) such that
given . > 0 we can determine an L-integrable function O(t) >= O, 6 <= <__ + 6,
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such that (t, x) Nil, ), u U(t, x) implies If(t, x, u)[ =< ff(t) + efo(t, x, u). If f
is any closed nonemptyfamily of admissible pairs, then functional (1) has an absolute
minimum in f.

In 6 we shall show that growth condition (e) is a generalization of the growth
condition used by Tonelli and McShane for free problems. In view of the ter-
minology in common use for free problems, condition (A) can be called a "condition
of normality" for the pair fo, f Details concerning these concepts will be given
in 5. Finally, in 6, we shall show that Tonelli’s existence theorems I-V of [8a]
can be derived from the existence theorem above for Lagrange problems, from
Cesari’s previous existence theorems [labcd], and results in [3ab] and [2]. A
growth condition similar to condition (e) above has been recently proposed also
by C. Olech I7a].

3. Proof of Existence Theorem 2.1. We shall denote by Ixl the usual absolute
value for real numbers x, and Ix] maxIlxil, i= 1, ,n] for vectors
x (xl, x"). If X denotes the set of all continuous vector functions x(t)

(x, x"), defined in arbitrary intervals a =< =< b, we shall make X a metric
space by means of the p-metric defined as follows. For any two elements
x(t)=(x1,...,x"), a=<t=<b, and y(t)=(yl,...,y"), c=<t=<d, let p(x,y) be
the distance function defined by

p(x,y) la- c[ + Ib dl + max Ix(t)- y(t)[,

where max is taken for < < and x and y are extended by continuity and
constancy outside the original intervals (a, b) and (c, d).

From hypothesis (A), to each point (t, if) A we may associate an expression
r + b.f + vlflandaconstant6 > Osuchthatfo(t,x,u) >__ forall(t,x,u)m

with It l 56, Ix l < 56. A finite number of the cubes {(t, ff)l It l =< 6,
Ix ffl < 3} cover A. Let 6 be the minimum of the numbers 3 associated with the
members ofsuch a finite covering. Divide E, / into cubes S whose sides have length
6 by means of the hyperplanes h6, x li6 for h, li 0, +__1, +__2,-.., 1,
2, ..-, n. Each cube S which intersects A intersects one of the cubes of the covering.
Let us associate with this cube S the expression r + b. f + v lfl which is
associated with the cube of the finite covering. In this manner a set of cubes Shl
of the form {(t, x)l(h- 1)6 <= < h6, (1 1)6 __< x 1i6 i= 1,..., n} are
obtained which cover A, and with each cube Shl we have associated an expression

hl rhl -+- bhs" f(t, x, u) + Vhllf(t, X, U)I, (11

with fo(t, x, u) >= hs for all (t, x) A f) Shl, u U(t, x), and this is true even if we
replace Shl by any one of the 3"+1 adjacent cubes. The t-coordinates of the
vertices of these cubes define a partition of a section of the t-axis; thus, there are
two integers p, q such that each vertex of the cubes has t-coordinate of the form s6
with p < s =< q.

For every o [pc5, qcS], the set Gi({t0}) has measure zero. Given r/, 0 < r/ < 6,
for every 1, ..., n, the set G({to}) can be covered by an open set ofmeasure <r/.
The Cartesian product Fo of the open sets is open in the hyperplane H(to)’t to.
Now the set (H(to)- Fo) VI A is a compact subset of A free of points of the
exceptional closed set G. By hypothesis (e), given N > 0 integer and any point
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(to, Xo) e(H(to)- Fo)f3 A, there is a number Po > 0 and an L-integrable
function OoN(t), to Po --< =< to + Po, such that If(t,x, u)l-<_ OoN(t) + N -1

fo(t, x, u) when (t, x) A, It to[ =< Po, Ix Xol <= Po, u U(t, x).
The compact set (H(to) F) fi A may be covered by a finite number of these

hypercubes. Let fi > 0 be less than 6 and less than the minimum of the numbers

Po of the given finite covering. Thus, there is an interval (to fi, to + fi) such that
-1 u) when (t, x) A, (t, x) is in the union K of theseIf(t, x, u)[ __< 0N(t) + N fo(, x,

open hypercubes, and It- to[ < ft. Here 0N(t)= max{OoN(t)}, this maximum
being taken on the finitely many functions OoN(t) associated with the chosen finite
covering. The complement H of K in the section (to fi, o + fi) has the property
that each of its projections on the coordinate axes x has measure < q.

In this manner we have associated an open interval of the form (t p, + p)
with each [p6, q6], thereby obtaining an open covering of[p6, q6]. By a suitable
contraction these intervals may be used to define a partition P’p6 to <
< < R q6 of[p6, qc3], and it may be assumed without loss of generality that
the points s6 for/9 __< s =< q are used in this partition. Now let us refine the previous
partition of A into parts S,, by means of the hyperplanes tj, j 1,..., R.
The new parts are intervals, say Qjl; we shall still call them cubes, for the sake of
simplicity. These parts Qjl are of the form

Qjl {(t,x)ltj_ - tj, (1 1)b =< X lib i-- 1,..., n},
j= 1,...,R, tj- tj_ <= b, l=(ll,...,l,).

Let jl rjl + bjl’f + Villfl denote the function associated with the cube
of the former partition which contains Qjl.

Summarizing, the following type of partition may be obtained" Given
r/ > 0 and N > 0, there are expressions jl as above, and a partition of A into
cubes Qjt as above, whose edges in the x direction have length 6 > 0 independent
of r/and N, such that fo(t, x, u) >= jl for all (t, x) Qjl VI A, or (t, x) A in any of

-1 u) forallthe 3"+ 1 cubes adjacent to Qjl, and If(t, x, u)l <= N(t) + N fo( x,
(t, x) with tj_ =< =< tj, except for a set Hj (made up of cubes Qjl) whose projec-
tions on the xg-axes have measures <r/, 1,..., n. Moreover, the constants

rjl and bil are independent of r/and N.
Let r maxlrj/], b max]bill, v min Vjl and take r/ < 6/2, N > 2b

(1 + 4x// + 1).
Let f* denote the class of all "admissible pairs" x(t), u(t), a < < b, defined

on an arbitrary interval a, b], in the sense that we require x to be AC in [a, b, u to
be measurable in a, b], we require (t, x(t)) A for all [a, b] u(t) U(t, x(t)) and
x’(t) f(t, x(t), u(t)) a.e. in [a, b], and we require fo(t, x(t), u(t)) to be L-integrable
in [a, b]. Thus, we do not require any boundary condition for inclusion in f*,
and thus f* = f. Let Cj’x x(t), ti_ <= <= t, be the part of the trajectory x
(if any) defined on Itj_ 1, tj]. Divide Cj into more subarcs C1, "", CTj as follows"
The first endpoint of C1j is x(tj_ 1) (or x(a) if tj_ < a < tj); the second endpoint
is either the first point where Cj leaves one of the 3"- 1 cubes in the section
{(t, x)l(t, x) A, tj_ <= <= tj} adjacent to the cube containing x(t_ 1), or x(t)
if Cj does not leave these 3" 1 cubes (or x(b) if tj_ < b < tj). The first point of
Cj2 is the endpoint of Cj1, and the endpoint of Cj2 is either the first point of Cj
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which leaves the 3" 1 cubes adjacent to the cube containing the first endpoint of
Cj2 or x(tj) if Cj does not leave these cubes (or x(b) if tj_ < b < tj). Continuing
in this manner, Cj is broken up into arcs Cj, a 1, ..., T. This process must
terminate after a finite number of steps, since each arc Cj except the last has length

Let Aj be the set of all in the domain of Cj, where x(t) Hi; let A) be the
complement of Aj in this domain. Let 2j Iajlx’(t)l dr, and 2 ajlX’(t)l dr.
Let the initial point of Cj be in Qjlk. Then

I[x,u] [rjl + bjl" x’(O + vjlx’(t)13 at
j=l =1 Jet

-rlAl-b
j=l =1 faj X’(t) dt

+f fo(t,x(t),u(t))dt}
-1 U) for all u U(t, x(t)). ThenFor Aj we have If(t, x, u)l =< qtu(t) + N fo(, x,

R Tj (
I[x, u >_ r(b a) + b

j=l a=l fA x’(t) dt

>_ -r(b a) NN(t) dt

+ E E -b x’(t) dt
j=l a=l ja

Nowl(j" A, + IA))x’(t) dtl 2bx//n + 1, and thus

fa, x’(t) dt < 26w/n + 1,

f%. x’(t) dt =<26x//n+ 1 + for all j and a.

Also, 2j, > 6 rl > 6 6/2 6/2 for a 1, ..., Tj 1. Let

R Tj R Tj

E E E E
j=l o’=1 j=l o’=1
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and let D be the diameter of A. Then

IVx, u] > -r(b a)- fi’
R Tj

NhN(t)dt + v2 + N2’+ {-b(Zj + 26x//n + 1)}
j=l o’=1

6 R Tj-

N//>= -rD- NON(t) dt + v2 + N2’ b (2j+4 n+ 12j)
5 j=l a=l

R

-b Z (2jr, + 26n + l)
j=l

-rD NO(t)dt- 25bR + + v2 + IN b(1 + 4n + 1)2’

-rD- gO(t)dt- 2bR + + v2 + 2-1N2’.

Let V min (v, N/2) > 0. Then

Thus, given any constant Mo > O, for any admissible pair x, u with
I[x, u] Mo, the trajectory has uniformly bounded total variation, and then
uniformly bounded length. Moreover, this inequality shows that

Z inf I[x,u] -rD- go(t dt- 26bR + 1,

where inf is taken in the class * .
It will now be proved that for the same admissible pairs x(t), u(t), a N b,

with I[x, u Mo, the trajectories x are equicontinuous.
If they are not, then there is an e > 0 such that for every positive integer k

there is an admissible pair x(t), u(t), a N N b, and two points tl, t: e [a, bJ,
such that 0 < t: tl < k-1, I[x, u N Mo, and Ix(te)- x(tl)l > . Suppose
without loss of generality that t, o, t: to, x(t) Xl, x(t:) x: as
k . Then Ixa xl e. Let L be a bound for the lengths of the trajectories x.

The sets G({t0}) have measure zero. Hence, they may be covered by open sets

Fi of measure <, 0 < N e/4. Let F denote the set F {(to,x) xiFi, i= 1,
.., n}. Then F is open in the hyperplane H(to)’t o. Let N (4/0[Mo
+ 12Z 2r6 bL llJ, where r, and b are the constants defined above. The
set (H(to)- F) A is compact, and for every point (to,)e(H(to)- F) A
there is a f > 0 and an L-integrable function 0(t) such that If(t, x, u)[
+N- lfo(,X,t u) when It tol < . A finite number of these intervals {(t, x)l It tol
< fi, Ix ffl < fi} covers (H(to)- F) A. Let p be the minimum for such a
covering.

Divide the curve C’x x(t), a b, into three parts" C1, C2, C3
according as a tkl tkl tk2 tk2 bk, respectively. Divide the
interval Irks, tk2] into two subsets, say E2 [tlx(t) F], E1 tkl tk2] E2.
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Then, for some ko and all k > ko we have tkl-
IXk(tkl xk(tk2)l > e/2. Then for k > ko we have also

Now

tol < p, Irk2 tol < p, and

IXk, lk] Ikl q- Ik2 + Ik3 2Z + Ik2

>= 2Z + (re +re fo(t’ xk(t)’ uk(t))

>= 2Z + fe (-N(t) + Nlf(t,xk(t), Uk(t))l)dt

+ fe [- r blx’(t)l] dt

E f
t2k

>= 2Z- 2r bL + N ]x,(t)] dt- nN(t dt.
Ilk

Ix,(t) dt < rl,

Ix,(t)l dt Ix;,(t) dt Ix;,(t)l dt
/lk

>= (/2)- r/ >=
On the other hand, for k sufficiently large, the integral of NCN(t over [t lk t2k is
certainly < since tzk- lk O. Finally,

I[xk,uk] > 2Z- 2r6 bL + Ne/4

=2Z-2r6-bL- 1 + [Mo + 2Z-2rb-bL- ll] >Mo,

a contradiction. Thus, for admissible pairs x, u with I[x, u] <= M, the trajectories
x are equicontinuous.

Let be the infimum of I[x, u] in the original family f of admissible pairs
x(t), u(t), tl <= < t2. Thus, for these pairs, the trajectories satisfy the required
boundary conditions (tl, x(tl), t2, X(t2)) B, together with (t, x(t)) A for all

It 1, t2]. Since f *, we have > Z > -; thus, is finite. Let
lk _-< =< t2k, k 1, 2, ..., be a minimizing sequence of admissible pairs, all in

fL with I[xk, uk] < + k-l, k 1,2,.... Then the trajectories x are equi-
bounded and equicontinuous. By a suitable extraction we obtain a subsequence,
which we still call [k], such that x converges in the p-metric toward a continuous
vector function x(t), <- <= t2, and (t, x(t)) A for all =< =< 2, and (t l, X(tl),
t2, x(t2)) B. Also, the curve C’x x(t), <= 2, has finite length l(C), since
l(C) < lim inf l(Ck) < L as k .

Let us prove that x is AC. Suppose that this is not the case. Let s, 0 <= s =<
l(C), denote the usual arc length parameter along C, thought of as a path curve

in the tx-space E,+ 1. Note that given any measurable set E [a, b, the usual
Lebesgue measure IE[ of E is the infimum of the numbers ,i(fli- ai) for any
countable covering (ai, fi), 1, 2, ..., of E. Analogously, we can define another
measure, or length measure l(E) of E, by taking the infimum of the numbers
_,i(s(fii) s(ai) for all the same open coverings of E. Obviously, IEI _-< l(E). If x
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is not AC then there is some set E of Lebesgue measure zero on [a, b] which has
positive length measure, or ]El 0, l(E) 2 > 0. Now the n sets Gi(E), 1,...,
n, have all zero Lebesgue measure. Thus, if P {(t,x)ltE, x x(t)}, then
P f-) G has projection of zero Lebesgue measure on each coordinate axis. As a
consequence, there is some closed set E’ E such that IE’I 0, l(E’) > 2/2, and
(t, x(t))q G for e E’.

Let N (2/2)(1i1 + 2 + rD + bL), where L is a bound on the lengths of the
trajectories x in f2. Then, there is some p > 0 and an L-integrable function g,N(t) >= 0

u) when (t, x) has a distance <p fromsuch that f(t, x, u)l <= ON(t)+ N- fo( x,
the compact set P’ {(t, x)lt E’, x x(t)}. Since E’ is compact, [E’[ 0, it may
be covered by a finite set of open intervals (ej,/j), j 1,..., R, such that if
F U R (ej,/j) we havev N bN(t) dt < and x maps F into the p-neighborhoodj=l

of P’. Let ko be such that .Iv [x,(t)[ dt > 2/2 for all k >= ko. Finally,

fo(t, xk(t), uk(t)) dt

>= rD bL + fi
> -rD- bL +fF (- NbN(t) + Nlx’(t)[) dt

> -rD- bL- + N2/2

-rD bL 1 + (1il + 2 + rD + bL)= Iil + + 1,

a contradiction. We have proved that x is AC. By the lower closure theorem (see,
for instance, Cesari [ld]) we know that there is a measureable function u(t), tl <=
=< t2, such that the pair x(t), u(t), < t2, is admissible, and

I[x, u] <= lim inf l[x, u] i.

Here (x, u) belongs to since D is closed; thus I[x, u] >= i, and hence I[x, u] i.
This proves Existence Theorem 2.1.

Remark 1. In the proof of Existence Theorem 2.1, we actually prove that there
is a positive constant mo and a real number ml such that I[x, u] >= moBV(x) + m,
where BV(x) is the total variation of x. Hence, the trajectories of a minimizing
sequence for I in have uniformly bounded variation. The proof of this inequality
is similar to the one given by Turner [9] for free problems in En. Also, McShane [4b]
noticed an analogous inequality for free problems for n 1.

Remark 2. Condition (A) in Existence Theorem 2.1 can be replaced by the
following one’(A) For every point (, ) A there are a neighborhood N(, ),
real constants r, b (b 1,..., b,), and v > 0, and a point 5, e E such that
(t, x) N6([, ), u U(t, x) implies fo(t, x, u) >= r + b f(t, x, u) + vl f(t, x, u) 21.
The proof is a simple modification of the proof given above. In particular, we can
take 5 f(L , ) for some 8 e U(, if).
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4. A variant of Existence Theorem 2.1.
EXISTENCE THEOREM 4.1. This is the same as Theorem 2.1 with condition (A)

satisfied only at the points (t, ) of the closed set G.
Proof Let us perform the initial subdivision in cubes Qhl as at the beginning

of 3 by taking 6 > 0 so small that the following holds"
(a) If Qht fl G - , then Qht and the 3"+1 1 adjacent cubes Q form a

set F with F A N0, where N denotes one of the neighborhoods of property
(A). (b) If Qh is any one of the cubes Q with Qhl VIA - and not covered by any
of the sets F above, then Qh and the 3"+ 1 adjacent cubes Q form a set F with
F fl A N0, where N denotes one of the neighborhoods of property ().

We may denote by Q1,’", Qv, the cubes Qh of the first kind, and by
Q’I, "’", Q,, the cubes Qh of the second kind. Finally, for every curve C" x x(t),
a =< =< b, with (t, x(t)) A there is a subdivision into finitely many arcs C1, "’", Cv,
C’1,’", C,, each C1,.", C contained in a cube of the first kind, and each
C’1, -", C, in a cube of the second kind. Each of these arcs has diameter > . We
shall now apply to the arcs C1,’", C the arguments of 3, and to the arcs
C’1, "", C,, the usual arguments of [la, pp. 391-395], and [lb, Remark 10,
p. 539]. These arguments show that for I[x, u] <= Mo the curves C" x x(t),

_<_ _<_ t2, have total length l(C) <= L for some fixed L, and this yields bounds
for the numbers v and #. The concluding argument of the proof is then the same as

in3.
Remark. In Existence Theorem 4.1, condition (A) at the points of G can be

replaced by a condition more geometric in character which we shall state in 5
after Theorem 5.5.

5. Remarks. (a) Given any two functions g(t, x, u), fo(t, x, u), fo scalar,
defined and continuous on the same set M as in 2, we say that g(t, x, u) is "ofslower
growth thanfo(t, x, u) with respect to u" in a neighborhood N0(t, if) of(t, ) e A, pro-
vided, given e > 0, there is somefi fi(b,e) >= 0such that(t,x,u)M,(t,x)eNo(t,x),
lu[ > fi, implies [g(t, x, u)l <= efo(t, x, u). We proved in [lb, (2.1)(i), (2.2) (ii)] and in
[lc, (2.i)] the following criterion for property (Q).

CRITERION 5.1. /fl andf(t, x, u) are ofslower growth than fo(t, x, u) with respect
to u in a neighborhood No(t, ) of (t, ) in A, then the sets Q(t, x), if convex, satisfy
property (Q) at (t, ).

(b) Let f(t, x, u) (j’ f,) and fo(t, x, u) be continuous and defined on
M as in 2. As usual, we denote by Q(t,x) E, the sets defined by Q(t,x)

f(t, x, U(t, x)) [zlz f(t, x, u), u U(t, x)] c E,. As usual we denote by R
the linear manifold of E, of minimum dimension r, 0 =< r < n, containing Q(t, x),
and we denote by Rint Q(t, x) the set of all points z Q(t, x) which are interior to
Q(t, x) with respect to R. We say that f(t, x, u) (fl, "’", f,) and f,(t, x, u) satisfy
property (e) at a point (t, if)e A provided"

(e) If (z, z) (’10 cl co Q(t, ; 6), then z e Q(t, if).

As we noticed in [lc] this condition is necessary for the sets Q(t,x) to satisfy
property (Q) at (t, if).

For free problems (that is, when m n, f u, U E,; see 5 below), we
have Q(t, x) E, for all (t, x) A, and then condition () is trivially satisfied. We
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consider again continuous functions f(t, x, u) (fl, f,) and fo(t, x, u) scalar
as in 2. We say that f and fo satisfy property (X) at the point (, if)e A provided,
for every 5 e Q(L ) there is at least one point e U(L if) such that (i) 5 f(L , ),
and (ii) given e > 0 there are numbers > 0 and r, b (b l, "’, b,) such that

(X’) fo(t, x, u) r + b. f(t, x, u) for all (t, x) e Nil, ) and u U(t, x);

(x") foq, , ) < r + .fq, , ) + .
We say thatfand fo satisfy property (X*) at the point (L ) e A provided, for every
e Q(L), there is at least one point e U(L) such that (i) f(L, ), and

(ii) given e > 0 there are numbers > 0, v > 0, and r, b (b, ..., b,) real such
that

(X’*) fo(t, x, u) > r + b. f(t, x, u) + vlf(t, x, u) f(L X, )1

for all (t, x) e Nil, 2) and u U(t, x);

(X") fo(L X,/i) __< r + b "f(L X, )+ e.

Here, by b.fwe mean as usual bf + +
For free problems, that is, m n, f u, U E,, condition (X) reduces to

the following condition which concerns only the function fo, or condition (Xf)"
For every (1,..., ")eE, and e > 0 there are numbers > 0 and r,b

(b., .-., b,) real such that

(X}) fo(t, x, u) >__ r+b.u for all(t,x) eNa(,ff) and all u

(X.}) fo(,ff, ) =< r + b. + e.

When this condition is satisfied, we say that fo(t, x, u), (t, x)e A x E, is semi-
normal at (,)e A. This is an equivalent formulation of definitions due to
Tonelli [Sabl and McShane [4. Again, for free problems, condition (X*) reduces
to the following condition concerning fo, or condition (SN)" For every
=(,...,)eE and >0, there are numbers c5>0, v>O, and r,
b (b, ..., b,) real such that

(SN’) fo(t, x, u) >= r+b.u + vlu- 1 for all(t,x) eNil,) andueE,;

(SN") j)(, if, ) _<_ r + b. +
When this condition is satisfied, we say that f0(t, x, u), (t, x) A E,, is normal
at (L if)e A. This is an equivalent formulation of definitions due to Tonelli [8ab]
and McShane [4b].

We see, therefore, that conditions (X) and (X*) above appear as natural exten-
sions to Lagrange problems of the usual conditions of seminormality and
normality respectively for free problems.

We proved in [lc, (4.i)] the following second criterion for property (Q) of
the sets Q(t, x).

CRITERION 5.2. If conditions () and (X) hold at the point (L ) A, then the set
(, X) is closed and convex, and the sets O(t, x) satisfy property (Q) at (L ).

(c) The case in which f is linear in u, or f(t, x, u)= B(t, x)u + C(t, x) (B, C
matrices of dimensions n m, n 1 with continuous entries), is of interest. The
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free problems are of this kind, with m n,f u, B the identity matrix of order
n, and C 0. We proved in lc, (75)] the following criterion for property (Q).

CRI:ERION 5.3. If A is closed, U Em, M A x Em, fo is continuous on M,
convex in u, and seminormal in u, at a point (, 2) A, and iff(t, x, u)= B(t, x)u
+ C(t, x), then the sets Q(t, x) satisfy property (Q) at (, ,).

(d) Given f(t, x, u) (fl, f) and fo(t, x, u) continuous on M as usual,
and for any point z Q(t, x) f(t, x, U(t, x)) E,, let us define T(z t, x) by taking

T(z ;t, x) inf [zl(z z) e O(t, x)]

inf [zlz >__ fo(t, x, u), z f(t, x, u) for some u U(t, x).

Thus, for every (, 2) A, the scalar function T(z; , 2), z e Q([, 2), is defined, with- <= T(z;?, 2) < + . It was proved in [lc, (8.i)] that, if Q(t, x) is convex, then
either T(z;,2)--- - for all zeRintQ(,ff), or T(z;l, 2)> -o for all
z e Q([, 2). In the latter case, T(z;, 2) is finite everywhere and a convex function
of z in Q([, ), T(z;[, ,) is bounded below on every bounded subset of Q([, if), and
T(z;, 2) is continuous in the convex set Rint Q([, 2). Finally, if Q([, 2) is convex
and closed, and T(z; , 2) > in Q(, if), then T(z , 2) is a lower semicontinuous
function of z at every point z e Q(I, 2) Rint Q(, 2). We proved in [lc, (9.i)] and
[le, (4.vii)] the following statements.

THEOREM 5.4. If T(z , 2) > in Q([, ), then the sets Q(t, x) have property
(Q) at (, 2) if and only if properties (o0 and (X) hold at the point (, 2).

THEOREM 5.5. If T(z; , 2) > --o in Q(, 2) and if the sets Q(t, x contain no

straight line, then the sets ((t, x) have property (Q) at (, 2) if and only if properties
(o) and (X*) hold.

Asa consequence ofTheorem 5.5 we can now replace condition (A) in Existence
Theorem 4.1 by the following condition more geometric in character" (A’) At
every point (, 2) G the sets ((, 2) satisfy property (Q), T(z; ,ff) > -, and
Q(, 2) contains no straight line.

Indeed, condition (A’) implies that both conditions (e) and (X*) hold at the
same points, and the latter implies (A) for 0.

Theorem 5.5 reduces for free problems (m n, f u, U E,) to the following
well-known statement"

THEOREM 5.6. Iffo(t, X, U) is continuous in A x E,, then fo is normal in u at

(, 2) if and only iffo(, 2, u) is convex in u, and for no ft, u E,, u : O, it occurs
that fo(, 2, t) 2- lfo(, 2, + 2u 1) + fo(t, x, u 2u 1) for all/t >= O.

This last statement was proved by Tonelli [8a] under smoothness hypotheses,
and then extended by Turner [9 under the sole continuity hypotheses above.

6. Free problems. We consider now free problems, that is, Lagrange problems
with m n, f u, U E,, as stated in 1. Thus, we are interested in problems
concerning the minimum of an integral

(6) I[x] fo(t, x(t), x’(t)) dt

in classes f of admissible AC vector-valued functions x(t)= (x 1, ...,
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=< t2, satisfying constraint and boundary conditions

(7) (t, x(t)) e A c En+ 1, [tl t2],

(8)

The only requirement for admissibility ( 3), which has not yet been restated, is
now that fo(t, x(t), x’(t)) be L-integrable in [t t2]. We shall show in this section
that existence theorems I to V of the memoir [8a] of Tonelli for free problems can
be derived as particular cases from the existence theorems above for Lagrange
problems, from the previous Cesari existence theorems [labcd], and results in
[3ab] and [2].

THEOrEM 6.1. Let A be compact, B closed, fo(t, x, x’) continuous in A E, and
convex in u for every (t, x) A, and let us assume that" (dp) There exists a continuous
real-valued function q(), 0 <= < + , with fo(t, x, x’) >= 49([x’[), ck()/ + o
as + . Then, integral (6) has an absolute minimum in every closed nonempty
class of admissible AC curves x x(t), tl <= <= t2, satisfying (7) and (8).

Indeed, here f u, rn n, U E,, and by force of (b) both and f are of
slower growth thanj in A, so that the convex sets ((t, x) [(z, u)lz >= fo(t, x, u),
u E,] satisfy property (Q) at every (, if) A by force of Criterion 5.1. Theorem 6.1
is now a corollary of Cesari’s Existence Theorem 1 for Lagrange problems in
[la, p. 390]. Of course, we could use Theorem 2.1 instead. Indeed, by force of
(qS), first b() >= c + d for suitable constants c real and d > 0, and then condition
(A) is trivially satisfied with r c, b 0, v d. On the other hand, condition
(b) certainly implies condition (e). Thus, Existence Theorem 2.1 applies with
G b. Note that Theorem 6.1 is essentially Tonelli’s Theorem of [8a, p. 208] for
any n >= instead ofn only.

THEOREM 6.2. This is the same as Theorem 6.1 with (4)) replaced by

(1) lim fo(t, x, u)/lul + for every (t, x) e A.

Indeed, for f0 convex, conditions (qS) and (1) are equivalent (see [8a). Note
that Criterion 5.2 is essentially Tonelli’s Theorem II of [8a, p. 211] for any n >
instead of n only.

THEOREM 6.3. This is the same as Theorem 6.1 with (4)) replaced by" (eo) Given
> 0 there is a locally integrable function (t) which may depend on e, such that

lul -<_ p(t) + fo(t, x, u) for all (t, x, u) e A x E,.
Indeed, condition (o) implies that, for all ([, if)e A, with exception perhaps of

a set of points whose t-coordinate lies in a set of measure zero on the t-axis, the
figurative z fo(L if, u), u E,, does not contain any straight line, and hence,
because of Theorem 5.6,foiS normal in u at (t, if). This in turn implies, because of
Criterion 5.3, that the sets Q(t, x) [(z, u)lz >= fo(t, x, u), u E,) satisfy condition
(Q) at the same points (, if) e A. We are now in a position to apply Cesari’s existence
theorem for Lagrange problems [lb, Cor. 2, pp. 545-546, and Remark 10, p. 539].
Theorem 6.3 is thereby proved.

Concerning Tonelli’s Theorem III of [8a, p. 213], let us assume that there is a
closed subset E of A such that fo satisfies condition (1) at every point of A--E,
and the condition (/3) stated by Tonelli in [8a, p. 213] and restated in [3b, p. 380]
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under the name of condition (T). As proved by J. R. La Palm in [3b, pp. 380-382],
fo then satisfies condition (Co) in A. and Theorem 6.3 applies.

THEOREM 6.4. Let A be compact, B closed, fo continuous in A x E,, convex in u

for every (t, x) A, and normal. Let G be a closed subset ofA contained in a count-
able family of AC curves F’x x(t), t’ <= <= t", or in a collection of straight
lines x (1, ,) such that each set {i}, 1,..., n, of real numbers is

of measure zero on the real line. Let us assume that at every point (t, x) A G we

have" (l)fo(t, x, u)/lul + oo as lul + oo. Then, the integral (6) has an absolute
minimum in every closed nonempty class ) of AC curves x- x(t), tl <= <= t2,
satisfying (7) and (8).

Since fo is normal, fo satisfies conditions (SN’), (SN") of 5, part (b). In
particular, for 0 we obtain fo(t, x, u) >= r + b. u + vlu[ for all (t, x) N6(, if),
and all u E,. In other words, fo satisfies property (A) of Theorem 2.1 with.[ u,
m n, U E,. Furthermore, again by force of the normality, and because of
Criterion 5.3, the sets

Q(t, x) E(z, u)lz => fo(t x u)

satisfy property (Q) for every (t, x)e A. Finally, for every (, if)e A G, there is a

neighborhood N(, if) at all points of which condition (1) holds hence, by Tonelli’s
argument, fo satisfies a condition (05) in N(,ff), and, a fortiori, a condition
as in Theorem 2.1 with f u, m n, U E,. Theorem 2.1 applies and Theorem
6.4 is proved. Note that Theorem 6.4 is essentially Tonelli’s Theorem IV with
n > instead of n 1.

THZOREM 6.5. Let A be compact, B closed, fo continuous in A E,, and convex
in u for every (t, x) A. Let G be any subset of A as described in Theorem 6.4. Let
us assume that (i) at every point (, )G the figurative Q(,)= (z,u),
z fo(, , u), u E,] contains no straight line; (ii) for every (, ) A G there
is a neighborhood N(,) of (, ) in A and, for every > O, a locally integrable
nonnegative function (t) such that lul <= (t) + efo(t, x, u) for all (t, x) Na(,
and u E,. Then, the same conclusion holds as in Theorem 6.4.

For any point (t, if) G the figurative Q(, if) contains no straight line, and
then the same holds at every point (t, x) of some neighborhood N(, ) of (, if) in
A. Thus, fo is normal in N(t, ff), and consequently satisfies property (A) in

N(, if). Also, the sets ((t, x) E(z, u)lz >= fo(t, x, u), u E,] satisfy property
(Q) in all of N(, if) by force of Criterion 5.3. Note that for every (, if) A G
the growth condition described in hypothesis (ii) holds in a neighborhood Na([,
of ([, if) in A. As a consequence, property (1) holds at all (t, x) N([, ) with excep-
tion perhaps of a set of points whose t-coordinate lies in a set of measure zero on
the t-axis. Hence, the figurative Q(t, x) contains no straight line and fo is normal
at all (t, x)e N(, if) with perhaps the same exception as above.

By force of Criterion 5.3, property (Q) holds at all points of A-G with the
same possible exception. Thus, property (Q) holds in all of A, with the same possible
exception, as required in Theorem 2.1. Conditions (s) and (e) of Theorem 2.1
hold, and condition (A) of Theorem 4.1 also holds. Thus, Theorem 4.1 applies and
Theorem 6.5 is proved.

Concerning Tonelli’s Theorem V of ESa, p. 225, let us assume that G is given
as in Theorem 6.5 and that hypothesis (i) is satisfied. Also, let us assume that there
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is a closed set E of A such thatfo satisfies condition (1) at every point of A--G--E,
and that condition (/) stated by Tonelli in [8a, p. 213] holds. This condition was
restated in [3b, p. 380] under the name of Tonelli’s condition (T). As proved by
J. R. La Palm in [3b, pp. 380-382], fo then satisfies hypothesis (ii) in A--G, and
Theorem 6.5 applies. The reader may have noticed that the terminology used in the
present paper is slightly different from the one used in [1 c]. This change was made
in order to be closer to Tonelli’s and McShane’s terminology.

7. Examples. (a) For free problems the functions

1. fo-lxlu2/(l/u2)a/2 m-n-1 U-E f-u"
2. fo Ixl lul / / (1 / u2)/2, o > O, m n 1, U E1, f u"

3. fo =(x2 + Y2)(u2 + v2) +(1 + u2 +v2)1/2, m n =2, U =E2,

4. fo =(x- t)Zu2 +(1 + u2)/ n m U =El, f= u"

5. fo =(xsinl/x)Zu2 +(1 +u2) 1/2, m=n= 1, U=E1, f=u;

6. fo =((x2- t2)2 +Y2)(u2 + v) +(1 + u2 + v2) 1/2, m =n =2,

U=E, L=u, f=v;

7. fo Ixl u2 + (1 + /22) 1/2 2U, m n 1, U E, f u;

8. f0 X2 - Y2)(b/2 + /)2) nt (l .qt_ /22 + U2)1/2 3/2 5/) 1,

m=n=2, U--E2, fl--u, f2--/)’

all satisfy the condition of the Existence Theorem 2.1. The exceptional set is respec-
tively, the single straight line x 0 in the first, second, and seventh examples, the
single straight line x y 0 in the third and eighth, the straight line x in the
fourth, the countable family of straight lines x 0 and x _+ (krc)- 1, k 1, 2, ...,
in the fifth, and the two straight lines, x +__ t, y 0 in the sixth. In the seventh and
eighth examples condition (A) is satisfied by taking respectively b 2, and
b (3, 5) in the whole of A.

(b) For general Lagrange problems the following functions"

1. To Ixl u4 + (1 + u4) /2, f u2 n m 1 U El"
2. fo Ixl u4 + (l + u4) x/2 3u2, f= u2, n 1, m 1, U E;

3. fo x3/22 f x2u n 1, m 1, x > O, U E 1"

4. fo--X3U2--X2U, f-X2U, n=l, m=l, x>=O, U--El,

satisfy the conditions of the Existence Theorem 2.1.
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NONLINEAR PROGRAMMING IN COMPLEX SPACE"
NECESSARY CONDITIONS*

ROBERT A. ABRAMS" AND ADI BEN-ISRAEL:

Abstract. Necessary conditions of the Kuhn-Tucker type are given for two classes of nonlinear
programming problems over polyhedral cones in finite-dimensional complex space. The first class
consists of problems of the form"

Minimize Re f(z) subject to g(z)e S,

where S is a polyhedral cone in C" and f’C" C, g’C" C are analytic functions. A necessary
condition for a feasible point z to be optimal is that there exist a vector u e S* such that Vf(z)

[D1g(z)]u and Re (g(z), u) 0. The second class consists of problems of the form"

Minimize Re f(z, ) subject to g(z, ) e S,

where./: C2" C, g" C2" C are analytic. A necessary condition for a feasible point z to be optimal is

that there exist a u e S* such that Vzf(z, z) + Vf(z, z) [Dg(z, z)]u + [Dfg(z, z)]a and
Re (g(z, z), u) 0. The derivation of necessary conditions for problems of the first class is analogous
to that used in the real case. For problems of the second class, necessary conditions are obtained by
considering an equivalent problem in the form of the first class.

1. Introduction. In this paper first order necessary conditions of the Kuhn-
Tucker type are given for nonlinear programming problems over polyhedral
cones in finite-dimensional complex space. Two classes ofproblems are considered.
In the first class, both the objective and constraint functions are assumed to be
analytic functions of n complex variables, i.e., the problems are of the form:

Minimize Re f(z) subject to g(z) S,

where S is a polyhedral cone in C and the functions f: C" C and g:C" C"
are analytic, at least in a neighborhood of a feasible point z being tested for
optimality. A necessary condition for optimality of z, given in Theorem 1, is
that there exist a u in a subcone of S* such that

Vzf(z) [Dg(z)]u and Re(g(z), u) 0.

In the second, more general, class of problems, both objective and constraint
functions may involve z and 5 and are assumed to be analytic functions of 2n
complex variables in a neighborhood of (z, z), where z is a feasible point being
tested for optimality. Problems in this class are of the form:

Minimize Ref(z, ) subject to g(z, ) S,

where f:C2" C and g:C2"- C are analytic. A necessary condition for the
optimality of z is, by Theorem 3, that there exist a vector u in a certain subcone
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of S* such that

Vzf(Z z) + Vef(z z) EDzg(Z z)]u + EOeTg(z z)]
and Re (g(z, z), u) O.

Sufficient conditions for optimality, and duality theorems based on the
complex analogues of convexity, are given in [1], I2] and 11].

Complex linear programming was studied in [13] (where complex mathe-
matical programming was introduced), [5] and [3] (where the natural extension
to quadratic programming is made). Other references are given in the survey
article [4], which also contains some applications of complex programming,
and in which some of the results of the present paper and of [2] are announced
without proof.

This paper contains five sections and an Appendix. The preliminaries of 2
are used to derive the necessary conditions for problems of the first and second
classes in 3 and 4 respectively. An example is given in 5. Some results on
derivatives of complex functions which are used here and in [2] are derived in
the Appendix.

2. Preliminaries.
NOTATIONS 2.1.
C" [R"] denotes the n-dimensional complex Ereal] vector space;
C" " R "], the m x n complex [real] matrices;
R"+ =_ {x R"’xi >= 0, l, n}, the nonnegative orthant of R";
x>=ydenotesx- yR_ forx, yR.
For A (a) C" ",

A (fij) denotes the conjugate,
Ar (aj) denotes the transpose,
An r denotes the conjugate transpose.

For x (xi) C", y C",
(x, y) )fix denotes the inner product of x and y,
ff =- (i) denotes the conjugate,
Re x (Re x)e R" denotes the real part,
Im x (Im x)e R" denotes the imaginary part,
arg x (arg x) denotes the argument of x.

For a subspace LC", L+/--- {yC"’lL=(y,l)=0} denotes the
orthogonal complement of L.

For a nonempty set S C", S* =- {yC"’xeSRe(y,x) >= 0} denotes
the dual (also polar) of S.

For a nonempty set S

S* {yeR"’xS (x, y) >= 0}.
For an analytic function f" C" --, C anda point z e C", Vf(z) ((c3f/c3zi)(z)),
1, ..., n, denotes the gradient of f at z.
For a complex function f(w, w2) analytic in the 2n variables (w 1, w2) at

the point (z, z) e C" x

Vf(z,z)=((z,-6) i=1 n
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and

Vf(z z) =- 2(z -)1 i=l,.., n

For an analytic function g’C" Cm,

Dg(z)=_((z) i=l,...,m, j=l,...,n.

Similarly, for a function g’C" x C" C analytic in the 2n variables (w, w2)
at (z, z) e C" x C",

Dg(z,z)=((z,--6) i=l,...,m, j=l,...,n,

and

Deg(z’z)
/c3wj2"

(z’ 1,...,m, j 1,...,n.

Also

Og(z, z) (Og(z, z)),
o’zgt z) (og(z,z))".

DEFINITIONS 2.2. A nonempty set S = C" is"

(a) convex if0__<2=< 1=>2S+(1-2)S=S,
(b) aconeif0__<22SS,
(c) a polyhedral cone if for some positive integer k and A C" k,

S AR+ {Ax’x R+}
i.e., S is generated by finitely many vectors (the columns of A).

The following results are needed in the sequel.
Result 2.3. A polyhedral cone in C" is a closed convex cone.
Result 2.4. A nonempty set S = C" is a closed convex cone if and only if

S S** (for proof see, e.g., 5, Theorem 1.5]).
Result 2.5. If S, T are polyhedral cones, then S T is a polyhedral cone.
Result 2.6. For any nonempty sets S, T" (S T)* S* T*.
Result 2.7. Let A Cm", b C" and S C" be a polyhedral cone. Then the

following are equivalent"
(a) Ax b, x S is consistent.
(b) Ay S* Re (b, y) => 0. (See 5, Theorem 3.5].)

Result 2.8. The nonnegative orthant R is a self-dual set in R" "tR_)* R_.
Result 2.9. Let S be a polyhedral cone in C". Then S is the intersection of

finitely many closed half-spaces, each including the origin in its boundary"
p

S= fq Hu
k=l

where H {z C" Re (z, u) >__ 0}. (It is proved similarly to the real case,
e.g., [14].)
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Result 2.10. Let S f’l p Huk be a polyhedral cone in C" or R" and let z S.
k=l

Then S(z) is defined to be the intersection of those closed half-spaces H,k which
include z in their boundaries, i.e.,

S(z) f-’l
kB(z)

where B(z) =_ {k’Re (z, uk) 0}. If z is in the interior of S, then S(z) C".
Result 2.11. Let 5 - S T C". Then T* S*.
Result 2.12. Let {Si’i 1,..., p} be closed convex cones in C". Then

i=1 i=1

(which follows from 5, Corollary 1.7]).

3. Necessary conditions for problems of the first class. Necessary conditions
for optimal points of analytic nonlinear programming problems will now be derived.
In the real case the necessary conditions are obtained by using the Farkas theorem
to show that the gradient of the objective function lies in a cone generated by the
gradients of the constraint functions, e.g., [10, 2.1]. The generalized Farkas
theorem, Result 2.7, is used here in a similar manner.

Let f: C" - C and g C" --, C both be analytic in a neighborhood of a point
z. (g:C" --, C" is analytic if each of its components gi:C" --, C, 1, ..., m, is
analytic.) Let S be a polyhedral cone in Cm. The complex nonlinear programming
problem of the first class is:

(1) Minimize Re f(z) subject to g(z) S.

An analogue ofthe Kuhn-Tucker constraint qualification provides a regularity
condition which the constraint is assumed to satisfy at a point being checked for
optimality. Let z be a feasible point of (1). Then the (Kuhn-Tucker) constraint
qualification holds at z, or the point z is qualified, if every z C" such that
Dzg(z)]z S(g(z)) is tangent to a once differentiable arc a(O) beginning at z and
leading into the feasible region, i.e., a(0) z, g(a(0)) S for 0 _< 0 < e and a’(0)

kz for some k > 0, . > 0.
THEOnEM 1. Let S be a polyhedral cone in Cm. Let f" C" C and g" C" --, C

both be analytic in a neighborhood of a qualified point z. Then a necessary condition

for z to be a local minimum of the problem"
Minimize Re f(z) subject to g(z) S,

is that there exist a vector u S(g(z))]* c S* such that

(2)
and

Vzf(z) [DUg(z)]u

(3) ne (g(z), u) 0.

Proof. Define the set

(4) Z {z e C"’FOzg(z)]z S(g(z)), Re (Vzf(z), z) < 0}.
If Z is empty, then

[Dzg(z)]z S(g(z)) Re (Vf(z), z) >__ 0.
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The cone S(g(z)) is polyhedral and hence closed and convex. Therefore by (2.4),
S(g(z)) may be replaced by ([S(g(z))]*)* in (5). By Result 2.7, the complex Farkas
theorem, (5) is equivalent to the existence of a u e [S(g(z))]* such that

Vf(z) [Ofg(z)lu.

Thus in order to prove (2), it is sufficient to show that Z is empty.
Consider any z such that [Dg(z)]z S(g(z)). Since z is a qualified point,

there is a feasible arc a(O) with a(0) z and a’(0) kz for some k > 0. By assump-
tion, z is a local minimum of Re f(z) along a(O). Therefore

d
(6) d Re [f(a(O))]lo-o >= 0

which is equivalent to

d
(7) Re-df(a(0))10=o >= O.

Using the chain rule, we find that (7) becomes Re [vTf(z)a’(O)] > O, or with
a’(O) kz, Re (Vf(z), z) => 0, which proves that Z is empty.

To prove (3), note that u [S(g(z))] *. Then

* =cl 2
keBlglz) keB(g(zO)

kB(g(z)) kB(g(z))

where the second equality follows from (2.12) and the last follows from the fact
that ngo)){zu’a __> 0} is a polyhedral cone and hence closed (Result 2.3).
Therefore u [S(g(z))] * implies

(8) u fiiui with fii >= O.
iB(g(z))

By the definition of B(g(z)), Re(ui, g(z))--0 for i B(g(z)), and hence (3)
follows from (8). This completes the proof.

For comparison with the real case, a real version ofTheorem 1, i.e., the Kuhn-
Tucker theorem for constraints over polyhedral cones, is stated now. The proof
follows from the proof of Theorem 1 by replacing complex spaces with real
spaces and replacing analytic functions with differentiable functions. The definition
of a qualified point is analogous to that given above for the complex case.

THEOREM 2. Let S be a polyhedral cone in Rm. Let f" R" R and g’R"
both be (Frkchet) differentiable in a neighborhood of a qualified point x. Then a
necessary condition for x to be a local minimum of the problem"

Minimize f(x) subject to g(x) S,
0is that there exist a u S(g(x ))] such that

and
Vf(x) [Dx’g(x)]u

(g(x), u) 0.
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The usual form of the Kuhn-Tucker theorem for inequality constraints
and p equality constraints is obtained from the above theorem by taking

S=Rt+ xO"-,

where 0"- is the zero element of the (m- /)-dimensional real vector space.
The representation of S as an intersection of half-spaces is

S n H
ek n H_ek,

k=l k=/+l

where ek is the kth unit vector in R". Suppose that at the point x the first r inequality
constraints are binding and that r are not, i.e.,

k= 1,...,r, and (g(x),ek) > O, k r + 1, ,1.(g(x), ep 0,

Then

S(g(x))= N H N He" N
k=l k=l+l k=l+l

and

[S(g(x))]* {ek’ >__ O} +
k=l

Thus u e [S(g(x))] * implies

H

k=l+l
{(e e)e’ek > 0, => 0}.

where/3 > 0, k 1, ..., r, and 7 is unrestricted, k + 1,-.., m. The/3 and
the 7k are multipliers of the inequality constraints and the equality constraints
respectively.

4. Necessary conditions for problems of the second class. The cl/ass of problems
under consideration is now extended to those in whichfand g are analytic functions
of the 2n variables (w1, w2) e C2" and in which the additional constraint w2 w
is added. Thus let f :C2" - C and g: C2" ---, C both be analytic in a neighborhood
of a point (z, z) C2" and let S be a polyhedral cone in C’. Consider the problem

(9) Minimize Ref(w 1422) subject to g(w W2) S and 142
2 W

which is rewritten in the more suggestive form"

(10) Minimize Ref(z, ) subject to g(z, 5) S.

From (A.20) it follows that a function explicitly involving the variable 5, such as

f(z, ) and g(z, ) in (10), cannot be an analytic function of the variable z. Therefore
Theorem 1 is not directly applicable to problems of the form (10). However, it is
possible to recast (10) in the form (1), and thus optimality conditions for (10) can
be obtained from Theorem 1.

Define the set Q by

(11) Q e c2n’w2

W2
W

ek

u fl,e, + 7,e,,
k=l k=/+l
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Q is a polyhedral cone; it is generated by the set of vectors

(12) ej -ej iej U -ie
ej j= ej --iej] j= iejl

where ej is thejth unit vector in R". The dual of Q is easily seen to be the polyhedral
cone

(13) Q* c2"’w2 -w
W2

Since S and Q are polyhedral cones, S x Q is also (Result 2.5), and therefore (10)
may be written in the form (1) as:

Minimize Re f(w1, W2)
w)

(14)
subjectto I (Wlw2 eSxQ.

A qualified point for (10) is defined using (14) and the definition of a qualified
point for (1). Thus (v 1, v2) is a qualified point for (14) if, for every (w 1, w2) e C2"

such that

(15) O(ww; (v w

there exists an arc a(O) C2n such that a(0)= (vl,/)2), a’(0)--

and
w2

,k>0,

g(a(O))
SxQ,

a(O)

Condition (15) is equivalent to

0<0<.

(16)
W2

S((/)I,/)2)) x Q(v 1,/)2).

For any point (v 1,/)2) in the cone Q, Q(v 1,/)2) Q, and therefore (16) and (15)
become

/)2D()g(/),
W

W2

W
e S(g(v , v2)) and

14)2

Thus we may say that a point (z, z) is qualified for (10) if for all (z, 5) such that

[D(ze)g(z, z)]() e S(g(z, z--)),
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there exists an arc (fl(0), fl(O))c C2n such that fl(0)= z, fl’(0)= kz for some
k > 0 and g(fl(0), fl(O)) S for 0 <= 0 < e.

THEOREM 3. Let S be a polyhedral cone in Cm. Let f" C2n C and g" C2 C
both be analytic in a neighborhood ofa qualified point (z, z). A necessary condition
for z, z to be a local minimum of the problem"

Minimize Re f(z, ) subject to g(z, ) S,

is that there exist a u [S(g(z, z))]* S* such that

(17) Vzf(z, z) + Ve/(z, z) =/rDnzgt’z, z)]u + [Dre g(z, z)]t

and

( 8) Re (g(z, z), u) 0.

Proof. The problem under consideration has been shown to be equivalent
to (14) which is of the form (1). We apply Theorem 1 to (14). Thus a necessary
condition for qualified point (w1, w2) to be an optimal point of (14) is that there
exist a

g(w, w)1 *

IS
w

x Q] [s(g(w, w))] x Q*

such that

(19)

and

v(; O.w,.)flw w)

(20) Re

From (13), 2 Q* implies 2

W2

g(w W2)
W

__). Therefore (19) becomes

(21)
Vwlf(w1, w2) Dlg(w, wZ)u +

Vwzf(W W2) HDwg(w wZ)u .
Conjugating the second equation of (21) and adding to the first yields

T 1 W2Vwlf(w w2) + Vw,f(w, w2) Dnwlg(w, wZ)u + Dw,g(w

which is equivalent to (17) since for any feasible point of (14), w2 w.
(22) Re (g(w 1, w), u) + Re [wl/rc w ff] 0.
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The second term of (22) is zero, and therefore (23) follows. This completes the
proof.

COROLLARY. In addition to the hypothesis of Theorem 3, assume that g(z, 5)
is real-valued for all z C". Then S may be assumed to be real, and a necessary
condition for a qualified point (z, z) to be a local minimum of(1 O) is that there exist
a v [S(g(z, z))] *, where S(g(z, z)) and the dual cone are calculated in Rm, such
that

(23)

and

Vzf(z, z) + Vef(z, z) Dn-,z zO)vgt

(24) (g(z, z), v) 0.

Proof. If S contains any complex vectors, it may be replaced by the polyhedral
cone $ {z’z S, Im z 0} with no loss in generality. Since g(z, ) is real-valued,
(A.33) implies Dg(z,z) D=g(z,z). Therefore (17) yields the existence of a
vector u in the complex dual of [$(g(z, z))] * such that

Z0(25) v=U( ,z) + Ve/(z, z) Og(z, z)(u + 0).

The cone S C may be represented as the intersection of S with the cone

(26) K-- ["] Hie [’-] H_ie,
j=l j=l

where ej is the jth unit vector in R". Therefore

d(g(z, z)) (S [-] K)(g(z, z)) S(g(z, z)) ["] K(g(z, z)) S(g(z, z)) [’] K

is a real polyhedral cone. The cones c C and (g(z, o)) c C which contain
only real vectors will be identified with their isomorphic images in R’. The same

notation, and (g(z, 76)), will be used in either case, but the meaning will be
clear from the context.

If c C" is written as an intersection of half-spaces; i.e., f) = H,k, then
in R we have f"l = HR,. For any point g(z, z) e , Re (u, g(z, z)) 0 if
and only if (Re u, g(z, z)) 0. Thus (g(z, z)) f-) ,ngzO,Ta)) H,,, is the same as

ng=o,7)) HR,, where the HR, are calculated in Rm.
It follows easily that if u e [(g(z, z))] * calculated in Cm, then v 2 Re u is

an element of [(g(z, z))] * calculated in Rm. Thus (23) holds. Since both v and
g(z, z) are real, (24) follows from (18). This completes the proof.

If the objective function f(z, ) is real-valued for z e C", then using (A.33) we
may replace the sum V=f(z, z) + Vef{z, z) in (17) or (23) by either of its terms.
If both f(z, 5:) and g(z, ) were obtained from analytic functions f(z) and g(z) by
substituting z x + iy and then x (z + )/2 and y (z )/(2i), then (A.20)
implies that Vef(z, ) Deg(z, ) 0. Using (A.22) and (A.34) we obtain Vzf(z, )

Vzf(Z) and D=g(z, ) Dzg(Z), and thus, in this case, (17) reduces to (2).

5o Example. A simple example, with n m 1, is used to illustrate the
above results"

(27) Minimize Re Z2 subject to Izl 1.
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To put (27) in the form (1), note that Izl may be rewritten"

(28) log z -= log Izl / arg z S left half-plane.

However, in (28) the point z 0 has been mapped to the point at infinity and
must therefore be considered separately. By Theorem 1, a necessary condition for
the problem"

Minimize Re 2
2 subject to log z e S,

to have a minimum at a point z is that there exist a u S* such that

1
(29) 2z=u and Re (logz, u)=0.

z

In this case S* is the negative real axis and thus (29) becomes

(30) 52=u<0 and (loglzl,u)=0.
2-

The second condition implies that either Izl 1 or u 0. If Izl- 1, the first
condition implies that 52 is negative and therefore Re z 0 and Im z + 1,
which are clearly optimal points of the problem. If u 0, then the first condition
implies z 0, which is a saddle point of the problem.

By writing Izl _-< 1 as z5 > 0, (27) may alternatively be put in the form of
(10) Using the corollary to Theorem 3 and the following paragraph, the necessary
conditions are that there exist a u [S(g(z, z))]* S* R/ such that

(31) = -zu and (1-zS,,u)=0.

If u 0, then z 0. If u > 0, then the second constraint gives Izl 1 and the first
implies

2 ZU U < O,

and hence (31) is equivalent to (30).

Appendix. Identities for differentiation of complex functions. The definition
of analyticity of a function of several variables is usually given in terms of a power
series or by means of the Cauchy-Riemann equation in each variable, e.g., [6], [7]
and [8]. The power series definition will be used in this paper.

DEFINITION. Let f" C" C and let D be a domain in C". Then f(z) will be
called analytic in D if in some neighborhood of every point of D it may be repre-
sented by an absolutely convergent power series about that point in the n complex
variables.

If f(z) is analytic in n variables, then it is analytic in each variable separately
when the others are held fixed, and hence the Cauchy-Riemann equations hold in
each variable, i.e.,

(A.1) vxeR(x, y) V,,F’(x, y), VxFI(x, y) -VrFR(x, y),

where FR(x, y) and F(x, y) are the real and imaginary parts of

(A.2) F(x, y) =- f(z(x, y)).
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When f(z) is analytic it also follows that all partials of all orders of FR(x, y) and
FX(x, y) exist and are continuous. Therefore both FR(x, y) and FX(x, y) have Fr6chet
derivatives at points (x, y), where z x + iy is a point at which f(z) is analytic.

Applying the chain rule to (A.2) gives

(A 3a)
cF(x, y) c3f(z) z C(z)

k 1,..., n,
X Z X Zk

or

(A.3b) VxF(x, y) Vzf(z)

and

(A.4a)
cF(x, y) cf(z) zk cf(z)

k ncy (?z cy cz-
(A.4b) VyF(x, y) iVzf(z).

If in the functions F(x, y) and F(x, y), (z + 2,)/2 and (z 2,)/(2i) are formally
substituted for x and y respectively, "functions" of the "variables" z and 2, result.
It will be convenient at times to formally differentiate these "functions" with
respect to z or 2,. The following lemma guarantees that these functions are analytic.

LEMMA A. 1. Let f: C" --, C be analytic in D. Then there exist functions f: C2n

---, C and f- C2n -- C, both analytic in a neighborhood of (z, 2,) for any z D, such
that on the manifold {(w 1, w2) C2": w2 w both functions are real-valued, and

(A.5) f(z) fg(z, 2,) + ift(z, 2,).

Proof. Let z e D. Then f(z) may be represented as a po,. er series about z
which is absolutely convergent in some polycylinder P {z e C"’[z z[ < rk,
k 1, ..., n}. Define h’C2n -- C by h(ul,..., u,, vl,..., v,) (u + ivy,...,
u, + iv,). The function h(u, v) is clearly analytic and therefore the composition of
f(z) and h(u, v) is analytic in h- (P), i.e.,

(A.6) E(u, v) f(h(u, v)), where (u, v)e C2",
is analytic in h-(P). The point (u, v) e C2", where u Re z and v =Im z,
is an element of h-(P), and hence E(u, v) may be expanded in an absolutely
convergent power series about this point; i.e.,

(u,(A.7) E(u, v) aj(u v)j.+ (v o,j,

wherej U, Jzn)and eachj is a positive integer, converges in a neighborhood
of the (real) point (u, v) contained in h- (P).

The analytic functions Eg(u, v) and E(u, v) are defined by replacing a by Re a
and Im aj respectively in (A.7), i.e.,

(A.S) E"(u, v) Z Re (aj)(u u)J (v, o,j.

and

(a.9) E’(u, v) Z Im (aj)(u u)J (v, v)J".
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The series (A.8) and (A.9) converge absolutely at any point at which (A.7) converges
absolutely, and hence they represent analytic functions at these points. The function
p" C2" C2" defined by

Z -[- Z2 Z Z2)(A.10) P(zl’ Z2)
2 2i

is now composed with (A.8) and (A.9) to give

(A.11) fR(zl, Z2) -_---- ER(p(z z2)),

(A.12) f(z z2) E’(p(z z2)).
Since p(z Z2) is analytic in each component on the whole plane, fR(zl, Z2) and
fZ(zl, z2) are analytic in the inverse image under p of the domain of analyticity of
ER(u, v) and EI(u, v) which as noted above contains the domain of analyticity of
E(u, v). Thus if f(z) is analytic in a neighborhood of z, ER(u, v) and E(u, v) are
analytic in a neighborhood of (Re z, Im z) e C2". The inverse image of this point
under the map p is the point (z, z) e C2n, and therefore fR(zl, z2) and fI(zl, z2) are
analytic in a neighborhood of this point. Since p(z, 5) is real-valued, fR(z, 5) and
fZ(z, 5) are both real-valued. Also h(p(z, 5)) z. Therefore

(A.13)
fR(z, 5) + ifI(z, 5) ER(p(z, 5)) + iEt(p(z, 5))

E(p(z, 5)) f[h(p(z, )) f(z).

This completes the proof.
A number of identities will now be derived for the analytic function f(z) and

the related functions defined above. With fR(zl, z2) and ft(z 1, z2) defined by (A.11)
and (A.12), let

(A.14) f(z Z2) fR(zl Z2) + /f/(z Z2).

Derivatives of left- and right-hand terms of (A.14) will usually be evaluated on the
manifold {(z 1, z2) z2 z }. Thus as in Notations 2.1, Of(z, )/3z], and 3f(z, 5)/cz
will be denoted by f(z, 5)/c3z and f(z, )/ respectively; i.e., derivatives will be
written as though z and were independent variables. Derivatives offR(zl, Z2) and
ft(z 1, z2) are written similarly. From (A.11) and (A.12) we have

(A.15) fR(z, 5) ER(p(z, )), ft(z, 5) EZ(p(z, )), f(z, 5) E(p(z, 5)).

Denote the components of D(z 1, z2) (defined in (A.10)) by (pl(z 1, z2) pln(Zl, z2),
pZ,(zl, z) pZ,(zl, zZ)). Differentiating the last of equations (A.15) using the chain
rule (which may be applied to the composition of analytic functions) gives

(A.16)
Of(z,5) aE #p aE ap

k n

or

(A. 17) Vzf(z, 5) - V,,E(x, y) VvE(x, y).
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The ffinctions E(u, v), ER(u, v) and Et(u, v) are analytic continuations of
F(x, y), FR(x, y) and F(x, y) respectively. Therefore V,E(x, y) VxF(X, y) and
VvE(x, y) VyF(x, y) with similar equations holding for E(u, v) and E(u, v). Thus
(A.17) becomes

(A.183 Vzf(z, 5) -VxF(x, y) -VyF(x, y).
Z Z

Taking partials with respect to z2 instead of z as was done above yields

F(a.19) Vef(z, 5) -VxF(x, y) + -Vr (x y).

Expanding the right-hand side of (A.19) gives, as an alternate form of the Cauchy-
Riemann equations,

Vef(z, 2) 1/2[VxFR(x, y) + iVxF’(x, y) + iVrF(x, y) VF’(x, y)]
(A.20)

=0 (by (A.1)).

A similar application of the chain rule to f(z, 2) instead of f(z, 2) gives

(A.21) 2Vzf"(z, 2) VFR(x, y) iVF(x, y),

which, with (A.1) and (A.3), yields the interesting formula

(A.22) 2vzfR(z, 2) V/(z).

For the applications of this paper the domain of interest of a function of 2n
complex variables will be the manifold {(w 1, we) w2 w}. The following lemma
for functions of 2n complex variables is analogous to Lemma A.1.

LEMMA A.2. Let f: C2" C be analytic in a domain D containing a point (z, z)
C2n. Then there exist .functions fR. c2n _...> C and ft. cen .. C analytic in a neigh-

borhood of (z, z) such that on the man!fold {(w, we) w2 w1}, fR(wl, W2) and
f1(w, w2) are real-valued and

(A.23) f(w, w2) fR(wl, We) + ifI(w, we).
Outline of proof Expand f(w, w2) in an absolutely convergent series about

(z, z). Define f(w 1, we) by

(A.24) f(w w2) f(w w1).

Then the series f(w 1, w2) also converges, and hence f(w, w2) is analytic in a
neighborhood of (z, z). The required functions are then defined by

(A.25) fR(w, W2) f(w W2) + f(W 1,92)

and

(A.26) f’(w w2) f(w’ we) f(w’ we)
2i

They are analytic and, since f(z, 2) f(z, ), real-valued on {(w 1, we)" w2 w }.
This completes the proof.
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Identities for analytic functions of 2n variables are now obtained. Let f" C2"

--, C be analytic in a neighborhood of (z, 5). Define h" R2n -- C by h(u, v) u + iv
and H" R4n C by H(xa, ya, x2, y2) f(h(x a, ya), h(x2, y2)). In addition, define
ga(x) x and gz(X) --X for x R". Then, what is written informally as F(x, y)

f(z(x, y), 5(x, y)) may be defined more precisely as

(A.27) F(x, y) H(x, y, gl(X), gz(Y)) f(h(x, y), h(gl.(X), gz(Y))).

F(x, y) is the composition of a complex function of complex variables and a
complex function of real variables both of which are differentiable. Hence the
chain rule may be applied to (A.27) to give

c3F(x, y) Of(z, 5) Oh Of(z, 5) Oh c3g

(A.28)
Xk W OUk OW2 Uk Xk

cf(z, 5) Of(z, 5)
t?z

/
c35

k 1,. n,

where (?f(z, 5)/c3z and c’f(z, 5)/(?5k have been used to denote t?f(z, 5)/t?z and
t?f(z, 5)/c3z respectively.

In a similar manner we obtain

(A.29)
c3F(x, y) c3f(z, 5) c3f(z, 5)

d"yk (J"Zk (JZ"-k
k 1 n

or rewriting (A.28) and (A.29) in gradient notation,

(A.30a) VxF(x, y) Vzf(z, 5) + Vef(z, 5),

(A.30b) VyF(x, y) iVzf(z, 5) iVef(z, 5).

Muliplying (A.30a) by and adding to (A.30b) gives

1
(a.31) Vzf(z, 5) - VxF(X, y) - VyF(x, y),

while multiplying (A.30b) by and adding to (A.30a) gives

(A.32) Vf(z, 5) VxF(X, y) + -VF(x, y).

Since (A.30)-(A.32) hold for any analytic function of 2n variables, they hold for the
fR(wl, W2) andfI(w, w2) defined in Lemma A.1, and hence (A.31) and (A.32) agree
with (A.18) and (A.19). If the function is real-valued, e.g., fR(z, 5) or fI(z, 5) as
defined in Lemmas A. 1 or A.2, then F(x, y) is real-valued; and therefore, (A.31) and
(A.32) imply

(A.33) Vzf(Z, 5) Vef(z, 5).

A final identity is now obtained. First differentiate (A.23) with respect to w
and then with respect to w2 to give

(a) Vzf(z, 5) vfR(z, 5) + iVzf’(z, 5)
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and

(b) Vef(z, ) vefR(z, f:) + iVfX(z, ).

Conjugating (a), adding (b) and using (A.33) yields

(1.34) Vzf(z, ) + Vf(z, ) 2vfR(z, ).
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REPRESENTATION OF MARTINGALES, QUADRATIC VARIATION
AND APPLICATIONS*

E. WONG’{

Abstract. In this paper, we present two related results. First, we shall obtain a sufficient condition
under which a second order sample-continuous martingale can be represented as a stochastic integral
in terms of a Brownian motion. Secondly, we shall show that if X and Y are sample-continuous local
martingales (not necessarily with respect to the same family of a-algebras) and if either X + Y or
X Y is almost surely of bounded variation, then the quadratic variations of the two martingales
are equal. This rather simple result has some surprising consequences.

1. Introduction. Let {Xt, >-0} be a sample-continuous second order
martingale. Then {Xt2, _> 0} is a sample-continuous first order submartingale
and the conditions for Meyer’s decomposition 1] are always satisfied; thus we
can write

(1) xZt M + A >= O,

where M is a martingale, A is an increasing process, and both are sample-con-
tinuous. The decomposition is unique if we set M0 X. If X is a local martin-
gale [2], (1) remains valid except now M is a local martingale. Following Kunita
and Watanabe [2], we shall adopt the suggestive notation (XSt for the increasing
process A

In this paper, we present two related results. First, we shall obtain a sufficient
condition under which a second order sample-continuous martingale can be
represented as a stochastic integral in terms of a Brownian motion. Second,
we shall show that if X and Y are sample-continuous local martingales (not
necessarily with respect to the same family of a-algebras) and if either X + Y or
X- Y is almost surely of bounded variation, then (XSt (YSt. This rather
simple result has some surprising consequences.

2. Martingales and stochastic integrals. Let (, ,) be a probability space,
and let {t, => 0} be an increasing family of sub-a-algebras. A process {Xt, > 0}
is said to be .aaptea to {} if, for each t, X is t-measurable. We say that {Xt, t}
is a martingale if X is adapted to {t} and for every > s,

(2) EvXt X

almost surely. If {Xt, } is a sample-continuous second order martingale, then
the increasing process (X)t introduced earlier is well-defined and E(X)t < oo.

A nonnegative random variable is said to be a stopping time of {t} if
{co :(co) <= t} t for every t. A process {Xt, } is said to be a local martingale
if there exists an increasing sequence of stopping times {z,} such that z, T oo

* Received by the editors September 15, 1970, and in revised form January 20, 1971.
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Laboratory, University of California, Berkeley, California 94720. This work was supported by the
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Science Foundation under Grant GK-1065X.
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622 E. WONG

almost surely and {Xmin(t,rn), 4} is a second order martingale. Let A s denote
min (t, s) and set

X., X,/,,,.

Kunita and Watanabe have proved [2] that if {X,, a4} is a sample-continuous
local martingale, then there exists a sample-continuous increasing process
such that

(x), ,, (x,),.

Of course, now we need not have E(X)t < o0.

If {Wt, } is a sample-continuous second order martingale such that for

(3) ,(w,- w,) t- s,

then W is necessarily a Brownian motion and for each s, {Wt- W, => s} is
independent of s 3, p. 384]. We describe this situation by saying that { Wt, ’}
is a Brownian motion. Let {W,t} be a Brownian motion and let {G, >= 0}
be a measurable process adapted to {t} such that

(4) Edp2 ds <

for each t. The stochastic integral bs dWs is well-defined as the quadratic limit

of a sequence of sums

_
b!..,EW...,v

tions of IO, t] such that

IrOn)max +

If we define

where {t)} is a sequence of parti-

tT)

(5) x, 4,d

and choose a separable version for X, then {Xt, t} is a second order sample-
continuous martingale, with

(6) E(Xt Xs)2 Earls(D2 dz, 0 <= s <= t.

If, instead of (4), 05 merely satisfies

(7) 2, ds < c, a.s.,

then f b, dW can be defined as follows" Let G(o)) be defined by

(8) .(co)

inf t" b2((o) ds > n

if 2(/) (co) ds < n for all t,
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and set

G(o), s __< rn(O),
(9) .,(0)

O, s > .(co).

For each n, f b,, dW is well-defined. It can be shown that fto q5,,s dW converges
in probability as n c, and we define f qS dl/V as this limit. Now, the process
X f qS dl/V need no longer be second order or a martingale, but it is still
sample-continuous if a separable version is chosen. Moreover, for each n,
{Xt/,,, t} is a second order martingale. By definition, X is a local martingale.

If X is a stochastic integral of the form

(10) X Xo + O d14’

and f is a twice continuously differentiable function of a real variable, then Ito’s
differentiation formula I43 yields

(11) 2f(Xt) f(Xo) + f (Xs)dp dW + j (Xs)d) ds.

In particular,

(12) X2 X 2 XOsdW + dp2 ds.

We can now identify X + 2 XqbdW as the local martingale term in the
decomposition (1) of Xt2, and thus the increasing process is given by

(13) (X), 2 ds.

If X is of the form (10), then we can define the stochastic integral j’ dXs by

provided that j’; ff42 ds < oo almost surely. If X is a local martingale, not

necessarily of the form (10), the stochastic integral 0s dXs can still be defined,
provided that j’; 0s2 d(X) < o almost surely [2. Finally, if X Y + Z where
Y is a local martingale and {Zt, >__ 0} is a process with sample functions almost
surely of bounded variation, then we can define ’ dX by

OdX OsdY + OdZ,

provided that the first integral exists as a stochastic integral and the second as a
Stieltjes integral. For the case where Y and Z are sample continuous and f is a
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twice continuously differentiable function, Kunita and Watanabe has extended
Ito’s differentiation rule to read

f(X,) f(Xo) + f’(X) dX + - f"(X) d< Y>.

In particular, we note that

X2t X 2 Xs dXs ( Y>,

is independent of Z and serves to define

3. Representation of martingales. Not every sample-continuous second order
martingale can be represented as a stochastic integral in the form of (10). It is
clear from (13) that for such a representation to be possible the increasing process
(X)(o, t) must be an absolutely continuous function of (w.r.t. the Lebesgue
measure) for almost all co. As Fisk has observed [5], this condition is also sufficient
by virtue of a theorem of Doob [3, p. 449, but it may be necessary to enlarge the
underlying probability space by the adjunction of a Brownian motion. Specifically,
Doob proved the following theorem.

THEOREM 3.1 (Doob). Let {Xt, o, 0 <= <_ T} be a sample-continuous second
order martingale. Suppose that there exists a nonnegative measureable process
{t, 0 <= <= T} adapted to {} such that for > s,

(14) EC(Xt Xs)2 E@ d’c.

If the set {(, t)’6(co, t) 0} has zero d dt measure, then there exists a Brownian
motion Wt, , 0 <= T} such that

(15) X, Xo + 1/W

with probability 1. Without the hypothesis that vanishes almost nowhere, represen-
tation (15) is still valid with the adjunction of a Brownian motion to the probability
space.

The condition that (X) be almost surely continuous with respect to the
Lebesgue measure is both somewhat stringent and difficult to verify. Perhaps,
it is more natural to consider representations of a more general form

(16) x,(o) Xo(oO) + G(co)

where W is a Brownian motion and F is a continuous increasing function.
THEORFM 3.2. Let {Xt, ot, 0 <= <= T} be a sample-continuous local martin-

gale. We assume that {} is right-continuous (i.e. f-]>t t) and each
is completed. A representation of the form (16) exists if and only if (X) is absolutely
continuous with respect to F with probability 1.
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Proof. We only need to prove the theorem for the case F(t)= t, because
{Xt, a,} can be transformed into a sample-continuous local martingale {)7t, t}
with E,2 by defining

F-1(0 inf {s’F(s) t},

Xt Xv_t(t)

Even though F-1 may be discontinuous, {t} is right-continuous and is still
sample-continuous, because F(t)= F(s) implies Xt X almost surely. Since

Xt Xv(t) with probability 1, a representation

where {, ,} is a Brownian motion, implies a representation

X Xrt Xo + dW
0

X0 + 4d,

which is just (16).
To prove Theorem 3.2 for the case F(t) t, we first note that necessity follows

from (13). To prove suciency, we assume that (X) is absolutely continuous
with probability and write

(17) (X)t(m) Os(m) ds,

where can always be chosen to be a measurable process because (X) is a
measurable process. For each t, , is measurable with respect to >,,, which
is equal to by assumption.

We now follow Doob [3, p. 449] and define

(18) gs() {:’/2()if0s() >0,ifO() 0.

Since g d(X) < , the integral f g dX is well-defined as a local
martingale. If ff() > 0 for almost all (, s), then (W)t and it follows from
Theorem 2.3 of [2] that W is a Brownian motion. If not, we adjoin an independent
Brownian motion B to the underlying probability space and define

Then, W is a Brownian motion. In either case, we have

and the proof is complete.
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Theorem 3.2 is basically the same as Theorem 2.1 of [5], except for the intro-
duction of the increasing function F and the generalization to local martingales.
We now come to the main result of the section, namely, a sufficient condition for
the representation (16) that can be verified in terms of two-dimensional distribu-
tions of a martingale X.

THEOREM 3.3. Let {Xt, , 0 <= <= T} be a sample-continuous second order
martingale and let F(t)= E(X- X0)2 E(X)t. Suppose that there exist finite
positive constants and fl such that

EIXt Xsl2 + 2
(19) sup <

o<vm-v}_</ IF(t) F(s)]

Then (X} is almost surely absolutely continuous with respect to the F-measure,
and X has a representation of the form of (16).

Proof. By virtue of the Lebesgue decomposition, we can always write

(20) <X)t(o,) /s(O) dF(s) +

where/ is almost surely singular with respect to F. Now, EOs 1 implies

E#, dF(t) + E(X)t O,

which in turn implies that/J 0 almost surely since p is nonnegative and sample-
continuous. Therefore, we only need to prove that (19) implies EOs 1, 0 <= s <= T.

Let T, {t"), v 0, 1,..., n} be a sequence of nested (i.e., T,+ = T,)par-
titions of the interval [0, T] such that

max [F(t 1) F(t"))] ,>0.

Define O,,t, 0 T, as follows"

t(n)(21) 0,,t- F(,,) ,)
+ F(t

It is well known (see, e.g., 3, pp. 346-347]) that for each , ,. converges for almost
all (F-measure) to the Radon-Nikodym derivative of the absolutely continuous
component of (X) with respect to F. That is, ,,, for almost all (, t). Since
it is obvious that E,,t 1, the desired result E 1 will follow if for each t,
{,,t} is a uniformly integrable family of random variables.

Now, it is known [6] that for any p > 1/2 there exists a constant p such that

Therefore, if we let N be the smallest n such that

max [F(t ) F(t"))] g,
then

sup EO,/ < Kl+a sup { glxt-Xs]2+2 },eu 0<F(t)-V(s)e [F(t)-a < m’
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so that {O,,t} is a uniformly integrable family of random variables. This, together
with Theorem 3.2, completes the proof.

Theorem 3.2 is reminiscent of Kolmogorov’s condition for sample continuity
and has similar advantages, the primary one being that it can be verified in terms
of the two-dimensional distributions of X.

4. Quadratic variation. Let T. {t")} be a nested sequence of partitions of
[0, T] such that max (t) (")1) 0. Let X be a sample-continuous second
order martingale, and let A s denote min (t,s). Fisk [5] has shown that the
sequence of sums

(22) Q,,(X, t) Z IX, At(vn_l X, At(vn)] 2

converges to (X)t in Ll-mean, i.e.,

(23)

For this reason, (X)t is said to be the quadratic variation of X on [0, t]. Now,
suppose that {Zt, 0 <= <_ T} is a sample-continuous process, the sample functions
of which are almost surely of bounded variation. Then there exists an almost
surely finite random variable A such that

sup ]Zt,2, Zt,,] <= A.

Therefore,
Q,,(Z, T) IZtg.., Z,gn,I 2 <= A max IZt(,,,,?_

so that Z has zero quadratic variation on I0, T].
THEOREM 4.1. Let {t} and {t} be two increasing families of a-algebras and

let {Xt, /t} and "t, t} be sample-continuous local martingales. If X + " or

X ; is of bounded variation, then (X)t ()t almost surely for every t.

Proof First, suppose that X and X are second order martingales. Let B
denote the process of bounded variation given by X X or X + X. From the
inequality

x//Z 2 <Z(ak_+ bk)2 < 2 2
ak- ak + bk

k k

we have

.(, t) .(B, _<_ Q.(X, t) _<_ .(, t) + .(B, t)

Since Q,(f2, t), Q,(X, t) and Q(B, t) converge respectively to ())t, (X)t and O,
we have (X) () almost surely for all e [0, r].

If X and J are local martingales, then there exist sequences of stopping times
{Zm} and {f,,} increasing to oe, so that Xm,t X and )m,t ) t are second
order martingales for each m. Let

’m,t--- {O0"t < T, A .}.
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Since *m T m andBm ]" m, we have fm,, T f. For co e fm,t, we have

Xm,(CO) X(CO), 0 < S <= t,

Xm,s(CO) X(co), 0 <= s <__ t.

Therefore, for co e fm,t, either Xm(co) + J?,,(co) or X,,,(co)- J?,,(co) is of bounded
variation on [0, t], and it follows from the same inequality as before that

(Xm)t(co) (Xm)t(co), co ’m,t,
or

The proof is completed by letting m T o.
We should note that in Theorem 4.1 we do not assume that X and 3 are

local martingales with respect to the same family of a-algebras. If they are, then
X + and X ) are both local martingales. If one of them is also of bounded
variation, say X + X, then Xt + X, Xo + Xo with probability 1 for all [0, T,
in which case the result of Theorem 4.1 trivially follows. The more interesting
cases arise when neither X + X nor X X is a local martingale.

An interesting application of Theorem 4.1 is in connection with quasi-martin-
gales [7]. A process {X,, 0 __< =< T} is said to be a quasi-martingale with respect
to {/,} if there exist {B,,0 =< < T} and {Mr, 0 <= T} both adapted to
{/,} such that X M + B, B is of bounded variation, and {Mr, } is a martin-
gale. We shall be interested only in those cases where both M and B are sample-
continuous and where the total variation of B has a finite expectation. Under
these assumptions, if {x,, 4} is a quasi-martingale, then {X,, sex, } is always a
quasi-martingale, where s/x, denotes the a-algebra generated by {Xs, 0 <= s <= t}.
More generally, let {/t} be any increasing family of a-algebras such that /,,
c_c_ sg, c_ sg, for every t. Then, {X,, sg,} is a quasi-martingale. That is, there exist
/ and adapted to {4} such that B is orbounded variation. {Ar,, aT,} is a martin-
gale, both r and/ are sample-continuous, and the total variation of/ has finite
expectation. It follows from Theorem 4.1 that (M), (1), for every t.

An important class of quasi-martingales is made up of Ito processes, which
are processes having the representation

(24) X, Xo + 6/ ds + dp, dl/V, 0 <__ <= T,

where and b are measurable processes adapted to an increasing family of
a-algebras {s}, {W, } is a Brownian motion, and Xo is o-measurable. In
addition, we assume

(25) EIqs[ ds < oo,

(26) E42, ds < c.

This fact is easily proved by verifying the two conditions of Theorem 3.3 in [7].
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It is clear that {X,, } is a quasi-martingale. Thus, {X,, a/x,} is also a quasi-
martingale and the representation of X as a quasi-martingale with respect to
{’x,} is given in the following theorem.

THEOREM 4.2. Let X,, 0 <= <= T, be an lto process satisfying (24), (25) and

(27) | ds < almost surely.
d0

Then there exists a representation of X in the form

(28) x, Xo + E*G d + 10sl d,

where {} is any increasing family of a-algebras satisfying

(29) , for each

and is a Brownian motion.
Remark. If we take ,, then we have

x, Xo + EG ds + IGI d,

where both integrands E.6 and IGI are -measurable functions for almost
all s. The latter stems from the fact that

(30) IGI
d
(X>,

where d/dt stands for the Radon-Nikodym derivative and (X), is defined by

Proof. First, suppose that, in place of (27), the stronger condition (26) is
satisfied. Then, {X,} is a quasi-martingale and we can write

X=Xo+B+,, 0NtN T,

where is of bounded variation and {,} is a martingale. Since

G Os S ,
andM 4sd is a martingale under condition (26), we have from Theorem 4.1:

Theorem 3.1 yields the representation

where W is a Brownian motion.
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To get an integral representation for /, let T, {t")}, n 1,2,..., be a
nested sequence of partitions of [0, T] such that max(t"+ t")) o 0. Define

Fisk [7] has shown that

From (24) we get

t)

If we denote L E’Os, then

sup E EOs ds

N lim E [; ;, ds
t()

lira E []J fLn)] + ]@S @tLn)]] dS.
It()

For a suitable sequence of partitions {t)}, the last limit can always be made
zero (Doob [3, pp. 63-65]). Since the first expression is independent of {tf)}, we
must have

sup E E&Os ds , 0.

If satisfies (27) and not (26), we define {,} by (8). Since (X)t =yoOds,,2

{r,} is a sequence of stopping times not only for {} but also for {t}. Therefore,
for each n, {Xt ,,, t} is a quasi-martingale with a representation

. o + E + ..
Hence, o E@s is a local martingale. It follows from Theorem
4.1 and (24) hat

and the proof is completed by using Theorem 3.2.
Theorem 4.2 can be generalized to a vector Ito process practically without

change. Let X be an n-vector-valued process satisfying
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where W is an m-vector process, the components of which are independent Brown-
ian motions and q5 is an n m matrix. Instead of (25) and (27), we now assume

(33) E Osl ds <

and

(34) b 2 ds < oo

where denotes the Euclidean norm.

almost surely,

Let z be an n-vector and let prime denote transpose. For every e R", {’ Xt}
is a scalar-valued Ito process of the form (24), and we can write

e’X ’EOs ds + M,t,

where {Mo,,tst} is a local martingale for any {t} satisfying (29)and

It follows that 44; ds is x-measurable for every t, and the positive semi-
definite matrix 44; is -measurable for almost all s. Let 44; be diagonalized
so that

(35) 4ss AAsA,
where A is diagonal and the orthogonal matrix A is t-measurable for almost
all s. Now, if we define

AsdX

and apply Theorem 4.2 to the components of Y, we get the following theorem.
THEOREM 4.3. Let X be an n-vector Ito process of the form (32) satisfying (33)

and (34). Let A and A be matrices defined by the diagonalization (35). Then, for
any increasing family of a-algebras satisfying (29), there exists an n-vector Brownian
motion so that

(36) x, Xo + + affs.

5. Applications. Equation (32) is widely used to model a dynamical system
disturbed by Gaussian white noise. Theorem 4.3 has some interesting and sur-
prising consequences for such models. For example, in filtering problems we
often interpret X in (32) as the observed process, as the process to be estimated,
and the stochastic integral term as the noise. If we identify t ExtOt as the
estimator, then Theorem 4.3 implies that

(Os s) ds dp dW + AA/2 dl,.
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The stochastic integral -j’; qb dI,V can always be re-represented as j’/ AsAI/2 dV,
where V is now an n-dimensional Brownian motion, so that

(87- )ds AsAI/Z(dV + ds).

Formally, the estimation error can be expressed as

One may be tempted to say that the estimation error is "white," but that would be
misleading. For the special case (, t) K, a constant, we have

which is the sum of Gaussian white noise (albeit dependent) processes. This was
originally observed by Wonham [8] in a more limited context and generalized
by Kailath [9]. We note that the same observation is true if +’ is a constant even
if is not.

Another observation worthy of note is that for almost all t, ; is -measurable. Thus, for example, if G is a function only of and {4s4’:, 0 N s N t},
then the estimation error is necessarily zero for almost all t. Such a result would
be difficult to prove outside of the context of quadratic variations. A similar
observation can be made with respect to singular detection [10].

Finally, as a simple example of possible applications to control problems,
consider a scalar equation

where X represents the state and U the control. Suppose that U 0 for all t.
Then Theorem 4.2 implies that for any optimization problem whatever, the
optimizing control can always be implemented in state feedback form. This means
that even if we observe the past of the noise process W and use it in constructing
the control, performance cannot be improved. Surely, this is an unexpected result.

Acknowledgment. am grateful to Professor P. P. Varaiya for many valuable
suggestions. In particular, it was at his persuasion and with his help that I extended
the result of 4 to local martingales and to the multidimensional case.
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